Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications
Corresponding Author: Haijiao Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 45
Abstract
Carbon- and silica-based nanomaterials possess a set of merits including large surface area, good structural stability, diversified morphology, adjustable structure, and biocompatibility. These outstanding features make them widely applied in different fields. However, limited by the surface free energy effect, the current studies mainly focus on the symmetric structures, such as nanospheres, nanoflowers, nanowires, nanosheets, and core–shell structured composites. By comparison, the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites, but also enables each component to work independently or corporately to harness their own merits, thus showing the unusual performances in some specific applications. The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon- and silica-based nanomaterials, and their applications in energy storage, catalysis, and biomedicine. Particularly, we provide some deep insights into their unique advantages in related fields from the perspective of materials’ structure–performance relationship. Furthermore, the challenges and development prospects on the synthesis and applications of asymmetric carbon- and silica-based nanomaterials are also presented and highlighted.
Highlights:
1 The synthetic strategies and fundamental mechanisms of various asymmetric carbon- and silica-based nanomaterials were systematically summarized.
2 The advantages of asymmetric structure on their related applications were clarified by some representative applications of asymmetric carbon- and silica-based nanomaterials.
3 The future development prospects and challenges of asymmetric carbon- and silica-based nanomaterials were proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.G. Yang, D.W. Wang, Photocatalysis: from fundamental principles to materials and applications. ACS Appl. Energy Mater. 1(12), 6657–6693 (2018). https://doi.org/10.1021/acsaem.8b01345
- X.Q. Wang, Z.J. Li, Y.T. Qu, T.W. Yuan, W.Y. Wang et al., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
- H.J. Zhang, H.J. Xu, M.H. Wu, Y.F. Zhong, D.H. Wang et al., A soft-hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J. Mater. Chem. B 3(31), 6480–6489 (2015). https://doi.org/10.1039/c5tb00634a
- J.Y. Wang, Y. Cui, D. Wang, Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 31(38), 1801993–1802016 (2019). https://doi.org/10.1002/adma.201801993
- J.M. Jiang, G.D. Nie, P. Nie, Z.W. Li, Z.H. Pan et al., Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Lett. 12, 183 (2020). https://doi.org/10.1007/s40820-020-00521-2
- X.L. Chen, R. Paul, L.M. Dai, Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4(3), 453–489 (2017). https://doi.org/10.1093/nsr/nwx009
- H.Y. Geng, W.Y. Chen, Z.P. Xu, G.R. Qian, J. An et al., Shape-controlled hollow mesoporous silica nanoparticles with multifunctional capping for in vitro cancer treatment. Chemistry 23(45), 10878–10885 (2017). https://doi.org/10.1002/chem.201701806
- H.J. Zhang, Z.Y. Li, P.P. Xu, R.F. Wu, Z. Jiao, A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release. Chem. Commun. 46(36), 6783–6785 (2010). https://doi.org/10.1039/c0cc01673j
- J.X. Guo, H.J. Zhang, H.Y. Geng, X.Q. Mi, G.J. Ding et al., Efficient one-pot synthesis of peapod-like hollow carbon nanomaterials for utrahigh drug loading capacity. J. Colloid Interface Sci. 437, 90–96 (2015). https://doi.org/10.1016/j.jcis.2014.08.036
- P.G. de Gennes, Soft matter. Rev. Mod. Phys. 64(3), 645–648 (1992). https://doi.org/10.1103/RevModPhys.64.645
- F. Pei, T.H. An, J. Zang, X.J. Zhao, X.L. Fang et al., From hollow carbon spheres to N-doped hollow porous carbon bowls: Rational design of hollow carbon host for Li-S batteries. Adv. Energy Mater. 6(8), 1502539–1502546 (2016). https://doi.org/10.1002/aenm.201502539
- C.H. Evers, J.A. Luiken, P.G. Bolhuis, W.K. Kegel, Self-assembly of microcapsules via colloidal bond hybridization and anisotropy. Nature 534(7607), 364–368 (2016). https://doi.org/10.1038/nature17956
- X.L. Hu, J.M. Hu, J. Tian, Z.S. Ge, G.Y. Zhang et al., Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 135(46), 17617–17629 (2013). https://doi.org/10.1021/ja409686x
- W. Zhang, C.X. Wang, K.L. Chen, Y.J. Yin, Raspberry-shaped thermochromic energy storage nanocapsule with tunable sunlight absorption based on color change for temperature regulation. Small 15(47), 1903750 (2019). https://doi.org/10.1002/smll.201903750
- L.G. Carbone, P.D. Cozzoli, Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5(5), 449–493 (2010). https://doi.org/10.1016/j.nantod.2010.08.006
- C.H. Chen, L. Xie, Y. Wang, Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano Res. 12(6), 1267–1278 (2019). https://doi.org/10.1007/s12274-019-2324-9
- Z.Y. Wu, L. Li, T. Liao, X.Q. Chen, W. Jiang et al., Janus nanoarchitectures: from structural design to catalytic applications. Nano Today 22, 62–82 (2018). https://doi.org/10.1016/j.nantod.2018.08.009
- X.P. Jiang, X. Ju, M.F. Huang, Fabrication of monodisperse bowl-like carbon nanoparticles with controlled porous structure. Chem. Lett. 43(7), 1023–1025 (2014). https://doi.org/10.1246/cl.140188
- H.J. Liu, X.G. Zhou, F. Wang, J. Ji, J.J. Liu et al., Hollow carbon hemisphere with controlled morphology as support material for platinum nanoparticle catalyst towards the methanol electro-oxidation. Mater. Res. Bull. 57, 280–286 (2014). https://doi.org/10.1016/j.materresbull.2014.05.021
- H.J. Zhang, X. Li, Interface-mediated fabrication of bowl-like and deflated ballon-like hollow carbon nanospheres. J. Colloid Interface Sci. 452, 141–147 (2015). https://doi.org/10.1016/j.jcis.2015.04.027
- Z.X. Lin, H. Tian, F.G. Xu, X.W. Yang, Y.Y. Mai et al., Facile synthesis of bowl-shaped nitrogen-doped carbon hollow particles templated by block copolymer “kippah vesicles” for high performance supercapacitors. Polym. Chem. 7(11), 2092–2098 (2016). https://doi.org/10.1039/c6py00161k
- Z.L. Zhang, M.L. Qin, B.R. Jia, H.Z. Zhang, H.Y. Wu et al., Facile synthesis of novel bowl-like hollow carbon spheres by the combination of hydrothermal carbonization and soft templating. Chem. Commun. 53(20), 2922–2925 (2017). https://doi.org/10.1039/c7cc00219j
- Y.P. Dong, E.L. Wang, L.J. Yu, R. Wang, Y.F. Zhu et al., Self-templated route to synthesis bowl-like and deflated balloon-like hollow silica spheres. Mater. Lett. 206, 150–153 (2017). https://doi.org/10.1016/j.matlet.2017.07.016
- Y.J. Lv, J. Su, Y.F. Long, X.Y. Lv, Y.X. Wen, Effect of milling time on the performance of bowl-like LiFePO4/C prepared by wet milling-assisted spray drying. Ionics 20(4), 471–478 (2013). https://doi.org/10.1007/s11581-013-1002-2
- L. Xie, H.Y. Wang, C.H. Chen, S.J. Mao, Y.Q. Chen et al., Cooperative assembly of asymmetric carbonaceous bivalve-like superstructures from multiple building blocks. Research 2018, 5807980 (2018). https://doi.org/10.1155/2018/5807980
- H.J. Zhang, H.F. Xu, C. Zhao, Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol–formaldehyde precursor microspheres and applications in lithium-ion batteries. Mater. Chem. Phys. 133(1), 429–436 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.055
- Y. Chen, P.F. Xu, M.Y. Wu, Q.S. Meng, H.R. Chen et al., Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering. Adv. Mater. 26(25), 4294–4301 (2014). https://doi.org/10.1002/adma.201400303
- Z.X. Yan, M.M. Zhang, J.M. Xie, H.G. Wang, W. Wei, Smaller Pt particles supported on mesoporous bowl-like carbon for highly efficient and stable methanol oxidation and oxygen reduction reaction. J. Power Sources 243, 48–53 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.008
- M.F. Huang, X.P. Jiang, H. Zhang, H.S. Yin, X.X. Li et al., Bowl-like carbon sheet for high-rate electrochemical capacitor application. J. Power Sources 272, 1–7 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.055
- Y. Chen, P.F. Xu, H.R. Chen, Y.S. Li, W.B. Bu et al., Colloidal HPMO nanoparticles: silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications. Adv. Mater. 25(22), 3100–3105 (2013). https://doi.org/10.1002/adma.201204685
- J. Cui, F.F. Xing, H. Luo, J.Q. Qin, Y. Li et al., General synthesis of hollow mesoporous conducting polymers by dual-colloid interface co-assembly for high-energy-density micro-supercapacitors. J. Energy Chem. 62, 145–152 (2021). https://doi.org/10.1016/j.jechem.2021.03.016
- D.P. Qiu, A. Gao, Z.Y. Xie, L. Zheng, C.H. Kang et al., Homologous hierarchical porous hollow carbon spheres anode and bowls cathode enabling high-energy sodium-ion hybrid capacitors. ACS Appl. Mater. Interfaces 10(51), 44483–44493 (2018). https://doi.org/10.1021/acsami.8b16442
- C.H. Chen, X.F. Li, J. Deng, Z. Wang, Y. Wang, Shape engineering of biomass-derived nanoparticles from hollow spheres to bowls through solvent-induced buckling. Chemsuschem 11(15), 2540–2546 (2018). https://doi.org/10.1002/cssc.201801215
- X. Liu, P.P. Song, J.H. Hou, B. Wang, F. Xu et al., Revealing the dynamic formation process and mechanism of hollow carbon spheres: from bowl to sphere. ACS Sustain. Chem. Eng. 6(2), 2797–2805 (2018). https://doi.org/10.1021/acssuschemeng.7b04634
- M.X. Wu, Y.N. Lin, H.Y. Guo, W.Y. Li, Y.D. Wang et al., Design a novel kind of open-ended carbon sphere for a highly effective counter electrode catalyst in dye-sensitized solar cells. Nano Energy 11, 540–549 (2015). https://doi.org/10.1016/j.nanoen.2014.11.032
- B.Y. Guan, L. Yu, X.W. Lou, Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv. Sci. 4(10), 1700247–1700252 (2017). https://doi.org/10.1002/advs.201700247
- B.Y. Guan, L. Yu, X.W. Lou, Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 138(35), 11306–11311 (2016). https://doi.org/10.1021/jacs.6b06558
- C. Li, H.J. Peng, J.D. Cai, L. Li, J. Zhang et al., Emulsion-guided controllable construction of anisotropic particles: droplet size determines particle structure. Adv. Mater. 33(31), e2102930 (2021). https://doi.org/10.1002/adma.202102930
- S. Kim, J. Hwang, J. Lee, J. Lee, Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. Sci. Adv. 6(33), 3814 (2020). https://doi.org/10.1126/sciadv.abb3814
- C.H. Chen, H.Y. Wang, C.L. Han, J. Deng, J. Wang et al., Asymmetric flasklike hollow carbonaceous nanoparticles fabricated by the synergistic interaction between soft template and biomass. J. Am. Chem. Soc. 139(7), 2657–2663 (2017). https://doi.org/10.1021/jacs.6b10841
- D.Y. Liu, X.X. Peng, B.H. Wu, X.Y. Zheng, T.T. Chuong et al., Uniform concave polystyrene-carbon core-shell nanospheres by a swelling induced buckling process. J. Am. Chem. Soc. 137(31), 9772–9775 (2015). https://doi.org/10.1021/jacs.5b05027
- Y. Fang, Y.Y. Lv, F. Gong, Z.X. Wu, X.M. Li et al., Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres. J. Am. Chem. Soc. 137(8), 2808–2811 (2015). https://doi.org/10.1021/jacs.5b01522
- W. Wang, B. Jiang, C. Qian, F. Lv, J.R. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30(30), e1801812 (2018). https://doi.org/10.1002/adma.201801812
- S. Zhang, Q. Weng, F. Zhao, H. Gao, P. Chen et al., High electrocapacitive performance of bowl-like monodispersed porous carbon nanoparticles prepared with an interfacial self-assembly process. J. Colloid Interface Sci. 496, 35–43 (2017). https://doi.org/10.1016/j.jcis.2016.10.080
- X. Jian, H. Wang, G.F. Rao, L.Y. Jiang, H.N. Wang et al., Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. Chem. Eng. J. 364, 578–588 (2019). https://doi.org/10.1016/j.cej.2019.02.003
- S.F. Huang, Z.P. Li, B. Wang, J.J. Zhang, Z.Q. Peng et al., N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 28(10), 1706294–1706303 (2018). https://doi.org/10.1002/adfm.201706294
