Self-Assembly of Binderless MXene Aerogel for Multiple-Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding
Corresponding Author: Hao Wu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 57
Abstract
The severe dependence of traditional phase change materials (PCMs) on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios. Here, we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing. Subsequently, a series of MXene/ K+/paraffin wax (PW) phase change composites (PCCs) were obtained via vacuum impregnation in molten PW. The prepared MXene-based PCCs showed versatile applications from macroscale technologies, successfully transforming solar, electric, and magnetic energy into thermal energy stored as latent heat in the PCCs. Moreover, due to the absence of binder in the MXene-based aerogel, MK3@PW exhibits a prime solar–thermal conversion efficiency (98.4%). Notably, MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar–thermal–electric conversion (producing 206 mV of voltage with light radiation intensity of 200 mw cm−2). An excellent Joule heat performance (reaching 105 °C with an input voltage of 2.5 V) and responsive magnetic–thermal conversion behavior (a charging time of 11.8 s can achieve a thermal insulation effect of 285 s) for contactless thermotherapy were also demonstrated by the MK3@PW. Specifically, as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions, MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value (57.7 dB) than pure MXene aerogel/PW PCC (29.8 dB) with the same MXene mass. This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.
Highlights:
1 This work proposes a tactic for improving the efficiency of thermal energy conversion and expanding the application scenarios of phase change materials by constructing non-binder and oriented MXene-K+ aerogel.
2 The prepared phase change composites (PCCs) can rapidly transform solar, electric, magnetic energy into latent heat for keeping warm, power generation, and thermal physiotherapy.
3 Owing to the suggested tactic, the prepared PCCs achieves ultrahigh energy storage density and realize 99.9998% electromagnetic wave energy attenuation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Liu, J. Miao, Q. Fan, W. Zhang, X. Zuo et al., Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS Appl. Mater. Interfaces 13, 56607–56619 (2021). https://doi.org/10.1021/acsami.1c18828
- P. Lian, R. Yan, Z. Wu, Z. Wang, Y. Chen et al., Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Adv. Compos. Hybrid Mater. 6, 74 (2023). https://doi.org/10.1007/s42114-023-00655-y
- Z. Luo, D. Yang, J. Liu, H.-Y. Zhao, T. Zhao et al., Nature-inspired solar-thermal gradient reduced graphene oxide aerogel-based bilayer phase change composites for self-adaptive personal thermal management. Adv. Funct. Mater. 33, 2212032 (2023). https://doi.org/10.1002/adfm.202212032
- M. Isaac, D.P. van Vuuren, Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37, 507–521 (2009). https://doi.org/10.1016/j.enpol.2008.09.051
- D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/C7CS00505A
- Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
- L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). https://doi.org/10.1126/science.1158899
- J. Woods, A. Mahvi, A. Goyal, E. Kozubal, A. Odukomaiya et al., Rate capability and Ragone plots for phase change thermal energy storage. Nat. Energy 6, 295–302 (2021). https://doi.org/10.1038/s41560-021-00778-w
- S. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin et al., A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew. Sustain. Energy Rev. 135, 110127 (2021). https://doi.org/10.1016/j.rser.2020.110127
- X. Chen, P. Cheng, Z. Tang, X. Xu, H. Gao et al., Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv. Sci. 8, 2001274 (2021). https://doi.org/10.1002/advs.202001274
- G. Qi, J. Yang, R. Bao, D. Xia, M. Cao et al., Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 10, 802–813 (2017). https://doi.org/10.1007/s12274-016-1333-1