- L.Y. Zhang, Y.Y. Chen, Z.L. Li, L. Li, P. Saint-Cricq et al., Tailored synthesis of octopus-type Janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew. Chem. Int. Ed. 55(6), 2118–2121 (2016). https://doi.org/10.1002/anie.201510409
- L.Y. Zhang, M.J. Zhang, L. Zhou, Q.H. Han, X.J. Chen et al., Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials 181, 113–125 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.060
- M.J. Zhang, X.J. Chen, L.Y. Zhang, L. Li, Z.M. Su et al., Spadix-bract structured nanobowls for bimodal imaging-guided multidrug chemo-photothermal synergistic therapy. Chem. Mater. 30(11), 3722–3733 (2018). https://doi.org/10.1021/acs.chemmater.8b00655
- L.Y. Zhang, S.N. Li, X.J. Chen, T.T. Wang, L. Li et al., Tailored surfaces on 2D material: UFO-like cyclodextrin-pd nanosheet/metal organic framework Janus nanoparticles for synergistic cancer therapy. Adv. Funct. Mater. 28(51), 1803815–1803826 (2018). https://doi.org/10.1002/adfm.201803815
- Q. Zhang, L.Y. Zhang, S.N. Li, X.J. Chen, M.J. Zhang et al., Designed synthesis of Au/Fe3O4@C Janus nanoparticles for dual-modal imaging and actively targeted chemo-photothermal synergistic therapy of cancer cells. Chemistry 23(68), 17242–17248 (2017). https://doi.org/10.1002/chem.201703498
- D. Li, A.M. Bao, X.J. Chen, S.N. Li, T.T. Wang et al., Prussian blue@polyacrylic acid/au aggregate Janus nanoparticles for CT imaging-guided chemotherapy and enhanced photothermal therapy. Adv. Ther. 3(10), 2000091 (2020). https://doi.org/10.1002/adtp.202000091
- S.N. Li, L.Y. Zhang, X. Liang, T.T. Wang, X.J. Chen et al., Tailored synthesis of hollow MOF/polydopamine Janus nanoparticles for synergistic multi-drug chemo-photothermal therapy. Chem. Eng. J. 378, 122175–122184 (2019). https://doi.org/10.1016/j.cej.2019.122175
- Y.F. Li, Z.H. Di, J.H. Gao, P. Cheng, C.Z. Di et al., Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 139(39), 13804–13810 (2017). https://doi.org/10.1021/jacs.7b07302
- J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke et al., Properties of fluorinated graphene films. Nano Lett. 10(8), 3001–3005 (2010). https://doi.org/10.1021/nl101437p
- D.B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.M. Lin, G.S. Tulevski et al., Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 9(1), 388–392 (2009). https://doi.org/10.1021/nl803214a
- C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey et al., Charge neutrality and band-gap tuning of epitaxial graphene on sic by molecular doping. Phys. Rev. B 81(23), 235401–235409 (2010). https://doi.org/10.1103/PhysRevB.81.235401
- A. Sinitskii, A. Dimiev, D.A. Corley, A.A. Fursina, D.V. Kosynkin et al., Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4), 1949–1954 (2010). https://doi.org/10.1021/nn901899j
- M. Steenackers, A.M. Gigler, N. Zhang, F. Deubel, M. Seifert et al., Polymer brushes on graphene. J. Am. Chem. Soc. 133(27), 10490–10498 (2011). https://doi.org/10.1021/ja201052q
- P. Xiao, J.C. Gu, J. Chen, D. Han, J.W. Zhang et al., A microcontact printing induced supramolecular self-assembled photoactive surface for patterning polymer brushes. Chem. Commun. 49(95), 11167–11169 (2013). https://doi.org/10.1039/c3cc46037a
- T.T. Gao, S.W. Ng, X.Q. Liu, L.Y. Niu, Z. Xie et al., Transferable, transparent and functional polymer@graphene 2D objects. NPG Asia Mater. 6(9), e130 (2014). https://doi.org/10.1038/am.2014.79
- T.T. Gao, X.L. Wang, B. Yu, Q.B. Wei, Y.Q. Xia et al., Noncovalent microcontact printing for grafting patterned polymer brushes on graphene films. Langmuir 29(4), 1054–1060 (2013). https://doi.org/10.1021/la304385r
- R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets et al., Fluorographene: a two-dimensional counterpart of teflon. Small 6(24), 2877–2884 (2010). https://doi.org/10.1002/smll.201001555
- J. Wu, L.M. Xie, Y.G. Li, H.L. Wang, Y.J. Ouyang et al., Controlled chlorine plasma reaction for noninvasive graphene doping. J. Am. Chem. Soc. 133(49), 19668–19671 (2011). https://doi.org/10.1021/ja2091068
- L.M. Zhang, J.W. Yu, M.M. Yang, Q. Xie, H.L. Peng et al., Janus graphene from asymmetric two-dimensional chemistry. Nat. Commun. 4, 1443–1449 (2013). https://doi.org/10.1038/ncomms2464
- M.A. Bissett, Y. Takesaki, M. Tsuji, H. Ago, Increased chemical reactivity achieved by asymmetrical ‘Janus’ functionalisation of graphene. RSC Adv. 4(94), 52215–52219 (2014). https://doi.org/10.1039/c4ra09724f
- H. Wu, W.Y. Yi, Z. Chen, H.T. Wang, Q.G. Du, Janus graphene oxide nanosheets prepared via Pickering emulsion template. Carbon 93, 473–483 (2015). https://doi.org/10.1016/j.carbon.2015.05.083
- A.C. de Leon, B.J. Rodier, Q. Luo, C.M. Hemmingsen, P. Wei et al., Distinct chemical and physical properties of Janus nanosheets. ACS Nano 11(7), 7485–7493 (2017). https://doi.org/10.1021/acsnano.7b04020
- Z.J. Zhang, J.L. Qin, H.L. Diao, S.S. Huang, J. Yin et al., Janus-like asymmetrically oxidized graphene: facile synthesis and distinct liquid crystal alignment at the oil/water interface. Carbon 161, 316–322 (2020). https://doi.org/10.1016/j.carbon.2020.01.078
- D.S. Yu, E. Nagelli, R. Naik, L.M. Dai, Asymmetrically functionalized graphene for photodependent diode rectifying behavior. Angew. Chem. Int. Ed. 50(29), 6575–6578 (2011). https://doi.org/10.1002/anie.201101305
- H.Q. Zhou, C.Y. Qiu, Z. Liu, H.C. Yang, L.J. Hu et al., Thickness-dependent morphologies of gold on n-layer graphenes. J. Am. Chem. Soc. 132(3), 944–946 (2010). https://doi.org/10.1021/ja909228n
- A. Gutes, B. Hsia, A. Sussman, W. Mickelson, A. Zettl et al., Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale 4(2), 438–440 (2012). https://doi.org/10.1039/c1nr11537e
- Y.J. Ren, S.S. Chen, W.W. Cai, Y.W. Zhu, C.F. Zhu et al., Controlling the electrical transport properties of graphene by in situ metal deposition. Appl. Phys. Lett. 97(5), 053107–053111 (2010). https://doi.org/10.1063/1.3471396
- G.X. Lu, H. Li, C. Liusman, Z.Y. Yin, S.X. Wu et al., Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. 2(9), 1817–1821 (2011). https://doi.org/10.1039/c1sc00254f
- Z.Y. Yin, S.X. Wu, X.Z. Zhou, X. Huang, Q.C. Zhang et al., Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cell. Small 6(2), 307–312 (2010). https://doi.org/10.1002/smll.200901968
- S.X. Wu, Z.Y. Yin, Q.Y. He, X.A. Huang, X.Z. Zhou et al., Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J. Phys. Chem. C 114(27), 11816–11821 (2010). https://doi.org/10.1021/jp103696u
- C.I. Zoldesi, A. Imhof, Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater. 17(7), 924–928 (2005). https://doi.org/10.1002/adma.200401183
- Z.G. Teng, C.Y. Wang, Y.X. Tang, W. Li, L. Bao et al., Deformable hollow periodic mesoporous organosilica nanocapsules for significantly improved cellular uptake. J. Am. Chem. Soc. 140(4), 1385–1393 (2018). https://doi.org/10.1021/jacs.7b10694
- X. Du, W. Li, B. Shi, L. Su, X. Li et al., Facile synthesis of mesoporous organosilica nanobowls with bridged silsesquioxane framework by one-pot growth and dissolution mechanism. J. Colloid Interface Sci. 528, 379–388 (2018). https://doi.org/10.1016/j.jcis.2018.05.104
- X.M. Li, L. Zhou, Y. Wei, A.M. El-Toni, F. Zhang et al., Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages. J. Am. Chem. Soc. 137(18), 5903–5906 (2015). https://doi.org/10.1021/jacs.5b03207
- D.L. Yi, Q. Zhang, Y.H. Liu, J.Y. Song, Y. Tang et al., Synthesis of chemically asymmetric silica nanobottles and their application for cargo loading and as nanoreactors and nanomotors. Angew. Chem. Int. Ed. 55(47), 14733–14737 (2016). https://doi.org/10.1002/anie.201607330
- P.L. Abbaraju, A.K. Meka, H. Song, Y.N. Yang, M. Jambhrunkar et al., Asymmetric silica nanoparticles with tunable head-tail structures enhance hemocompatibility and maturation of immune cells. J. Am. Chem. Soc. 139(18), 6321–6328 (2017). https://doi.org/10.1021/jacs.6b12622
- A. Kuijk, A. van Blaaderen, A. Imhof, Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc. 133(8), 2346–2349 (2011). https://doi.org/10.1021/ja109524h
- D.L. Yi, C.L. Xu, R.D. Tang, X.H. Zhang, F. Caruso et al., Synthesis of discrete alkyl-silica hybrid nanowires and their assembly into nanostructured superhydrophobic membranes. Angew. Chem. Int. Ed. 55(29), 8375–8380 (2016). https://doi.org/10.1002/anie.201603644
- D.Z. Yin, L. Ma, J.J. Liu, Q.Y. Zhang, Pickering emulsion: a novel template for microencapsulated phase change materials with polymer-silica hybrid shell. Energy 64, 575–581 (2014). https://doi.org/10.1016/j.energy.2013.10.004
- W.J. Zhou, L. Fang, Z.Y. Fan, B. Albela, L. Bonneviot et al., Tunable catalysts for solvent-free biphasic systems: Pickering interfacial catalysts over amphiphilic silica nanoparticles. J. Am. Chem. Soc. 136(13), 4869–4872 (2014). https://doi.org/10.1021/ja501019n
- Q.X. Gao, C.Y. Wang, H.X. Liu, C.H. Wang, X.X. Liu et al., Suspension polymerization based on inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures. Polymer 50(12), 2587–2594 (2009). https://doi.org/10.1016/j.polymer.2009.03.049
- M. Destribats, B. Faure, M. Birot, O. Babot, V. Schmitt et al., Tailored silica macrocellular foams: combining limited coalescence-based Pickering emulsion and sol-gel process. Adv. Funct. Mater. 22(12), 2642–2654 (2012). https://doi.org/10.1002/adfm.201102564
- E.Q. Bu, Y. Chen, C. Wang, Z.D. Cheng, X.L. Luo et al., Hydrogen production from bio-derived biphasic photoreforming over a raspberry-like amphiphilic Ag2O-TiO2/SiO2 catalyst. Chem. Eng. J. 370, 646–657 (2019). https://doi.org/10.1016/j.cej.2019.03.259
- J. Zhang, J. Jin, H.Y. Zhao, Surface-initiated free radical polymerization at the liquid–liquid interface: a one-step approach for the synthesis of amphiphilic Janus silica particles. Langmuir 25(11), 6431–6437 (2009). https://doi.org/10.1021/la9000279
- S. Fujii, Y. Yokoyama, Y. Miyanari, T. Shiono, M. Ito et al., Micrometer-sized gold-silica Janus particles as particulate emulsifiers. Langmuir 29(18), 5457–5465 (2013). https://doi.org/10.1021/la400697a
- X.Y. Xu, Y.J. Liu, Y. Gao, H. Li, Preparation of Au@silica Janus nanosheets and their catalytic application. Colloids Surf. A Physicochem. Eng. Aspects 529, 613–620 (2017). https://doi.org/10.1016/j.colsurfa.2017.06.048
- M.M. Kulkarni, R. Bandyopadhyaya, A. Sharma, Janus silica film with hydrophobic and hydrophilic surfaces grown at an oil-water interface. J. Mater. Chem. 18(9), 1021–1028 (2008). https://doi.org/10.1039/b713074k
- Y. Ning, C.Y. Wang, T. Ngai, Z. Tong, Fabrication of tunable Janus microspheres with dual anisotropy of porosity and magnetism. Langmuir 29(17), 5138–5144 (2013). https://doi.org/10.1021/la400053g
- Y.Z. Wang, D.Q. Fan, J.P. He, Y.L. Yang, Silica nanoparticle covered with mixed polymer brushes as Janus particles at water/oil interface. Colloid Polym. Sci. 289, 1885–1894 (2011). https://doi.org/10.1007/s00396-011-2506-9
- V. Lopez, M.R. Villegas, V. Rodriguez, G. Villaverde, D. Lozano et al., Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria. ACS Appl. Mater. Interfaces 9(32), 26697–26706 (2017). https://doi.org/10.1021/acsami.7b06906
- K. Zhang, W. Wu, H. Meng, K. Guo, J.F. Chen, Pickering emulsion polymerization: preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technol. 190(3), 393–400 (2009). https://doi.org/10.1016/j.powtec.2008.08.022
- S.W. Zou, Y. Yang, H. Liu, C.Y. Wang, Synergistic stabilization and tunable structures of Pickering high internal phase emulsions by nanoparticles and surfactants. Colloids Surf. A Physicochem. Eng. Aspects 436, 1–9 (2013). https://doi.org/10.1016/j.colsurfa.2013.06.013
- E. Sharifzadeh, M. Salami-Kalajahi, M.S. Hosseini, M.K.R. Aghjeh, A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: experimental and theoretical approaches. Colloids Surf. A Physicochem. Eng. Aspects 506, 56–62 (2016). https://doi.org/10.1016/j.colsurfa.2016.06.006
- C. Wei, R.L. Huang, W. Qi, R.X. Su, Z.M. He, Self-assembly of amphiphilic Janus particles into monolayer capsules for enhanced enzyme catalysis in organic media. ACS Appl. Mater. Interfaces 7(1), 465–473 (2015). https://doi.org/10.1021/am5065156
- Y.Y. Yin, S.X. Zhou, B. You, L.M. Wu, Facile fabrication and self-assembly of polystyrene-silica asymmetric colloid spheres. J Polym. Sci. Pol. Chem. 49(15), 3272–3279 (2011). https://doi.org/10.1002/pola.24762
- H.O. Zhou, T.J. Shi, X. Zhou, Preparation of polystyrene/SiO2 microsphere via Pickering emulsion polymerization: synergistic effect of SiO2 concentrations and initiator sorts. Appl. Surf. Sci. 266, 33–38 (2013). https://doi.org/10.1016/j.apsusc.2012.11.054
- F. Wang, G.M. Pauletti, J.T. Wang, J.M. Zhang, R.C. Ewing et al., Dual surface-functionalized Janus nanocomposites of polystyrene/Fe3O4@SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release. Adv. Mater. 25(25), 3485–3489 (2013). https://doi.org/10.1002/adma.201301376
- Y. Xing, Y. Zhou, Y. Zhang, C.H. Zhang, X. Deng et al., Facile fabrication route of Janus gold-mesoporous silica nanocarriers with dual-drug delivery for tumor therapy. ACS Biomater. Sci. Eng. 6(3), 1573–1581 (2020). https://doi.org/10.1021/acsbiomaterials.0c00042
- A. Llopis-Lorente, A. Garcia-Fernandez, E. Lucena-Sanchez, P. Diez, F. Sancenon et al., Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au-mesoporous silica nanoparticles for enhanced cargo delivery. Chem. Commun. 55(87), 13164–13167 (2019). https://doi.org/10.1039/c9cc07250k
- J.H. Park, D.S. Dumani, A. Arsiwala, S. Emelianov, R.S. Kane, Tunable aggregation of gold-silica janus nanoparticles to enable contrast-enhanced multiwavelength photoacoustic imaging in vivo. Nanoscale 10(32), 15365–15370 (2018). https://doi.org/10.1039/c8nr03973a
- M.J. Xuan, Z.G. Wu, J.X. Shao, L.R. Dai, T.Y. Si et al., Near infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138(20), 6492–6497 (2016). https://doi.org/10.1021/jacs.6b00902
- F. Wang, S. Cheng, Z.H. Bao, J.F. Wang, Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew. Chem. Int. Ed. 52(39), 10344–10348 (2013). https://doi.org/10.1002/anie.201304364
- T. Zhou, B.B. Wang, B. Dong, C.Y. Li, Thermoresponsive amphiphilic Janus silica nanoparticles via combining “polymer single-crystal templating” and “grafting-from” methods. Macromolecules 45(21), 8780–8789 (2012). https://doi.org/10.1021/ma3019987
- T. Chen, G. Chen, S.X. Xing, T. Wu, H.Y. Chen, Scalable routes to Janus Au-SiO2 and ternary Ag-Au-SiO2 nanoparticles. Chem. Mater. 22(13), 3826–3828 (2010). https://doi.org/10.1021/cm101155v
- L. Zhang, F. Zhang, W.F. Dong, J.F. Song, Q.S. Huo et al., Magnetic-mesoporous Janus nanoparticles. Chem. Commun. 47(4), 1225–1227 (2011). https://doi.org/10.1039/c0cc03946b
- L. Zhang, Q. Luo, F. Zhang, D.M. Zhang, Y.S. Wang et al., High-performance magnetic antimicrobial Janus nanorods decorated with Ag nanoparticles. J. Mater. Chem. 22(45), 23741–23745 (2012). https://doi.org/10.1039/c2jm35072f
- Z.M. Chang, Z. Wang, M.M. Lu, D. Shao, J. Yue et al., Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids Surf. B 157, 199–206 (2017). https://doi.org/10.1016/j.colsurfb.2017.05.079
- F.W. Wang, H.R. Liu, X.Y. Zhang, Synthesis of worm-like superparamagnetic P(St-AA)@Fe3O4/SiO2 Janus composite particles. Colloid Polym. Sci. 292(6), 1395–1403 (2014). https://doi.org/10.1007/s00396-014-3191-2
- Z. Wang, Z.M. Chang, D. Shao, F. Zhang, F.M. Chen et al., Janus gold triangle-mesoporous silica nanoplatforms for hypoxia-activated radio-chemo-photothermal therapy of liver cancer. ACS Appl. Mater. Interfaces 11(38), 34755–34765 (2019). https://doi.org/10.1021/acsami.9b12879
- Z. Wang, D. Shao, Z.M. Chang, M.M. Lu, Y.S. Wang et al., Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano 11(12), 12732–12741 (2017). https://doi.org/10.1021/acsnano.7b07486
- H.C. Hu, J.J. Liu, J.Q. Yu, X.C. Wang, H.W. Zheng et al., Synthesis of Janus Au@periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. Nanoscale 9(14), 4826–4834 (2017). https://doi.org/10.1039/c7nr01047h
- J. He, M.J. Hourwitz, Y. Liu, M.T. Perez, Z.H. Nie, One-pot facile synthesis of Janus particles with tailored shape and functionality. Chem. Commun. 47(46), 12450–12452 (2011). https://doi.org/10.1039/c1cc15603a
- D. Shao, X. Zhang, W.L. Liu, F. Zhang, X. Zheng et al., Janus silver-mesoporous silica nanocarriers for SERS traceable and pH-sensitive drug delivery in cancer therapy. ACS Appl. Mater. Interfaces 8(7), 4303–4308 (2016). https://doi.org/10.1021/acsami.5b11310
- T.Y. Yang, L.J. Wei, L.Y. Jing, J.F. Liang, X.M. Zhang et al., Dumbbell-shaped Bi-component mesoporous Janus solid nanoparticles for biphasic interface catalysis. Angew. Chem. Int. Ed. 56(29), 8459–8463 (2017). https://doi.org/10.1002/anie.201701640
- L. Qu, H.C. Hu, J.Q. Yu, X.Y. Yu, J. Liu et al., High-yield synthesis of Janus dendritic mesoporous silica@resorcinol-formaldehyde nanoparticles: a competing growth mechanism. Langmuir 33(21), 5269–5274 (2017). https://doi.org/10.1021/acs.langmuir.7b00838
- X.M. Li, L. Zhou, Y. Wei, A.M. El-Toni, F. Zhang et al., Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 136(42), 15086–15092 (2014). https://doi.org/10.1021/ja508733r
- G.J. Tao, Z.Y. Bai, Y. Chen, H.L. Yao, M.Y. Wu et al., Generic synthesis and versatile applications of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles with asymmetric Janus topologies and structures. Nano Res. 10(11), 3790–3810 (2017). https://doi.org/10.1007/s12274-017-1592-5
- T.C. Zhao, L. Chen, P.Y. Wang, B.H. Li, R.F. Lin et al., Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat. Commun. 10, 4387–4386 (2019). https://doi.org/10.1038/s41467-019-12378-0
- T.C. Zhao, X.H. Zhu, C.T. Hung, P.Y. Wang, A. Elzatahry et al., Spatial isolation of carbon and silica in a single Janus mesoporous nanoparticle with tunable amphiphilicity. J. Am. Chem. Soc. 140(31), 10009–10015 (2018). https://doi.org/10.1021/jacs.8b06127
- B.Y. Zhang, K. Xu, Q.F. Yao, A. Jannat, G.H. Ren et al., Hexagonal metal oxide monolayers derived from the metal-gas interface. Nat. Mater. 20(8), 1073–1078 (2021). https://doi.org/10.1038/s41563-020-00899-9
- J.Y. Lee, J. An, C.K. Chua, Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 7, 120–133 (2017). https://doi.org/10.1016/j.apmt.2017.02.004
- A. Jannat, Q.F. Yao, A. Zavabeti, N. Syed, B.Y. Zhang et al., Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. Mater. Horizons 7(3), 827–834 (2020). https://doi.org/10.1039/C9MH01365B
- A. Jannat, N. Syed, K. Xu, M.A. Rahman, M.M.M. Talukder et al., Printable single-unit-cell-thick transparent zinc-doped indium oxides with efficient electron transport properties. ACS Nano 15(3), 4045–4053 (2021). https://doi.org/10.1021/acsnano.0c06791
- Z. Zhang, B.R. Jia, L. Liu, Y.Z. Zhao, H.Y. Wu et al., Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 13(10), 11363–11371 (2019). https://doi.org/10.1021/acsnano.9b04728
- J. Liang, H. Hu, H.J. Park, C.H. Xiao, S.J. Ding et al., Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 8(6), 1707–1711 (2015). https://doi.org/10.1039/c5ee01125f
- J. Liang, X.Y. Yu, H. Zhou, H.B. Wu, S. Ding et al., Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 53(47), 12803–12807 (2014). https://doi.org/10.1002/anie.201407917
- M.L. Qin, Z.L. Zhang, Y.Z. Zhao, L. Liu, B.R. Jia et al., Optimization of von Mises stress distribution in mesoporous α-Fe2O3/C hollow bowls synergistically boosts gravimetric/volumetric capacity and high-rate stability in alkali-ion batteries. Adv. Funct. Mater. 29(34), 1902822–1902830 (2019). https://doi.org/10.1002/adfm.201902822
- S. Chen, J.Y. Zhao, Y.C. Pang, S.J. Ding, CoS nanosheets wrapping on bowl-like hollow carbon spheres with enhanced compact density for sodium-ion batteries. Nanotechnology 30(42), 425402–425425 (2019). https://doi.org/10.1088/1361-6528/ab3161
- X. Zhang, X. Chen, H.J. Ren, G.W. Diao, M. Chen et al., Bowl-like C@MoS2 nanocomposites as anode materials for lithium-ion batteries: enhanced stress buffering and charge/mass transfer. ACS Sustain. Chem. Eng. 8(27), 10065–10072 (2020). https://doi.org/10.1021/acssuschemeng.0c01835
- Y.Y. Zhang, C. Huang, H. Min, H.B. Shu, P. Gao et al., Bowl-like double carbon layer architecture of hollow carbon@FePO4@reduced graphene oxide composite as high-performance cathodes for sodium and lithium ion batteries. J. Alloy. Compd. 795(30), 34–44 (2019). https://doi.org/10.1016/j.jallcom.2019.04.268
- Q. Tang, Y. Zhou, L. Ma, M.Y. Gan, Hemispherical flower-like N-doped porous carbon/NiCo2O4 hybrid electrode for supercapacitors. J. Solid State Chem. 269, 175–183 (2019). https://doi.org/10.1016/j.jssc.2018.09.022
- N. Jia, Y. Shi, S. Zhang, X. Chen, P. Chen et al., Carbon nanobowls supported ultrafine palladium nanocrystals: a highly active electrocatalyst for the formic acid oxidation. Int. J. Hydrog. Energy 42(12), 8255–8263 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.136
- X.B. Li, X.H. Gao, P.Y. Xu, C.H. You, W. Sun et al., Uniform nitrogen and sulfur co-doped carbon bowls for the electrocatalyzation of oxygen reduction. ACS Sustain. Chem. Eng. 7(7), 7148–7154 (2019). https://doi.org/10.1021/acssuschemeng.9b00126
- H.M. Zhang, Y. Zhao, Y.J. Zhang, M.H. Zhang, M.S. Cheng et al., Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chem. Eng. J. 375, 122058–122064 (2019). https://doi.org/10.1016/j.cej.2019.122058
- J.Y. Dai, H.B. Zou, Z.Q. Shi, H.Q. Yang, R.W. Wang et al., Janus N-doped carbon@silica hollow spheres as multifunctional amphiphilic nanoreactors for base-free aerobic oxidation of alcohols in water. ACS Appl. Mater. Interfaces 10(39), 33474–33483 (2018). https://doi.org/10.1021/acsami.8b11888
- Y.J. Liu, J.K. Hu, X.T. Yu, X.Y. Xu, Y. Gao et al., Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. J. Colloid Interface Sci. 490, 357–364 (2017). https://doi.org/10.1016/j.jcis.2016.11.053
- D. Shao, J. Li, X. Zheng, Y. Pan, Z. Wang et al., Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials 100, 118–133 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.030
- Z. Wang, Z.M. Chang, M.M. Lu, D. Shao, J. Yue et al., Janus silver/silica nanoplatforms for light-activated liver cancer chemo/photothermal therapy. ACS Appl. Mater. Interfaces 9(36), 30306–30317 (2017). https://doi.org/10.1021/acsami.7b06446
- Z. Wang, Y.S. Wang, M.M. Lu, L. Li, Y. Zhang et al., Janus Au-mesoporous silica nanocarriers for chemo-photothermal treatment of liver cancer cells. RSC Adv. 6(50), 44498–44505 (2016). https://doi.org/10.1039/c6ra04183c
- L. Xiong, S.Z. Qiao, A mesoporous organosilica nano-bowl with high DNA loading capacity—a potential gene delivery carrier. Nanoscale 8(40), 17446–17450 (2016). https://doi.org/10.1039/c6nr06777h
- Z. Wang, F. Zhang, D. Shao, Z.M. Chang, L. Wang et al., Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Adv. Sci. 6(22), 1901690 (2019). https://doi.org/10.1002/advs.201901690
- M.J. Xuan, J.X. Shao, C.Y. Gao, W. Wang, L.R. Dai et al., Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem. Int. Ed. 57(38), 12463–12467 (2018). https://doi.org/10.1002/anie.201806759
- P. Diez, A. Sanchez, M. Gamella, P. Martinez-Ruiz, E. Aznar et al., Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 136(25), 9116–9123 (2014). https://doi.org/10.1021/ja503578b
- A. Llopis-Lorente, P. Diez, A. Sanchez, M.D. Marcos, F. Sancenon et al., Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat. Commun. 8, 15511–15517 (2017). https://doi.org/10.1038/ncomms15511