- Y. Lu, X. Xiao, J. Fu, C. Huan, S. Qi et al., Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 355, 532–539 (2019). https://doi.org/10.1016/j.cej.2018.08.189
- X. Hu, C. Zhu, H. Wu, X. Li, X. Lu et al., Large-scale preparation of flexible phase change composites with synergistically enhanced thermally conductive network for efficient low-grade thermal energy recovery and utilization. Compos. Part A Appl. Sci. Manuf. 154, 106770 (2022). https://doi.org/10.1016/j.compositesa.2021.106770
- D. Huang, L. Zhang, X. Sheng, Y. Chen, Facile strategy for constructing highly thermally conductive PVDF-BN/PEG phase change composites based on a salt template toward efficient thermal management of electronics. Appl. Therm. Eng. 232, 121041 (2023). https://doi.org/10.1016/j.applthermaleng.2023.121041
- H.-Y. Zhao, C. Shu, P. Min, C. Li, W. Deng et al., Constructing anisotropic conical graphene aerogels with concentric annular structures for highly thermally conductive phase change composites towards efficient solar–thermal–electric energy conversion. J. Mater. Chem. A 10, 22488–22499 (2022). https://doi.org/10.1039/D2TA06457J
- L. Zhang, L. An, Y. Wang, A. Lee, Y. Schuman et al., Thermal enhancement and shape stabilization of a phase-change energy-storage material via copper nanowire aerogel. Chem. Eng. J. 373, 857–869 (2019). https://doi.org/10.1016/j.cej.2019.05.104
- L. Zhang, X. Liu, A. Deb, G. Feng, Ice-templating synthesis of hierarchical and anisotropic silver-nanowire-fabric aerogel and its application for enhancing thermal energy storage composites. ACS Sustainable Chem. Eng. 7, 19910–19917 (2019). https://doi.org/10.1021/acssuschemeng.9b05413
- J. Wang, X. Zhang, Binary crystallized supramolecular aerogels derived from host-guest inclusion complexes. ACS Nano 9, 11389–11397 (2015). https://doi.org/10.1021/acsnano.5b05281
- Z. Tao, H. Zou, M. Li, S. Ren, J. Xu et al., Polypyrrole coated carbon nanotube aerogel composite phase change materials with enhanced thermal conductivity, high solar-/ electro- thermal energy conversion and storage. J. Colloid Interface Sci. 629, 632–643 (2023). https://doi.org/10.1016/j.jcis.2022.09.103
- R. Cao, D. Sun, L. Wang, Z. Yan, W. Liu et al., Enhancing solar–thermal–electric energy conversion based on m-PEGMA/GO synergistic phase change aerogels. J. Mater. Chem. A 8, 13207–13217 (2020). https://doi.org/10.1039/D0TA04712K
- P. Liu, H. Gao, X. Chen, D. Chen, J. Lv et al., In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection. Compos. Part B Eng. 195, 108072 (2020). https://doi.org/10.1016/j.compositesb.2020.108072
- J. Yang, L.-S. Tang, R.-Y. Bao, L. Bai, Z.-Y. Liu et al., An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light–thermal–electric energy conversion. J. Mater. Chem. A 4, 18841–18851 (2016). https://doi.org/10.1039/C6TA08454K
- M. Wang, T. Zhang, D. Mao, Y. Yao, X. Zeng et al., Highly compressive boron nitride nanotube aerogels reinforced with reduced graphene oxide. ACS Nano 13, 7402–7409 (2019). https://doi.org/10.1021/acsnano.9b03225
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
- X. Zang, W. Chen, X. Zou, J.N. Hohman, L. Yang et al., Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 30, e1805188 (2018). https://doi.org/10.1002/adma.201805188
- Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13, 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
- S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
- B. Quan, J. Wang, Y. Li, M. Sui, H. Xie et al., Cellulose nanofibrous/MXene aerogel encapsulated phase change composites with excellent thermal energy conversion and storage capacity. Energy 262, 125505 (2023). https://doi.org/10.1016/j.energy.2022.125505
- S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2T x MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan et al., Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6, 1802040 (2019). https://doi.org/10.1002/admi.201802040
- X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu et al., MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57, 15028–15033 (2018). https://doi.org/10.1002/anie.201808714