- C. Lu, X.J. Liu, Y.F. Li, F. Yu, L.H. Tang et al., Multifunctional Janus hematite-silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl. Mater. Interfaces 7(28), 15395–15402 (2015). https://doi.org/10.1021/acsami.5b03423
- M. Li, J. Lu, Z.W. Chen, K. Amine, 30 Years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
- Y.M. Sun, N.A. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071–16082 (2016). https://doi.org/10.1038/nenergy.2016.71
- W. Liu, M.S. Song, B. Kong, Y. Cui, Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29(1), 1603436–1603469 (2017). https://doi.org/10.1002/adma.201603436
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013–16028 (2016). https://doi.org/10.1038/natrevmats.2016.13
- S.Y. Wei, S.M. Xu, A. Agrawral, S. Choudhury, Y.Y. Lu et al., A stable room-temperature sodium-sulfur battery. Nat. Commun. 7, 11722–11731 (2016). https://doi.org/10.1038/ncomms11722
- A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
- E. Pomerantseva, F. Bonaccorso, X.L. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366(6468), eaan8285 (2019). https://doi.org/10.1126/science.aan8285
- F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23(15), 1695–1715 (2011). https://doi.org/10.1002/adma.201003587
- H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, X.B. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
- H. Kim, J.C. Kim, M. Bianchini, D.H. Seo, J. Rodriguez-Garcia et al., Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384–1702402 (2018). https://doi.org/10.1002/aenm.201702384
- W. Wang, J.H. Zhou, Z.P. Wang, L.Y. Zhao, P.H. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648–1701655 (2018). https://doi.org/10.1002/aenm.201701648
- Z.H. Liu, Q. Yu, Y.L. Zhao, R.H. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48(1), 285–309 (2019). https://doi.org/10.1039/c8cs00441b
- J.W. Li, X. Hu, G.B. Zhong, Y.J. Liu, Y.X. Ji et al., A general self-sacrifice template strategy to 3D heteroatom-doped macroporous carbon for high-performance potassium-ion hybrid capacitors. Nano-Micro Lett. 13, 131 (2021). https://doi.org/10.1007/s40820-021-00659-7
- K. Liu, Z.L. Chen, T. Lv, Y. Yao, N. Li et al., A self-supported graphene/carbon nanotube hollow fiber for integrated energy conversion and storage. Nano-Micro Lett. 12, 64 (2020). https://doi.org/10.1007/s40820-020-0390-x
- E.H. Wang, M.Z. Chen, X.D. Guo, S.L. Chou, B.H. Zhong et al., Synthesis strategies and structural design of porous carbon-incorporated anodes for sodium-ion batteries. Small Methods 4(6), 1900163–1900194 (2019). https://doi.org/10.1002/smtd.201900163
- H.Y. Geng, Y. Peng, L.T. Qu, H.J. Zhang, M.H. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10(10), 1903030 (2020). https://doi.org/10.1002/aenm.201903030
- R.T. Guo, X. Liu, B. Wen, F. Liu, J.S. Meng et al., Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial coulombic efficien. Nano-Micro Lett. 12, 148 (2020). https://doi.org/10.1007/s40820-020-00481-7
- Y. Gu, Z. Jiao, M.H. Wu, B. Luo, Y. Lei et al., Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability. Nano Res. 10(1), 121–133 (2016). https://doi.org/10.1007/s12274-016-1271-y
- C.H. Wu, J.Z. Ou, F.Y. He, J.F. Ding, W. Luo et al., Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 65, 104061–104070 (2019). https://doi.org/10.1016/j.nanoen.2019.104061
- Y. Zhang, C.W. Wang, H.S. Hou, G.Q. Zou, X.B. Ji, Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7(4), 1600173–1600181 (2017). https://doi.org/10.1002/aenm.201600173
- Z.M. Liu, T.C. Lu, T. Song, X.Y. Yu, X.W. Lou et al., Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10(7), 1576–1580 (2017). https://doi.org/10.1039/c7ee01100h
- Y.J. Wang, Z. Jiao, M.H. Wu, K. Zheng, H.W. Zhang et al., Flower-like C@SnOX@C hollow nanostructures with enhanced electrochemical properties for lithium storage. Nano Res. 10(9), 2966–2976 (2017). https://doi.org/10.1007/s12274-017-1507-5
- S.L. Zhang, H.J. Ying, P.F. Huang, J.L. Wang, Z. Zhang et al., Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 14(12), 17665–17674 (2020). https://doi.org/10.1021/acsnano.0c08770
- P.F. Huang, S.L. Zhang, H.J. Ying, W.T. Yang, J.L. Wang et al., Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 14(4), 1218–1227 (2020). https://doi.org/10.1007/s12274-020-3221-y
- C.C. Yang, W.T. Jing, C. Li, Q. Jiang, Synthesis of open helmet-like carbon skeletons for application in lithium-ion batteries. J. Mater. Chem. A 6(9), 3877–3883 (2018). https://doi.org/10.1039/c7ta10277a
- P.H. Li, Y. Yang, S. Gong, F. Lv, W. Wang et al., Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res. 12(9), 2218–2223 (2018). https://doi.org/10.1007/s12274-018-2250-2
- L.J. Wang, F.H. Liu, B.Y. Zhao, Y.S. Ning, L.F. Zhang et al., Carbon nanobowls filled with MoS2 nanosheets as electrode materials for supercapacitors. ACS Appl. Nano Mater. 3(7), 6448–6459 (2020). https://doi.org/10.1021/acsanm.0c00924
- X.Y. Qian, G.J. Zhu, K. Wang, F.Z. Zhang, K. Liang et al., Bowl-like mesoporous polymer-induced interface growth of molybdenum disulfide for stable lithium storage. Chem. Eng. J. 381, 122651–122662 (2020). https://doi.org/10.1016/j.cej.2019.122651
- M.M. Wu, S.X. Tong, L.L. Jiang, B.Q. Hou, X.Y. Li et al., Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors. J. Alloys Compd. 844, 156217–156225 (2020). https://doi.org/10.1016/j.jallcom.2020.156217
- M. Wang, J. Yang, S.Y. Liu, M.Z. Li, C. Hu et al., Nitrogen-doped hierarchically porous carbon nanosheets derived from polymerigraphene oxide hydrogels for high-performance supercapacitors. J. Colloid Interface Sci. 560, 69–76 (2020). https://doi.org/10.1016/j.jcis.2019.10.037
- X.S. Feng, Y. Huang, C. Li, Y.Y. Xiao, X.F. Chen et al., Construction of carnations-like Mn3O4@NiCo2O4@NiO hierarchical nanostructures for high-performance supercapacitors. Electrochim. Acta 308, 142–149 (2019). https://doi.org/10.1016/j.electacta.2019.04.048
- W.D. He, C.G. Wang, H.Q. Li, X.L. Deng, X.J. Xu et al., Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 7(21), 1700983–1700992 (2017). https://doi.org/10.1002/aenm.201700983
- M. Blanco, B. Nieto-Ortega, A. de Juan, M. Vera-Hidalgo, A. Lopez-Moreno et al., Positive and negative regulation of carbon nanotube catalysts through encapsulation within macrocycles. Nat. Commun. 9, 2671–2676 (2018). https://doi.org/10.1038/s41467-018-05183-8
- S.C. Xu, Y.M. Kim, J. Park, D. Higgins, J.J. Shen et al., Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. Nat. Catal. 1(8), 624–630 (2018). https://doi.org/10.1038/s41929-018-0118-1
- C.X. Qian, W. Sun, D.L.H. Hung, C.Y. Qiu, M. Makaremi et al., Catalytic CO2 reduction by palladium-decorated silicon-hydride nanosheets. Nat. Catal. 2, 46–54 (2018). https://doi.org/10.1038/s41929-018-0199-x
- G.A. Hutton, B. Reuillard, B.C. Martindale, C.A. Caputo, C.W. Lockwood et al., Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138(51), 16722–16730 (2016). https://doi.org/10.1021/jacs.6b10146
- P. Ryabchuk, G. Agostini, M.M. Pohl, H. Lund, A. Agapova et al., Intermetallic nickel silicide nanocatalyst: a non-noble metal-based general hydrogenation catalyst. Sci. Adv. 4(6), eaat0761 (2018). https://doi.org/10.1126/sciadv.aat0761
- H. Lee, Y. Kim, M.J. Kim, K.J. Kim, B.K. Kim, Comparative study of the catalytic activities of three distinct carbonaceous materials through photocatalytic oxidation, CO conversion, dye degradation, and electrochemical measurements. Sci. Rep. 6, 35500–35509 (2016). https://doi.org/10.1038/srep35500
- C.H. You, X.W. Jiang, L.Y. Han, X.H. Wang, Q. Lin et al., Uniform nitrogen and sulphur co-doped hollow carbon nanospheres as efficient metal-free electrocatalysts for oxygen reduction. J. Mater. Chem. A 5(4), 1742–1748 (2017). https://doi.org/10.1039/c6ta08674h
- Y. Wang, G.X. Zhang, M. Ma, Y.Y. Wang, Y. Zhang et al., Sacrificial carbon nitride-templated hollow FeCo-NC material for highly efficient oxygen reduction reaction and Al-air battery. Electrochim. Acta 341, 136066–136073 (2020). https://doi.org/10.1016/j.electacta.2020.136066
- T. Tian, L. Huang, L.H. Ai, J. Jiang, Surface anion-rich NiS2 hollow microspheres derived from metal–organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 5(39), 20985–20992 (2017). https://doi.org/10.1039/c7ta06671f
- X.Y. Yue, Y.G. Pu, W. Zhang, T. Zhang, W. Gao, Ultrafine Pt nanoparticles supported on double -shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts. J. Energy Chem. 49, 275–282 (2020). https://doi.org/10.1016/j.jechem.2020.02.045
- W.F. Yuan, J.L. Liu, W.J. Yi, L. Liang, Y.R. Zhu et al., Boron and nitrogen co-doped double-layered mesopore-rich hollow carbon microspheres as high-performance electrodes for supercapacitors. J. Colloid Interface Sci. 573, 232–240 (2020). https://doi.org/10.1016/j.jcis.2020.03.126
- S.S. Zeng, F.C. Lyu, H.J. Nie, Y.W. Zhan, H.D. Bian et al., Facile fabrication of N/S-doped carbon nanotubes with Fe3O4 nanocrystals enchased for lasting synergy as efficient oxygen reduction catalysts. J. Mater. Chem. A 5(25), 13189–13195 (2017). https://doi.org/10.1039/c7ta02094e
- M.L. Zhang, Y.L. Song, H.C. Tao, C. Yan, J. Masa et al., Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction. Sustain. Energy Fuels 2(8), 1820–1827 (2018). https://doi.org/10.1039/c8se00231b
- C.H. You, S.J. Liao, H.L. Li, S.Y. Hou, H.L. Peng et al., Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction. Carbon 69, 294–301 (2014). https://doi.org/10.1016/j.carbon.2013.12.028
- J.T. Zhang, L.T. Qu, G.Q. Shi, J.Y. Liu, J.F. Chen et al., N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. 55(6), 2230–2234 (2016). https://doi.org/10.1002/anie.201510495
- H.Q. Yang, T. Zhou, W.J. Zhang, A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion. Angew. Chem. Int. Ed. 52(29), 7455–7459 (2013). https://doi.org/10.1002/anie.201300534
- P. Tundo, A. Perosa, Multiphasic heterogeneous catalysis mediated by catalyst-philic liquid phases. Chem. Soc. Rev. 36(3), 532–550 (2007). https://doi.org/10.1039/b503021h
- Y.Y. Zhao, G.Y. Zhang, Z. Liu, C.X. Guo, C.N. Peng et al., Benzimidazo[2,1-a]benz[de]isoquinoline-7-one-12-carboxylic acid based fluorescent sensors for pH and Fe3+. J. Photoch. Photobiol. A 314, 52–59 (2016). https://doi.org/10.1016/j.jphotochem.2015.08.003
- R. Jing, J. Tang, Q. Zhang, L. Chen, D.X. Ji et al., An insight into the intensification of aqueous/organic phase reaction by the addition of magnetic polymer nanoparticles. Chem. Eng. J. 280, 265–274 (2015). https://doi.org/10.1016/j.cej.2015.05.088
- C.J. Li, L. Chen, Organic chemistry in water. Chem. Soc. Rev. 35(1), 68–82 (2006). https://doi.org/10.1039/b507207g
- M. Pera-Titus, L. Leclercq, J.M. Clacens, F. De Campo, V. Nardello-Rataj, Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions. Angew. Chem. Int. Ed. 54(7), 2006–2021 (2015). https://doi.org/10.1002/anie.201402069
- C. Zhang, C.Y. Hu, Y.L. Zhao, M. Moller, K. Yan et al., Encapsulation of laccase in silica colloidosomes for catalysis in organic media. Langmuir 29(49), 15457–15462 (2013). https://doi.org/10.1021/la404087w
- V. Stepankova, S. Bidmanova, T. Koudelakova, Z. Prokop, R. Chaloupkova et al., Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3(12), 2823–2836 (2013). https://doi.org/10.1021/cs400684x
- K. Piradashvili, E.M. Alexandrino, F.R. Wurm, K. Landfester, Reactions and polymerizations at the liquid-liquid interface. Chem. Rev. 116(4), 2141–2169 (2016). https://doi.org/10.1021/acs.chemrev.5b00567
- L. Schoonen, J.C. van Hest, Compartmentalization approaches in soft matter science: from nanoreactor development to organelle mimics. Adv. Mater. 28(6), 1109–1128 (2016). https://doi.org/10.1002/adma.201502389