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
- X. Li, X. Sheng, Y. Fang, X. Hu, S. Gong et al., Wearable janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Mater. 33, 2212776 (2023). https://doi.org/10.1002/adfm.202212776
- Y. Shao, M.F. El-Kady, C.W. Lin, G. Zhu, K.L. Marsh et al., 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 28, 6719–6726 (2016). https://doi.org/10.1002/adma.201506157
- K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi et al., Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 30, 80–102 (2019). https://doi.org/10.1016/j.mattod.2019.05.017
- Y. Luo, Y. Xie, H. Jiang, Y. Chen, L. Zhang et al., Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 420, 130466 (2021). https://doi.org/10.1016/j.cej.2021.130466
- X. Du, J. Qiu, S. Deng, Z. Du, X. Cheng et al., Flame-retardant and form-stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar-thermal conversion efficiency. J. Mater. Chem. A 8, 14126–14134 (2020). https://doi.org/10.1039/D0TA05078D
- N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi et al., A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep. 6, 264–287 (2020). https://doi.org/10.1016/j.egyr.2019.12.011
- H.-Y. Zhao, C. Shu, X. Wang, P. Min, C. Li et al., Bioinspired intelligent solar-responsive thermally conductive pyramidal phase change composites with radially oriented layered structures toward efficient solar–thermal–electric energy conversion. Adv. Funct. Mater. 33, 2302527 (2023). https://doi.org/10.1002/adfm.202302527
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
- K.M. Wyss, D.X. Luong, J.M. Tour, Large-scale syntheses of 2D materials: flash joule heating and other methods. Adv. Mater. 34, e2106970 (2022). https://doi.org/10.1002/adma.202106970
- K. Sun, Y. Kou, H. Dong, S. Ye, D. Zhao et al., The design of phase change materials with carbon aerogel composites for multi-responsive thermal energy capture and storage. J. Mater. Chem. A 9, 1213–1220 (2021). https://doi.org/10.1039/D0TA09035B
- Y. Zhang, M.M. Umair, S. Zhang, B. Tang, Phase change materials for electron-triggered energy conversion and storage: a review. J. Mater. Chem. A 7, 22218–22228 (2019). https://doi.org/10.1039/C9TA06678K
- Z. Zhou, Q. Zhu, Y. Liu, Y. Zhang, Z. Jia et al., Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nano- Micro Lett. 15, 137 (2023). https://doi.org/10.1007/s40820-023-01108-3
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- Z. Deng, P. Tang, X. Wu, H.-B. Zhang, Z.-Z. Yu, Superelastic, ultralight, and conductive Ti3C2T x MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
- Z. Liu, Y. Zhang, H.-B. Zhang, Y. Dai, J. Liu et al., Electrically conductive aluminum ion-reinforced mxene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8(5), 1673–1678 (2020). https://doi.org/10.1039/c9tc06304h
- H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14, 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
- C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046
References
X. Liu, J. Miao, Q. Fan, W. Zhang, X. Zuo et al., Smart textile based on 3D stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS Appl. Mater. Interfaces 13, 56607–56619 (2021). https://doi.org/10.1021/acsami.1c18828
P. Lian, R. Yan, Z. Wu, Z. Wang, Y. Chen et al., Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Adv. Compos. Hybrid Mater. 6, 74 (2023). https://doi.org/10.1007/s42114-023-00655-y
Z. Luo, D. Yang, J. Liu, H.-Y. Zhao, T. Zhao et al., Nature-inspired solar-thermal gradient reduced graphene oxide aerogel-based bilayer phase change composites for self-adaptive personal thermal management. Adv. Funct. Mater. 33, 2212032 (2023). https://doi.org/10.1002/adfm.202212032
M. Isaac, D.P. van Vuuren, Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37, 507–521 (2009). https://doi.org/10.1016/j.enpol.2008.09.051
D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018). https://doi.org/10.1039/C7CS00505A
Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). https://doi.org/10.1126/science.1158899