- Z. Zhu, H.Y. Tan, J. Wang, S.Z. Yu, K.B. Zhou, Hydrodeoxygenation of vanillin as a bio-oil model over carbonaceous microspheres-supported pd catalysts in the aqueous phase and Pickering emulsions. Green Chem. 16(5), 2636–2643 (2014). https://doi.org/10.1039/c3gc42647e
- Z.W. Chen, H.W. Ji, C.Q. Zhao, E.G. Ju, J.S. Ren et al., Individual surface-engineered microorganisms as robust pickering interfacial biocatalysts for resistance-minimized phase-transfer bioconversion. Angew. Chem. Int. Ed. 54(16), 4904–4908 (2015). https://doi.org/10.1002/anie.201412049
- D.C. Dewey, C.A. Strulson, D.N. Cacace, P.C. Bevilacqua, C.D. Keating, Bioreactor droplets from liposome-stabilized all-aqueous emulsions. Nat. Commun. 5, 4670–4678 (2014). https://doi.org/10.1038/ncomms5670
- A. Walther, A.H.E. Müller, Janus particles. Soft Matter 4(4), 663–668 (2008). https://doi.org/10.1039/b718131k
- J. Hu, S.X. Zhou, Y.Y. Sun, X.S. Fang, L.M. Wu, Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 41(11), 4356–4378 (2012). https://doi.org/10.1039/c2cs35032g
- F. Tu, D. Lee, Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties. J. Am. Chem. Soc. 136(28), 9999–10006 (2014). https://doi.org/10.1021/ja503189r
- S.P. Crossley, J. Faria, M. Shen, D.E. Resasco, Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327(5961), 68–72 (2010). https://doi.org/10.1126/science.1180769
- B.J. Park, D. Lee, Equilibrium orientation of nonspherical Janus particles at fluid–fluid interfaces. ACS Nano 6(1), 782–790 (2012). https://doi.org/10.1021/nn204261w
- W.X. Wang, P.Y. Wang, L. Chen, M.Y. Zhao, C.T. Hung et al., Engine-trailer-structured nanotrucks for efficient nano-bio interactions and bioimaging-guided drug delivery. Chem 6(5), 1097–1112 (2020). https://doi.org/10.1016/j.chempr.2020.01.010
- X. Ma, K. Hahn, S. Sanchez, Catalytic mesoporous Janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 137(15), 4976–4979 (2015). https://doi.org/10.1021/jacs.5b02700
- X. Ma, A. Jannasch, U.R. Albrecht, K. Hahn, A. Miguel-Lopez et al., Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15(10), 7043–7050 (2015). https://doi.org/10.1021/acs.nanolett.5b03100
- M.M. Wan, Q. Wang, X.Y. Li, B. Xu, D. Fang et al., Systematic research and evaluation models of nanomotors for cancer combined therapy. Angew. Chem. Int. Ed. 59(34), 14458–14465 (2020). https://doi.org/10.1002/anie.202002452
- C.Y. Gao, Y. Wang, Z.H. Ye, Z.H. Lin, X. Ma et al., Biomedical micro-/nanomotors: from overcoming biological barriers to In vivo imaging. Adv. Mater. 33(6), e2000512 (2020). https://doi.org/10.1002/adma.202000512
- A. Saghatelian, N.H. Volcker, K.M. Guckian, V.S. Lin, M.R. Ghadiri, DNA-based photonic logic gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 125(2), 346–347 (2003). https://doi.org/10.1021/ja029009m
- Y. Yi, L. Sanchez, Y. Gao, Y. Yu, Janus particles for biological imaging and sensing. Analyst 141(12), 3526–3539 (2016). https://doi.org/10.1039/c6an00325g
References
X.G. Yang, D.W. Wang, Photocatalysis: from fundamental principles to materials and applications. ACS Appl. Energy Mater. 1(12), 6657–6693 (2018). https://doi.org/10.1021/acsaem.8b01345
X.Q. Wang, Z.J. Li, Y.T. Qu, T.W. Yuan, W.Y. Wang et al., Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1486–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
H.J. Zhang, H.J. Xu, M.H. Wu, Y.F. Zhong, D.H. Wang et al., A soft-hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J. Mater. Chem. B 3(31), 6480–6489 (2015). https://doi.org/10.1039/c5tb00634a
J.Y. Wang, Y. Cui, D. Wang, Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 31(38), 1801993–1802016 (2019). https://doi.org/10.1002/adma.201801993
J.M. Jiang, G.D. Nie, P. Nie, Z.W. Li, Z.H. Pan et al., Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Lett. 12, 183 (2020). https://doi.org/10.1007/s40820-020-00521-2
X.L. Chen, R. Paul, L.M. Dai, Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4(3), 453–489 (2017). https://doi.org/10.1093/nsr/nwx009
H.Y. Geng, W.Y. Chen, Z.P. Xu, G.R. Qian, J. An et al., Shape-controlled hollow mesoporous silica nanoparticles with multifunctional capping for in vitro cancer treatment. Chemistry 23(45), 10878–10885 (2017). https://doi.org/10.1002/chem.201701806
H.J. Zhang, Z.Y. Li, P.P. Xu, R.F. Wu, Z. Jiao, A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release. Chem. Commun. 46(36), 6783–6785 (2010). https://doi.org/10.1039/c0cc01673j
J.X. Guo, H.J. Zhang, H.Y. Geng, X.Q. Mi, G.J. Ding et al., Efficient one-pot synthesis of peapod-like hollow carbon nanomaterials for utrahigh drug loading capacity. J. Colloid Interface Sci. 437, 90–96 (2015). https://doi.org/10.1016/j.jcis.2014.08.036
P.G. de Gennes, Soft matter. Rev. Mod. Phys. 64(3), 645–648 (1992). https://doi.org/10.1103/RevModPhys.64.645
F. Pei, T.H. An, J. Zang, X.J. Zhao, X.L. Fang et al., From hollow carbon spheres to N-doped hollow porous carbon bowls: Rational design of hollow carbon host for Li-S batteries. Adv. Energy Mater. 6(8), 1502539–1502546 (2016). https://doi.org/10.1002/aenm.201502539
C.H. Evers, J.A. Luiken, P.G. Bolhuis, W.K. Kegel, Self-assembly of microcapsules via colloidal bond hybridization and anisotropy. Nature 534(7607), 364–368 (2016). https://doi.org/10.1038/nature17956
X.L. Hu, J.M. Hu, J. Tian, Z.S. Ge, G.Y. Zhang et al., Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 135(46), 17617–17629 (2013). https://doi.org/10.1021/ja409686x
W. Zhang, C.X. Wang, K.L. Chen, Y.J. Yin, Raspberry-shaped thermochromic energy storage nanocapsule with tunable sunlight absorption based on color change for temperature regulation. Small 15(47), 1903750 (2019). https://doi.org/10.1002/smll.201903750
L.G. Carbone, P.D. Cozzoli, Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5(5), 449–493 (2010). https://doi.org/10.1016/j.nantod.2010.08.006
C.H. Chen, L. Xie, Y. Wang, Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano Res. 12(6), 1267–1278 (2019). https://doi.org/10.1007/s12274-019-2324-9
Z.Y. Wu, L. Li, T. Liao, X.Q. Chen, W. Jiang et al., Janus nanoarchitectures: from structural design to catalytic applications. Nano Today 22, 62–82 (2018). https://doi.org/10.1016/j.nantod.2018.08.009
X.P. Jiang, X. Ju, M.F. Huang, Fabrication of monodisperse bowl-like carbon nanoparticles with controlled porous structure. Chem. Lett. 43(7), 1023–1025 (2014). https://doi.org/10.1246/cl.140188
H.J. Liu, X.G. Zhou, F. Wang, J. Ji, J.J. Liu et al., Hollow carbon hemisphere with controlled morphology as support material for platinum nanoparticle catalyst towards the methanol electro-oxidation. Mater. Res. Bull. 57, 280–286 (2014). https://doi.org/10.1016/j.materresbull.2014.05.021
H.J. Zhang, X. Li, Interface-mediated fabrication of bowl-like and deflated ballon-like hollow carbon nanospheres. J. Colloid Interface Sci. 452, 141–147 (2015). https://doi.org/10.1016/j.jcis.2015.04.027
Z.X. Lin, H. Tian, F.G. Xu, X.W. Yang, Y.Y. Mai et al., Facile synthesis of bowl-shaped nitrogen-doped carbon hollow particles templated by block copolymer “kippah vesicles” for high performance supercapacitors. Polym. Chem. 7(11), 2092–2098 (2016). https://doi.org/10.1039/c6py00161k
Z.L. Zhang, M.L. Qin, B.R. Jia, H.Z. Zhang, H.Y. Wu et al., Facile synthesis of novel bowl-like hollow carbon spheres by the combination of hydrothermal carbonization and soft templating. Chem. Commun. 53(20), 2922–2925 (2017). https://doi.org/10.1039/c7cc00219j
Y.P. Dong, E.L. Wang, L.J. Yu, R. Wang, Y.F. Zhu et al., Self-templated route to synthesis bowl-like and deflated balloon-like hollow silica spheres. Mater. Lett. 206, 150–153 (2017). https://doi.org/10.1016/j.matlet.2017.07.016
Y.J. Lv, J. Su, Y.F. Long, X.Y. Lv, Y.X. Wen, Effect of milling time on the performance of bowl-like LiFePO4/C prepared by wet milling-assisted spray drying. Ionics 20(4), 471–478 (2013). https://doi.org/10.1007/s11581-013-1002-2
L. Xie, H.Y. Wang, C.H. Chen, S.J. Mao, Y.Q. Chen et al., Cooperative assembly of asymmetric carbonaceous bivalve-like superstructures from multiple building blocks. Research 2018, 5807980 (2018). https://doi.org/10.1155/2018/5807980
H.J. Zhang, H.F. Xu, C. Zhao, Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol–formaldehyde precursor microspheres and applications in lithium-ion batteries. Mater. Chem. Phys. 133(1), 429–436 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.055
Y. Chen, P.F. Xu, M.Y. Wu, Q.S. Meng, H.R. Chen et al., Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering. Adv. Mater. 26(25), 4294–4301 (2014). https://doi.org/10.1002/adma.201400303
Z.X. Yan, M.M. Zhang, J.M. Xie, H.G. Wang, W. Wei, Smaller Pt particles supported on mesoporous bowl-like carbon for highly efficient and stable methanol oxidation and oxygen reduction reaction. J. Power Sources 243, 48–53 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.008
M.F. Huang, X.P. Jiang, H. Zhang, H.S. Yin, X.X. Li et al., Bowl-like carbon sheet for high-rate electrochemical capacitor application. J. Power Sources 272, 1–7 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.055
Y. Chen, P.F. Xu, H.R. Chen, Y.S. Li, W.B. Bu et al., Colloidal HPMO nanoparticles: silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications. Adv. Mater. 25(22), 3100–3105 (2013). https://doi.org/10.1002/adma.201204685
J. Cui, F.F. Xing, H. Luo, J.Q. Qin, Y. Li et al., General synthesis of hollow mesoporous conducting polymers by dual-colloid interface co-assembly for high-energy-density micro-supercapacitors. J. Energy Chem. 62, 145–152 (2021). https://doi.org/10.1016/j.jechem.2021.03.016
D.P. Qiu, A. Gao, Z.Y. Xie, L. Zheng, C.H. Kang et al., Homologous hierarchical porous hollow carbon spheres anode and bowls cathode enabling high-energy sodium-ion hybrid capacitors. ACS Appl. Mater. Interfaces 10(51), 44483–44493 (2018). https://doi.org/10.1021/acsami.8b16442
C.H. Chen, X.F. Li, J. Deng, Z. Wang, Y. Wang, Shape engineering of biomass-derived nanoparticles from hollow spheres to bowls through solvent-induced buckling. Chemsuschem 11(15), 2540–2546 (2018). https://doi.org/10.1002/cssc.201801215
X. Liu, P.P. Song, J.H. Hou, B. Wang, F. Xu et al., Revealing the dynamic formation process and mechanism of hollow carbon spheres: from bowl to sphere. ACS Sustain. Chem. Eng. 6(2), 2797–2805 (2018). https://doi.org/10.1021/acssuschemeng.7b04634
M.X. Wu, Y.N. Lin, H.Y. Guo, W.Y. Li, Y.D. Wang et al., Design a novel kind of open-ended carbon sphere for a highly effective counter electrode catalyst in dye-sensitized solar cells. Nano Energy 11, 540–549 (2015). https://doi.org/10.1016/j.nanoen.2014.11.032
B.Y. Guan, L. Yu, X.W. Lou, Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media. Adv. Sci. 4(10), 1700247–1700252 (2017). https://doi.org/10.1002/advs.201700247
B.Y. Guan, L. Yu, X.W. Lou, Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 138(35), 11306–11311 (2016). https://doi.org/10.1021/jacs.6b06558
C. Li, H.J. Peng, J.D. Cai, L. Li, J. Zhang et al., Emulsion-guided controllable construction of anisotropic particles: droplet size determines particle structure. Adv. Mater. 33(31), e2102930 (2021). https://doi.org/10.1002/adma.202102930
S. Kim, J. Hwang, J. Lee, J. Lee, Polymer blend directed anisotropic self-assembly toward mesoporous inorganic bowls and nanosheets. Sci. Adv. 6(33), 3814 (2020). https://doi.org/10.1126/sciadv.abb3814
C.H. Chen, H.Y. Wang, C.L. Han, J. Deng, J. Wang et al., Asymmetric flasklike hollow carbonaceous nanoparticles fabricated by the synergistic interaction between soft template and biomass. J. Am. Chem. Soc. 139(7), 2657–2663 (2017). https://doi.org/10.1021/jacs.6b10841
D.Y. Liu, X.X. Peng, B.H. Wu, X.Y. Zheng, T.T. Chuong et al., Uniform concave polystyrene-carbon core-shell nanospheres by a swelling induced buckling process. J. Am. Chem. Soc. 137(31), 9772–9775 (2015). https://doi.org/10.1021/jacs.5b05027
Y. Fang, Y.Y. Lv, F. Gong, Z.X. Wu, X.M. Li et al., Interface tension-induced synthesis of monodispersed mesoporous carbon hemispheres. J. Am. Chem. Soc. 137(8), 2808–2811 (2015). https://doi.org/10.1021/jacs.5b01522
W. Wang, B. Jiang, C. Qian, F. Lv, J.R. Feng et al., Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 30(30), e1801812 (2018). https://doi.org/10.1002/adma.201801812
S. Zhang, Q. Weng, F. Zhao, H. Gao, P. Chen et al., High electrocapacitive performance of bowl-like monodispersed porous carbon nanoparticles prepared with an interfacial self-assembly process. J. Colloid Interface Sci. 496, 35–43 (2017). https://doi.org/10.1016/j.jcis.2016.10.080
X. Jian, H. Wang, G.F. Rao, L.Y. Jiang, H.N. Wang et al., Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. Chem. Eng. J. 364, 578–588 (2019). https://doi.org/10.1016/j.cej.2019.02.003
S.F. Huang, Z.P. Li, B. Wang, J.J. Zhang, Z.Q. Peng et al., N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 28(10), 1706294–1706303 (2018). https://doi.org/10.1002/adfm.201706294
L.Y. Zhang, Y.Y. Chen, Z.L. Li, L. Li, P. Saint-Cricq et al., Tailored synthesis of octopus-type Janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew. Chem. Int. Ed. 55(6), 2118–2121 (2016). https://doi.org/10.1002/anie.201510409
L.Y. Zhang, M.J. Zhang, L. Zhou, Q.H. Han, X.J. Chen et al., Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials 181, 113–125 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.060
M.J. Zhang, X.J. Chen, L.Y. Zhang, L. Li, Z.M. Su et al., Spadix-bract structured nanobowls for bimodal imaging-guided multidrug chemo-photothermal synergistic therapy. Chem. Mater. 30(11), 3722–3733 (2018). https://doi.org/10.1021/acs.chemmater.8b00655
L.Y. Zhang, S.N. Li, X.J. Chen, T.T. Wang, L. Li et al., Tailored surfaces on 2D material: UFO-like cyclodextrin-pd nanosheet/metal organic framework Janus nanoparticles for synergistic cancer therapy. Adv. Funct. Mater. 28(51), 1803815–1803826 (2018). https://doi.org/10.1002/adfm.201803815
Q. Zhang, L.Y. Zhang, S.N. Li, X.J. Chen, M.J. Zhang et al., Designed synthesis of Au/Fe3O4@C Janus nanoparticles for dual-modal imaging and actively targeted chemo-photothermal synergistic therapy of cancer cells. Chemistry 23(68), 17242–17248 (2017). https://doi.org/10.1002/chem.201703498
D. Li, A.M. Bao, X.J. Chen, S.N. Li, T.T. Wang et al., Prussian blue@polyacrylic acid/au aggregate Janus nanoparticles for CT imaging-guided chemotherapy and enhanced photothermal therapy. Adv. Ther. 3(10), 2000091 (2020). https://doi.org/10.1002/adtp.202000091
S.N. Li, L.Y. Zhang, X. Liang, T.T. Wang, X.J. Chen et al., Tailored synthesis of hollow MOF/polydopamine Janus nanoparticles for synergistic multi-drug chemo-photothermal therapy. Chem. Eng. J. 378, 122175–122184 (2019). https://doi.org/10.1016/j.cej.2019.122175
Y.F. Li, Z.H. Di, J.H. Gao, P. Cheng, C.Z. Di et al., Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 139(39), 13804–13810 (2017). https://doi.org/10.1021/jacs.7b07302
J.T. Robinson, J.S. Burgess, C.E. Junkermeier, S.C. Badescu, T.L. Reinecke et al., Properties of fluorinated graphene films. Nano Lett. 10(8), 3001–3005 (2010). https://doi.org/10.1021/nl101437p
D.B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.M. Lin, G.S. Tulevski et al., Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 9(1), 388–392 (2009). https://doi.org/10.1021/nl803214a
C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey et al., Charge neutrality and band-gap tuning of epitaxial graphene on sic by molecular doping. Phys. Rev. B 81(23), 235401–235409 (2010). https://doi.org/10.1103/PhysRevB.81.235401
A. Sinitskii, A. Dimiev, D.A. Corley, A.A. Fursina, D.V. Kosynkin et al., Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4), 1949–1954 (2010). https://doi.org/10.1021/nn901899j
M. Steenackers, A.M. Gigler, N. Zhang, F. Deubel, M. Seifert et al., Polymer brushes on graphene. J. Am. Chem. Soc. 133(27), 10490–10498 (2011). https://doi.org/10.1021/ja201052q
P. Xiao, J.C. Gu, J. Chen, D. Han, J.W. Zhang et al., A microcontact printing induced supramolecular self-assembled photoactive surface for patterning polymer brushes. Chem. Commun. 49(95), 11167–11169 (2013). https://doi.org/10.1039/c3cc46037a
T.T. Gao, S.W. Ng, X.Q. Liu, L.Y. Niu, Z. Xie et al., Transferable, transparent and functional polymer@graphene 2D objects. NPG Asia Mater. 6(9), e130 (2014). https://doi.org/10.1038/am.2014.79
T.T. Gao, X.L. Wang, B. Yu, Q.B. Wei, Y.Q. Xia et al., Noncovalent microcontact printing for grafting patterned polymer brushes on graphene films. Langmuir 29(4), 1054–1060 (2013). https://doi.org/10.1021/la304385r
R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets et al., Fluorographene: a two-dimensional counterpart of teflon. Small 6(24), 2877–2884 (2010). https://doi.org/10.1002/smll.201001555
J. Wu, L.M. Xie, Y.G. Li, H.L. Wang, Y.J. Ouyang et al., Controlled chlorine plasma reaction for noninvasive graphene doping. J. Am. Chem. Soc. 133(49), 19668–19671 (2011). https://doi.org/10.1021/ja2091068
L.M. Zhang, J.W. Yu, M.M. Yang, Q. Xie, H.L. Peng et al., Janus graphene from asymmetric two-dimensional chemistry. Nat. Commun. 4, 1443–1449 (2013). https://doi.org/10.1038/ncomms2464
M.A. Bissett, Y. Takesaki, M. Tsuji, H. Ago, Increased chemical reactivity achieved by asymmetrical ‘Janus’ functionalisation of graphene. RSC Adv. 4(94), 52215–52219 (2014). https://doi.org/10.1039/c4ra09724f
H. Wu, W.Y. Yi, Z. Chen, H.T. Wang, Q.G. Du, Janus graphene oxide nanosheets prepared via Pickering emulsion template. Carbon 93, 473–483 (2015). https://doi.org/10.1016/j.carbon.2015.05.083
A.C. de Leon, B.J. Rodier, Q. Luo, C.M. Hemmingsen, P. Wei et al., Distinct chemical and physical properties of Janus nanosheets. ACS Nano 11(7), 7485–7493 (2017). https://doi.org/10.1021/acsnano.7b04020
Z.J. Zhang, J.L. Qin, H.L. Diao, S.S. Huang, J. Yin et al., Janus-like asymmetrically oxidized graphene: facile synthesis and distinct liquid crystal alignment at the oil/water interface. Carbon 161, 316–322 (2020). https://doi.org/10.1016/j.carbon.2020.01.078
D.S. Yu, E. Nagelli, R. Naik, L.M. Dai, Asymmetrically functionalized graphene for photodependent diode rectifying behavior. Angew. Chem. Int. Ed. 50(29), 6575–6578 (2011). https://doi.org/10.1002/anie.201101305
H.Q. Zhou, C.Y. Qiu, Z. Liu, H.C. Yang, L.J. Hu et al., Thickness-dependent morphologies of gold on n-layer graphenes. J. Am. Chem. Soc. 132(3), 944–946 (2010). https://doi.org/10.1021/ja909228n
A. Gutes, B. Hsia, A. Sussman, W. Mickelson, A. Zettl et al., Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale 4(2), 438–440 (2012). https://doi.org/10.1039/c1nr11537e
Y.J. Ren, S.S. Chen, W.W. Cai, Y.W. Zhu, C.F. Zhu et al., Controlling the electrical transport properties of graphene by in situ metal deposition. Appl. Phys. Lett. 97(5), 053107–053111 (2010). https://doi.org/10.1063/1.3471396
G.X. Lu, H. Li, C. Liusman, Z.Y. Yin, S.X. Wu et al., Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. 2(9), 1817–1821 (2011). https://doi.org/10.1039/c1sc00254f
Z.Y. Yin, S.X. Wu, X.Z. Zhou, X. Huang, Q.C. Zhang et al., Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cell. Small 6(2), 307–312 (2010). https://doi.org/10.1002/smll.200901968
S.X. Wu, Z.Y. Yin, Q.Y. He, X.A. Huang, X.Z. Zhou et al., Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J. Phys. Chem. C 114(27), 11816–11821 (2010). https://doi.org/10.1021/jp103696u
C.I. Zoldesi, A. Imhof, Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater. 17(7), 924–928 (2005). https://doi.org/10.1002/adma.200401183
Z.G. Teng, C.Y. Wang, Y.X. Tang, W. Li, L. Bao et al., Deformable hollow periodic mesoporous organosilica nanocapsules for significantly improved cellular uptake. J. Am. Chem. Soc. 140(4), 1385–1393 (2018). https://doi.org/10.1021/jacs.7b10694
X. Du, W. Li, B. Shi, L. Su, X. Li et al., Facile synthesis of mesoporous organosilica nanobowls with bridged silsesquioxane framework by one-pot growth and dissolution mechanism. J. Colloid Interface Sci. 528, 379–388 (2018). https://doi.org/10.1016/j.jcis.2018.05.104
X.M. Li, L. Zhou, Y. Wei, A.M. El-Toni, F. Zhang et al., Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages. J. Am. Chem. Soc. 137(18), 5903–5906 (2015). https://doi.org/10.1021/jacs.5b03207
D.L. Yi, Q. Zhang, Y.H. Liu, J.Y. Song, Y. Tang et al., Synthesis of chemically asymmetric silica nanobottles and their application for cargo loading and as nanoreactors and nanomotors. Angew. Chem. Int. Ed. 55(47), 14733–14737 (2016). https://doi.org/10.1002/anie.201607330
P.L. Abbaraju, A.K. Meka, H. Song, Y.N. Yang, M. Jambhrunkar et al., Asymmetric silica nanoparticles with tunable head-tail structures enhance hemocompatibility and maturation of immune cells. J. Am. Chem. Soc. 139(18), 6321–6328 (2017). https://doi.org/10.1021/jacs.6b12622
A. Kuijk, A. van Blaaderen, A. Imhof, Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc. 133(8), 2346–2349 (2011). https://doi.org/10.1021/ja109524h
D.L. Yi, C.L. Xu, R.D. Tang, X.H. Zhang, F. Caruso et al., Synthesis of discrete alkyl-silica hybrid nanowires and their assembly into nanostructured superhydrophobic membranes. Angew. Chem. Int. Ed. 55(29), 8375–8380 (2016). https://doi.org/10.1002/anie.201603644
D.Z. Yin, L. Ma, J.J. Liu, Q.Y. Zhang, Pickering emulsion: a novel template for microencapsulated phase change materials with polymer-silica hybrid shell. Energy 64, 575–581 (2014). https://doi.org/10.1016/j.energy.2013.10.004
W.J. Zhou, L. Fang, Z.Y. Fan, B. Albela, L. Bonneviot et al., Tunable catalysts for solvent-free biphasic systems: Pickering interfacial catalysts over amphiphilic silica nanoparticles. J. Am. Chem. Soc. 136(13), 4869–4872 (2014). https://doi.org/10.1021/ja501019n
Q.X. Gao, C.Y. Wang, H.X. Liu, C.H. Wang, X.X. Liu et al., Suspension polymerization based on inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures. Polymer 50(12), 2587–2594 (2009). https://doi.org/10.1016/j.polymer.2009.03.049
M. Destribats, B. Faure, M. Birot, O. Babot, V. Schmitt et al., Tailored silica macrocellular foams: combining limited coalescence-based Pickering emulsion and sol-gel process. Adv. Funct. Mater. 22(12), 2642–2654 (2012). https://doi.org/10.1002/adfm.201102564
E.Q. Bu, Y. Chen, C. Wang, Z.D. Cheng, X.L. Luo et al., Hydrogen production from bio-derived biphasic photoreforming over a raspberry-like amphiphilic Ag2O-TiO2/SiO2 catalyst. Chem. Eng. J. 370, 646–657 (2019). https://doi.org/10.1016/j.cej.2019.03.259
J. Zhang, J. Jin, H.Y. Zhao, Surface-initiated free radical polymerization at the liquid–liquid interface: a one-step approach for the synthesis of amphiphilic Janus silica particles. Langmuir 25(11), 6431–6437 (2009). https://doi.org/10.1021/la9000279
S. Fujii, Y. Yokoyama, Y. Miyanari, T. Shiono, M. Ito et al., Micrometer-sized gold-silica Janus particles as particulate emulsifiers. Langmuir 29(18), 5457–5465 (2013). https://doi.org/10.1021/la400697a
X.Y. Xu, Y.J. Liu, Y. Gao, H. Li, Preparation of Au@silica Janus nanosheets and their catalytic application. Colloids Surf. A Physicochem. Eng. Aspects 529, 613–620 (2017). https://doi.org/10.1016/j.colsurfa.2017.06.048
M.M. Kulkarni, R. Bandyopadhyaya, A. Sharma, Janus silica film with hydrophobic and hydrophilic surfaces grown at an oil-water interface. J. Mater. Chem. 18(9), 1021–1028 (2008). https://doi.org/10.1039/b713074k
Y. Ning, C.Y. Wang, T. Ngai, Z. Tong, Fabrication of tunable Janus microspheres with dual anisotropy of porosity and magnetism. Langmuir 29(17), 5138–5144 (2013). https://doi.org/10.1021/la400053g