J. Woods, A. Mahvi, A. Goyal, E. Kozubal, A. Odukomaiya et al., Rate capability and Ragone plots for phase change thermal energy storage. Nat. Energy 6, 295–302 (2021). https://doi.org/10.1038/s41560-021-00778-w
S. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin et al., A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew. Sustain. Energy Rev. 135, 110127 (2021). https://doi.org/10.1016/j.rser.2020.110127
X. Chen, P. Cheng, Z. Tang, X. Xu, H. Gao et al., Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv. Sci. 8, 2001274 (2021). https://doi.org/10.1002/advs.202001274
G. Qi, J. Yang, R. Bao, D. Xia, M. Cao et al., Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 10, 802–813 (2017). https://doi.org/10.1007/s12274-016-1333-1
Y. Lu, X. Xiao, J. Fu, C. Huan, S. Qi et al., Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 355, 532–539 (2019). https://doi.org/10.1016/j.cej.2018.08.189
X. Hu, C. Zhu, H. Wu, X. Li, X. Lu et al., Large-scale preparation of flexible phase change composites with synergistically enhanced thermally conductive network for efficient low-grade thermal energy recovery and utilization. Compos. Part A Appl. Sci. Manuf. 154, 106770 (2022). https://doi.org/10.1016/j.compositesa.2021.106770
D. Huang, L. Zhang, X. Sheng, Y. Chen, Facile strategy for constructing highly thermally conductive PVDF-BN/PEG phase change composites based on a salt template toward efficient thermal management of electronics. Appl. Therm. Eng. 232, 121041 (2023). https://doi.org/10.1016/j.applthermaleng.2023.121041
H.-Y. Zhao, C. Shu, P. Min, C. Li, W. Deng et al., Constructing anisotropic conical graphene aerogels with concentric annular structures for highly thermally conductive phase change composites towards efficient solar–thermal–electric energy conversion. J. Mater. Chem. A 10, 22488–22499 (2022). https://doi.org/10.1039/D2TA06457J
L. Zhang, L. An, Y. Wang, A. Lee, Y. Schuman et al., Thermal enhancement and shape stabilization of a phase-change energy-storage material via copper nanowire aerogel. Chem. Eng. J. 373, 857–869 (2019). https://doi.org/10.1016/j.cej.2019.05.104
L. Zhang, X. Liu, A. Deb, G. Feng, Ice-templating synthesis of hierarchical and anisotropic silver-nanowire-fabric aerogel and its application for enhancing thermal energy storage composites. ACS Sustainable Chem. Eng. 7, 19910–19917 (2019). https://doi.org/10.1021/acssuschemeng.9b05413
J. Wang, X. Zhang, Binary crystallized supramolecular aerogels derived from host-guest inclusion complexes. ACS Nano 9, 11389–11397 (2015). https://doi.org/10.1021/acsnano.5b05281
Z. Tao, H. Zou, M. Li, S. Ren, J. Xu et al., Polypyrrole coated carbon nanotube aerogel composite phase change materials with enhanced thermal conductivity, high solar-/ electro- thermal energy conversion and storage. J. Colloid Interface Sci. 629, 632–643 (2023). https://doi.org/10.1016/j.jcis.2022.09.103
R. Cao, D. Sun, L. Wang, Z. Yan, W. Liu et al., Enhancing solar–thermal–electric energy conversion based on m-PEGMA/GO synergistic phase change aerogels. J. Mater. Chem. A 8, 13207–13217 (2020). https://doi.org/10.1039/D0TA04712K
P. Liu, H. Gao, X. Chen, D. Chen, J. Lv et al., In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection. Compos. Part B Eng. 195, 108072 (2020). https://doi.org/10.1016/j.compositesb.2020.108072
J. Yang, L.-S. Tang, R.-Y. Bao, L. Bai, Z.-Y. Liu et al., An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light–thermal–electric energy conversion. J. Mater. Chem. A 4, 18841–18851 (2016). https://doi.org/10.1039/C6TA08454K
M. Wang, T. Zhang, D. Mao, Y. Yao, X. Zeng et al., Highly compressive boron nitride nanotube aerogels reinforced with reduced graphene oxide. ACS Nano 13, 7402–7409 (2019). https://doi.org/10.1021/acsnano.9b03225
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May et al., Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 26, 4162–4168 (2016). https://doi.org/10.1002/adfm.201600357
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
M.-Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017). https://doi.org/10.1002/adma.201702410