Y.Z. Wang, D.Q. Fan, J.P. He, Y.L. Yang, Silica nanoparticle covered with mixed polymer brushes as Janus particles at water/oil interface. Colloid Polym. Sci. 289, 1885–1894 (2011). https://doi.org/10.1007/s00396-011-2506-9
V. Lopez, M.R. Villegas, V. Rodriguez, G. Villaverde, D. Lozano et al., Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria. ACS Appl. Mater. Interfaces 9(32), 26697–26706 (2017). https://doi.org/10.1021/acsami.7b06906
K. Zhang, W. Wu, H. Meng, K. Guo, J.F. Chen, Pickering emulsion polymerization: preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technol. 190(3), 393–400 (2009). https://doi.org/10.1016/j.powtec.2008.08.022
S.W. Zou, Y. Yang, H. Liu, C.Y. Wang, Synergistic stabilization and tunable structures of Pickering high internal phase emulsions by nanoparticles and surfactants. Colloids Surf. A Physicochem. Eng. Aspects 436, 1–9 (2013). https://doi.org/10.1016/j.colsurfa.2013.06.013
E. Sharifzadeh, M. Salami-Kalajahi, M.S. Hosseini, M.K.R. Aghjeh, A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: experimental and theoretical approaches. Colloids Surf. A Physicochem. Eng. Aspects 506, 56–62 (2016). https://doi.org/10.1016/j.colsurfa.2016.06.006
C. Wei, R.L. Huang, W. Qi, R.X. Su, Z.M. He, Self-assembly of amphiphilic Janus particles into monolayer capsules for enhanced enzyme catalysis in organic media. ACS Appl. Mater. Interfaces 7(1), 465–473 (2015). https://doi.org/10.1021/am5065156
Y.Y. Yin, S.X. Zhou, B. You, L.M. Wu, Facile fabrication and self-assembly of polystyrene-silica asymmetric colloid spheres. J Polym. Sci. Pol. Chem. 49(15), 3272–3279 (2011). https://doi.org/10.1002/pola.24762
H.O. Zhou, T.J. Shi, X. Zhou, Preparation of polystyrene/SiO2 microsphere via Pickering emulsion polymerization: synergistic effect of SiO2 concentrations and initiator sorts. Appl. Surf. Sci. 266, 33–38 (2013). https://doi.org/10.1016/j.apsusc.2012.11.054
F. Wang, G.M. Pauletti, J.T. Wang, J.M. Zhang, R.C. Ewing et al., Dual surface-functionalized Janus nanocomposites of polystyrene/Fe3O4@SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release. Adv. Mater. 25(25), 3485–3489 (2013). https://doi.org/10.1002/adma.201301376
Y. Xing, Y. Zhou, Y. Zhang, C.H. Zhang, X. Deng et al., Facile fabrication route of Janus gold-mesoporous silica nanocarriers with dual-drug delivery for tumor therapy. ACS Biomater. Sci. Eng. 6(3), 1573–1581 (2020). https://doi.org/10.1021/acsbiomaterials.0c00042
A. Llopis-Lorente, A. Garcia-Fernandez, E. Lucena-Sanchez, P. Diez, F. Sancenon et al., Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au-mesoporous silica nanoparticles for enhanced cargo delivery. Chem. Commun. 55(87), 13164–13167 (2019). https://doi.org/10.1039/c9cc07250k
J.H. Park, D.S. Dumani, A. Arsiwala, S. Emelianov, R.S. Kane, Tunable aggregation of gold-silica janus nanoparticles to enable contrast-enhanced multiwavelength photoacoustic imaging in vivo. Nanoscale 10(32), 15365–15370 (2018). https://doi.org/10.1039/c8nr03973a
M.J. Xuan, Z.G. Wu, J.X. Shao, L.R. Dai, T.Y. Si et al., Near infrared light-powered Janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 138(20), 6492–6497 (2016). https://doi.org/10.1021/jacs.6b00902
F. Wang, S. Cheng, Z.H. Bao, J.F. Wang, Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew. Chem. Int. Ed. 52(39), 10344–10348 (2013). https://doi.org/10.1002/anie.201304364
T. Zhou, B.B. Wang, B. Dong, C.Y. Li, Thermoresponsive amphiphilic Janus silica nanoparticles via combining “polymer single-crystal templating” and “grafting-from” methods. Macromolecules 45(21), 8780–8789 (2012). https://doi.org/10.1021/ma3019987
T. Chen, G. Chen, S.X. Xing, T. Wu, H.Y. Chen, Scalable routes to Janus Au-SiO2 and ternary Ag-Au-SiO2 nanoparticles. Chem. Mater. 22(13), 3826–3828 (2010). https://doi.org/10.1021/cm101155v
L. Zhang, F. Zhang, W.F. Dong, J.F. Song, Q.S. Huo et al., Magnetic-mesoporous Janus nanoparticles. Chem. Commun. 47(4), 1225–1227 (2011). https://doi.org/10.1039/c0cc03946b
L. Zhang, Q. Luo, F. Zhang, D.M. Zhang, Y.S. Wang et al., High-performance magnetic antimicrobial Janus nanorods decorated with Ag nanoparticles. J. Mater. Chem. 22(45), 23741–23745 (2012). https://doi.org/10.1039/c2jm35072f
Z.M. Chang, Z. Wang, M.M. Lu, D. Shao, J. Yue et al., Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids Surf. B 157, 199–206 (2017). https://doi.org/10.1016/j.colsurfb.2017.05.079
F.W. Wang, H.R. Liu, X.Y. Zhang, Synthesis of worm-like superparamagnetic P(St-AA)@Fe3O4/SiO2 Janus composite particles. Colloid Polym. Sci. 292(6), 1395–1403 (2014). https://doi.org/10.1007/s00396-014-3191-2
Z. Wang, Z.M. Chang, D. Shao, F. Zhang, F.M. Chen et al., Janus gold triangle-mesoporous silica nanoplatforms for hypoxia-activated radio-chemo-photothermal therapy of liver cancer. ACS Appl. Mater. Interfaces 11(38), 34755–34765 (2019). https://doi.org/10.1021/acsami.9b12879
Z. Wang, D. Shao, Z.M. Chang, M.M. Lu, Y.S. Wang et al., Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano 11(12), 12732–12741 (2017). https://doi.org/10.1021/acsnano.7b07486
H.C. Hu, J.J. Liu, J.Q. Yu, X.C. Wang, H.W. Zheng et al., Synthesis of Janus Au@periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. Nanoscale 9(14), 4826–4834 (2017). https://doi.org/10.1039/c7nr01047h
J. He, M.J. Hourwitz, Y. Liu, M.T. Perez, Z.H. Nie, One-pot facile synthesis of Janus particles with tailored shape and functionality. Chem. Commun. 47(46), 12450–12452 (2011). https://doi.org/10.1039/c1cc15603a
D. Shao, X. Zhang, W.L. Liu, F. Zhang, X. Zheng et al., Janus silver-mesoporous silica nanocarriers for SERS traceable and pH-sensitive drug delivery in cancer therapy. ACS Appl. Mater. Interfaces 8(7), 4303–4308 (2016). https://doi.org/10.1021/acsami.5b11310
T.Y. Yang, L.J. Wei, L.Y. Jing, J.F. Liang, X.M. Zhang et al., Dumbbell-shaped Bi-component mesoporous Janus solid nanoparticles for biphasic interface catalysis. Angew. Chem. Int. Ed. 56(29), 8459–8463 (2017). https://doi.org/10.1002/anie.201701640
L. Qu, H.C. Hu, J.Q. Yu, X.Y. Yu, J. Liu et al., High-yield synthesis of Janus dendritic mesoporous silica@resorcinol-formaldehyde nanoparticles: a competing growth mechanism. Langmuir 33(21), 5269–5274 (2017). https://doi.org/10.1021/acs.langmuir.7b00838
X.M. Li, L. Zhou, Y. Wei, A.M. El-Toni, F. Zhang et al., Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 136(42), 15086–15092 (2014). https://doi.org/10.1021/ja508733r
G.J. Tao, Z.Y. Bai, Y. Chen, H.L. Yao, M.Y. Wu et al., Generic synthesis and versatile applications of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles with asymmetric Janus topologies and structures. Nano Res. 10(11), 3790–3810 (2017). https://doi.org/10.1007/s12274-017-1592-5
T.C. Zhao, L. Chen, P.Y. Wang, B.H. Li, R.F. Lin et al., Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat. Commun. 10, 4387–4386 (2019). https://doi.org/10.1038/s41467-019-12378-0
T.C. Zhao, X.H. Zhu, C.T. Hung, P.Y. Wang, A. Elzatahry et al., Spatial isolation of carbon and silica in a single Janus mesoporous nanoparticle with tunable amphiphilicity. J. Am. Chem. Soc. 140(31), 10009–10015 (2018). https://doi.org/10.1021/jacs.8b06127
B.Y. Zhang, K. Xu, Q.F. Yao, A. Jannat, G.H. Ren et al., Hexagonal metal oxide monolayers derived from the metal-gas interface. Nat. Mater. 20(8), 1073–1078 (2021). https://doi.org/10.1038/s41563-020-00899-9
J.Y. Lee, J. An, C.K. Chua, Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 7, 120–133 (2017). https://doi.org/10.1016/j.apmt.2017.02.004
A. Jannat, Q.F. Yao, A. Zavabeti, N. Syed, B.Y. Zhang et al., Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. Mater. Horizons 7(3), 827–834 (2020). https://doi.org/10.1039/C9MH01365B
A. Jannat, N. Syed, K. Xu, M.A. Rahman, M.M.M. Talukder et al., Printable single-unit-cell-thick transparent zinc-doped indium oxides with efficient electron transport properties. ACS Nano 15(3), 4045–4053 (2021). https://doi.org/10.1021/acsnano.0c06791
Z. Zhang, B.R. Jia, L. Liu, Y.Z. Zhao, H.Y. Wu et al., Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 13(10), 11363–11371 (2019). https://doi.org/10.1021/acsnano.9b04728
J. Liang, H. Hu, H.J. Park, C.H. Xiao, S.J. Ding et al., Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 8(6), 1707–1711 (2015). https://doi.org/10.1039/c5ee01125f
J. Liang, X.Y. Yu, H. Zhou, H.B. Wu, S. Ding et al., Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 53(47), 12803–12807 (2014). https://doi.org/10.1002/anie.201407917
M.L. Qin, Z.L. Zhang, Y.Z. Zhao, L. Liu, B.R. Jia et al., Optimization of von Mises stress distribution in mesoporous α-Fe2O3/C hollow bowls synergistically boosts gravimetric/volumetric capacity and high-rate stability in alkali-ion batteries. Adv. Funct. Mater. 29(34), 1902822–1902830 (2019). https://doi.org/10.1002/adfm.201902822
S. Chen, J.Y. Zhao, Y.C. Pang, S.J. Ding, CoS nanosheets wrapping on bowl-like hollow carbon spheres with enhanced compact density for sodium-ion batteries. Nanotechnology 30(42), 425402–425425 (2019). https://doi.org/10.1088/1361-6528/ab3161
X. Zhang, X. Chen, H.J. Ren, G.W. Diao, M. Chen et al., Bowl-like C@MoS2 nanocomposites as anode materials for lithium-ion batteries: enhanced stress buffering and charge/mass transfer. ACS Sustain. Chem. Eng. 8(27), 10065–10072 (2020). https://doi.org/10.1021/acssuschemeng.0c01835
Y.Y. Zhang, C. Huang, H. Min, H.B. Shu, P. Gao et al., Bowl-like double carbon layer architecture of hollow carbon@FePO4@reduced graphene oxide composite as high-performance cathodes for sodium and lithium ion batteries. J. Alloy. Compd. 795(30), 34–44 (2019). https://doi.org/10.1016/j.jallcom.2019.04.268
Q. Tang, Y. Zhou, L. Ma, M.Y. Gan, Hemispherical flower-like N-doped porous carbon/NiCo2O4 hybrid electrode for supercapacitors. J. Solid State Chem. 269, 175–183 (2019). https://doi.org/10.1016/j.jssc.2018.09.022
N. Jia, Y. Shi, S. Zhang, X. Chen, P. Chen et al., Carbon nanobowls supported ultrafine palladium nanocrystals: a highly active electrocatalyst for the formic acid oxidation. Int. J. Hydrog. Energy 42(12), 8255–8263 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.136
X.B. Li, X.H. Gao, P.Y. Xu, C.H. You, W. Sun et al., Uniform nitrogen and sulfur co-doped carbon bowls for the electrocatalyzation of oxygen reduction. ACS Sustain. Chem. Eng. 7(7), 7148–7154 (2019). https://doi.org/10.1021/acssuschemeng.9b00126
H.M. Zhang, Y. Zhao, Y.J. Zhang, M.H. Zhang, M.S. Cheng et al., Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chem. Eng. J. 375, 122058–122064 (2019). https://doi.org/10.1016/j.cej.2019.122058
J.Y. Dai, H.B. Zou, Z.Q. Shi, H.Q. Yang, R.W. Wang et al., Janus N-doped carbon@silica hollow spheres as multifunctional amphiphilic nanoreactors for base-free aerobic oxidation of alcohols in water. ACS Appl. Mater. Interfaces 10(39), 33474–33483 (2018). https://doi.org/10.1021/acsami.8b11888
Y.J. Liu, J.K. Hu, X.T. Yu, X.Y. Xu, Y. Gao et al., Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. J. Colloid Interface Sci. 490, 357–364 (2017). https://doi.org/10.1016/j.jcis.2016.11.053
D. Shao, J. Li, X. Zheng, Y. Pan, Z. Wang et al., Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials 100, 118–133 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.030
Z. Wang, Z.M. Chang, M.M. Lu, D. Shao, J. Yue et al., Janus silver/silica nanoplatforms for light-activated liver cancer chemo/photothermal therapy. ACS Appl. Mater. Interfaces 9(36), 30306–30317 (2017). https://doi.org/10.1021/acsami.7b06446
Z. Wang, Y.S. Wang, M.M. Lu, L. Li, Y. Zhang et al., Janus Au-mesoporous silica nanocarriers for chemo-photothermal treatment of liver cancer cells. RSC Adv. 6(50), 44498–44505 (2016). https://doi.org/10.1039/c6ra04183c