X. Zang, W. Chen, X. Zou, J.N. Hohman, L. Yang et al., Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 30, e1805188 (2018). https://doi.org/10.1002/adma.201805188
Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13, 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
B. Quan, J. Wang, Y. Li, M. Sui, H. Xie et al., Cellulose nanofibrous/MXene aerogel encapsulated phase change composites with excellent thermal energy conversion and storage capacity. Energy 262, 125505 (2023). https://doi.org/10.1016/j.energy.2022.125505
S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2T x MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan et al., Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6, 1802040 (2019). https://doi.org/10.1002/admi.201802040
X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu et al., MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57, 15028–15033 (2018). https://doi.org/10.1002/anie.201808714
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
X. Li, X. Sheng, Y. Fang, X. Hu, S. Gong et al., Wearable janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Mater. 33, 2212776 (2023). https://doi.org/10.1002/adfm.202212776
Y. Shao, M.F. El-Kady, C.W. Lin, G. Zhu, K.L. Marsh et al., 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 28, 6719–6726 (2016). https://doi.org/10.1002/adma.201506157
K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi et al., Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 30, 80–102 (2019). https://doi.org/10.1016/j.mattod.2019.05.017
Y. Luo, Y. Xie, H. Jiang, Y. Chen, L. Zhang et al., Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem. Eng. J. 420, 130466 (2021). https://doi.org/10.1016/j.cej.2021.130466
X. Du, J. Qiu, S. Deng, Z. Du, X. Cheng et al., Flame-retardant and form-stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar-thermal conversion efficiency. J. Mater. Chem. A 8, 14126–14134 (2020). https://doi.org/10.1039/D0TA05078D
N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi et al., A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep. 6, 264–287 (2020). https://doi.org/10.1016/j.egyr.2019.12.011
H.-Y. Zhao, C. Shu, X. Wang, P. Min, C. Li et al., Bioinspired intelligent solar-responsive thermally conductive pyramidal phase change composites with radially oriented layered structures toward efficient solar–thermal–electric energy conversion. Adv. Funct. Mater. 33, 2302527 (2023). https://doi.org/10.1002/adfm.202302527
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
K.M. Wyss, D.X. Luong, J.M. Tour, Large-scale syntheses of 2D materials: flash joule heating and other methods. Adv. Mater. 34, e2106970 (2022). https://doi.org/10.1002/adma.202106970
K. Sun, Y. Kou, H. Dong, S. Ye, D. Zhao et al., The design of phase change materials with carbon aerogel composites for multi-responsive thermal energy capture and storage. J. Mater. Chem. A 9, 1213–1220 (2021). https://doi.org/10.1039/D0TA09035B
Y. Zhang, M.M. Umair, S. Zhang, B. Tang, Phase change materials for electron-triggered energy conversion and storage: a review. J. Mater. Chem. A 7, 22218–22228 (2019). https://doi.org/10.1039/C9TA06678K
Z. Zhou, Q. Zhu, Y. Liu, Y. Zhang, Z. Jia et al., Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nano- Micro Lett. 15, 137 (2023). https://doi.org/10.1007/s40820-023-01108-3
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
Z. Deng, P. Tang, X. Wu, H.-B. Zhang, Z.-Z. Yu, Superelastic, ultralight, and conductive Ti3C2T x MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
Z. Liu, Y. Zhang, H.-B. Zhang, Y. Dai, J. Liu et al., Electrically conductive aluminum ion-reinforced mxene films for efficient electromagnetic interference shielding. J. Mater. Chem. C 8(5), 1673–1678 (2020). https://doi.org/10.1039/c9tc06304h
H.-Y. Zhao, M.-Y. Yu, J. Liu, X. Li, P. Min et al., Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett. 14, 129 (2022). https://doi.org/10.1007/s40820-022-00878-6
C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213–220 (2023). https://doi.org/10.1016/j.jmst.2022.06.046