L. Xiong, S.Z. Qiao, A mesoporous organosilica nano-bowl with high DNA loading capacity—a potential gene delivery carrier. Nanoscale 8(40), 17446–17450 (2016). https://doi.org/10.1039/c6nr06777h
Z. Wang, F. Zhang, D. Shao, Z.M. Chang, L. Wang et al., Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Adv. Sci. 6(22), 1901690 (2019). https://doi.org/10.1002/advs.201901690
M.J. Xuan, J.X. Shao, C.Y. Gao, W. Wang, L.R. Dai et al., Self-propelled nanomotors for thermomechanically percolating cell membranes. Angew. Chem. Int. Ed. 57(38), 12463–12467 (2018). https://doi.org/10.1002/anie.201806759
P. Diez, A. Sanchez, M. Gamella, P. Martinez-Ruiz, E. Aznar et al., Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 136(25), 9116–9123 (2014). https://doi.org/10.1021/ja503578b
A. Llopis-Lorente, P. Diez, A. Sanchez, M.D. Marcos, F. Sancenon et al., Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat. Commun. 8, 15511–15517 (2017). https://doi.org/10.1038/ncomms15511
C. Lu, X.J. Liu, Y.F. Li, F. Yu, L.H. Tang et al., Multifunctional Janus hematite-silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl. Mater. Interfaces 7(28), 15395–15402 (2015). https://doi.org/10.1021/acsami.5b03423
M. Li, J. Lu, Z.W. Chen, K. Amine, 30 Years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
Y.M. Sun, N.A. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071–16082 (2016). https://doi.org/10.1038/nenergy.2016.71
W. Liu, M.S. Song, B. Kong, Y. Cui, Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29(1), 1603436–1603469 (2017). https://doi.org/10.1002/adma.201603436
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 16013–16028 (2016). https://doi.org/10.1038/natrevmats.2016.13
S.Y. Wei, S.M. Xu, A. Agrawral, S. Choudhury, Y.Y. Lu et al., A stable room-temperature sodium-sulfur battery. Nat. Commun. 7, 11722–11731 (2016). https://doi.org/10.1038/ncomms11722
A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114(23), 11751–11787 (2014). https://doi.org/10.1021/cr500062v
E. Pomerantseva, F. Bonaccorso, X.L. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366(6468), eaan8285 (2019). https://doi.org/10.1126/science.aan8285
F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23(15), 1695–1715 (2011). https://doi.org/10.1002/adma.201003587
H.S. Hou, X.Q. Qiu, W.F. Wei, Y. Zhang, X.B. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
H. Kim, J.C. Kim, M. Bianchini, D.H. Seo, J. Rodriguez-Garcia et al., Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8(9), 1702384–1702402 (2018). https://doi.org/10.1002/aenm.201702384
W. Wang, J.H. Zhou, Z.P. Wang, L.Y. Zhao, P.H. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648–1701655 (2018). https://doi.org/10.1002/aenm.201701648
Z.H. Liu, Q. Yu, Y.L. Zhao, R.H. He, M. Xu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48(1), 285–309 (2019). https://doi.org/10.1039/c8cs00441b
J.W. Li, X. Hu, G.B. Zhong, Y.J. Liu, Y.X. Ji et al., A general self-sacrifice template strategy to 3D heteroatom-doped macroporous carbon for high-performance potassium-ion hybrid capacitors. Nano-Micro Lett. 13, 131 (2021). https://doi.org/10.1007/s40820-021-00659-7
K. Liu, Z.L. Chen, T. Lv, Y. Yao, N. Li et al., A self-supported graphene/carbon nanotube hollow fiber for integrated energy conversion and storage. Nano-Micro Lett. 12, 64 (2020). https://doi.org/10.1007/s40820-020-0390-x
E.H. Wang, M.Z. Chen, X.D. Guo, S.L. Chou, B.H. Zhong et al., Synthesis strategies and structural design of porous carbon-incorporated anodes for sodium-ion batteries. Small Methods 4(6), 1900163–1900194 (2019). https://doi.org/10.1002/smtd.201900163
H.Y. Geng, Y. Peng, L.T. Qu, H.J. Zhang, M.H. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10(10), 1903030 (2020). https://doi.org/10.1002/aenm.201903030
R.T. Guo, X. Liu, B. Wen, F. Liu, J.S. Meng et al., Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial coulombic efficien. Nano-Micro Lett. 12, 148 (2020). https://doi.org/10.1007/s40820-020-00481-7
Y. Gu, Z. Jiao, M.H. Wu, B. Luo, Y. Lei et al., Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability. Nano Res. 10(1), 121–133 (2016). https://doi.org/10.1007/s12274-016-1271-y
C.H. Wu, J.Z. Ou, F.Y. He, J.F. Ding, W. Luo et al., Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 65, 104061–104070 (2019). https://doi.org/10.1016/j.nanoen.2019.104061
Y. Zhang, C.W. Wang, H.S. Hou, G.Q. Zou, X.B. Ji, Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 7(4), 1600173–1600181 (2017). https://doi.org/10.1002/aenm.201600173
Z.M. Liu, T.C. Lu, T. Song, X.Y. Yu, X.W. Lou et al., Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10(7), 1576–1580 (2017). https://doi.org/10.1039/c7ee01100h
Y.J. Wang, Z. Jiao, M.H. Wu, K. Zheng, H.W. Zhang et al., Flower-like C@SnOX@C hollow nanostructures with enhanced electrochemical properties for lithium storage. Nano Res. 10(9), 2966–2976 (2017). https://doi.org/10.1007/s12274-017-1507-5
S.L. Zhang, H.J. Ying, P.F. Huang, J.L. Wang, Z. Zhang et al., Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 14(12), 17665–17674 (2020). https://doi.org/10.1021/acsnano.0c08770
P.F. Huang, S.L. Zhang, H.J. Ying, W.T. Yang, J.L. Wang et al., Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 14(4), 1218–1227 (2020). https://doi.org/10.1007/s12274-020-3221-y
C.C. Yang, W.T. Jing, C. Li, Q. Jiang, Synthesis of open helmet-like carbon skeletons for application in lithium-ion batteries. J. Mater. Chem. A 6(9), 3877–3883 (2018). https://doi.org/10.1039/c7ta10277a
P.H. Li, Y. Yang, S. Gong, F. Lv, W. Wang et al., Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res. 12(9), 2218–2223 (2018). https://doi.org/10.1007/s12274-018-2250-2
L.J. Wang, F.H. Liu, B.Y. Zhao, Y.S. Ning, L.F. Zhang et al., Carbon nanobowls filled with MoS2 nanosheets as electrode materials for supercapacitors. ACS Appl. Nano Mater. 3(7), 6448–6459 (2020). https://doi.org/10.1021/acsanm.0c00924
X.Y. Qian, G.J. Zhu, K. Wang, F.Z. Zhang, K. Liang et al., Bowl-like mesoporous polymer-induced interface growth of molybdenum disulfide for stable lithium storage. Chem. Eng. J. 381, 122651–122662 (2020). https://doi.org/10.1016/j.cej.2019.122651
M.M. Wu, S.X. Tong, L.L. Jiang, B.Q. Hou, X.Y. Li et al., Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors. J. Alloys Compd. 844, 156217–156225 (2020). https://doi.org/10.1016/j.jallcom.2020.156217
M. Wang, J. Yang, S.Y. Liu, M.Z. Li, C. Hu et al., Nitrogen-doped hierarchically porous carbon nanosheets derived from polymerigraphene oxide hydrogels for high-performance supercapacitors. J. Colloid Interface Sci. 560, 69–76 (2020). https://doi.org/10.1016/j.jcis.2019.10.037
X.S. Feng, Y. Huang, C. Li, Y.Y. Xiao, X.F. Chen et al., Construction of carnations-like Mn3O4@NiCo2O4@NiO hierarchical nanostructures for high-performance supercapacitors. Electrochim. Acta 308, 142–149 (2019). https://doi.org/10.1016/j.electacta.2019.04.048
W.D. He, C.G. Wang, H.Q. Li, X.L. Deng, X.J. Xu et al., Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 7(21), 1700983–1700992 (2017). https://doi.org/10.1002/aenm.201700983
M. Blanco, B. Nieto-Ortega, A. de Juan, M. Vera-Hidalgo, A. Lopez-Moreno et al., Positive and negative regulation of carbon nanotube catalysts through encapsulation within macrocycles. Nat. Commun. 9, 2671–2676 (2018). https://doi.org/10.1038/s41467-018-05183-8
S.C. Xu, Y.M. Kim, J. Park, D. Higgins, J.J. Shen et al., Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. Nat. Catal. 1(8), 624–630 (2018). https://doi.org/10.1038/s41929-018-0118-1
C.X. Qian, W. Sun, D.L.H. Hung, C.Y. Qiu, M. Makaremi et al., Catalytic CO2 reduction by palladium-decorated silicon-hydride nanosheets. Nat. Catal. 2, 46–54 (2018). https://doi.org/10.1038/s41929-018-0199-x
G.A. Hutton, B. Reuillard, B.C. Martindale, C.A. Caputo, C.W. Lockwood et al., Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes. J. Am. Chem. Soc. 138(51), 16722–16730 (2016). https://doi.org/10.1021/jacs.6b10146
P. Ryabchuk, G. Agostini, M.M. Pohl, H. Lund, A. Agapova et al., Intermetallic nickel silicide nanocatalyst: a non-noble metal-based general hydrogenation catalyst. Sci. Adv. 4(6), eaat0761 (2018). https://doi.org/10.1126/sciadv.aat0761
H. Lee, Y. Kim, M.J. Kim, K.J. Kim, B.K. Kim, Comparative study of the catalytic activities of three distinct carbonaceous materials through photocatalytic oxidation, CO conversion, dye degradation, and electrochemical measurements. Sci. Rep. 6, 35500–35509 (2016). https://doi.org/10.1038/srep35500
C.H. You, X.W. Jiang, L.Y. Han, X.H. Wang, Q. Lin et al., Uniform nitrogen and sulphur co-doped hollow carbon nanospheres as efficient metal-free electrocatalysts for oxygen reduction. J. Mater. Chem. A 5(4), 1742–1748 (2017). https://doi.org/10.1039/c6ta08674h
Y. Wang, G.X. Zhang, M. Ma, Y.Y. Wang, Y. Zhang et al., Sacrificial carbon nitride-templated hollow FeCo-NC material for highly efficient oxygen reduction reaction and Al-air battery. Electrochim. Acta 341, 136066–136073 (2020). https://doi.org/10.1016/j.electacta.2020.136066
T. Tian, L. Huang, L.H. Ai, J. Jiang, Surface anion-rich NiS2 hollow microspheres derived from metal–organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 5(39), 20985–20992 (2017). https://doi.org/10.1039/c7ta06671f
X.Y. Yue, Y.G. Pu, W. Zhang, T. Zhang, W. Gao, Ultrafine Pt nanoparticles supported on double -shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts. J. Energy Chem. 49, 275–282 (2020). https://doi.org/10.1016/j.jechem.2020.02.045
W.F. Yuan, J.L. Liu, W.J. Yi, L. Liang, Y.R. Zhu et al., Boron and nitrogen co-doped double-layered mesopore-rich hollow carbon microspheres as high-performance electrodes for supercapacitors. J. Colloid Interface Sci. 573, 232–240 (2020). https://doi.org/10.1016/j.jcis.2020.03.126
S.S. Zeng, F.C. Lyu, H.J. Nie, Y.W. Zhan, H.D. Bian et al., Facile fabrication of N/S-doped carbon nanotubes with Fe3O4 nanocrystals enchased for lasting synergy as efficient oxygen reduction catalysts. J. Mater. Chem. A 5(25), 13189–13195 (2017). https://doi.org/10.1039/c7ta02094e
M.L. Zhang, Y.L. Song, H.C. Tao, C. Yan, J. Masa et al., Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction. Sustain. Energy Fuels 2(8), 1820–1827 (2018). https://doi.org/10.1039/c8se00231b
C.H. You, S.J. Liao, H.L. Li, S.Y. Hou, H.L. Peng et al., Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction. Carbon 69, 294–301 (2014). https://doi.org/10.1016/j.carbon.2013.12.028
J.T. Zhang, L.T. Qu, G.Q. Shi, J.Y. Liu, J.F. Chen et al., N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. 55(6), 2230–2234 (2016). https://doi.org/10.1002/anie.201510495
H.Q. Yang, T. Zhou, W.J. Zhang, A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion. Angew. Chem. Int. Ed. 52(29), 7455–7459 (2013). https://doi.org/10.1002/anie.201300534
P. Tundo, A. Perosa, Multiphasic heterogeneous catalysis mediated by catalyst-philic liquid phases. Chem. Soc. Rev. 36(3), 532–550 (2007). https://doi.org/10.1039/b503021h
Y.Y. Zhao, G.Y. Zhang, Z. Liu, C.X. Guo, C.N. Peng et al., Benzimidazo[2,1-a]benz[de]isoquinoline-7-one-12-carboxylic acid based fluorescent sensors for pH and Fe3+. J. Photoch. Photobiol. A 314, 52–59 (2016). https://doi.org/10.1016/j.jphotochem.2015.08.003
R. Jing, J. Tang, Q. Zhang, L. Chen, D.X. Ji et al., An insight into the intensification of aqueous/organic phase reaction by the addition of magnetic polymer nanoparticles. Chem. Eng. J. 280, 265–274 (2015). https://doi.org/10.1016/j.cej.2015.05.088
C.J. Li, L. Chen, Organic chemistry in water. Chem. Soc. Rev. 35(1), 68–82 (2006). https://doi.org/10.1039/b507207g
M. Pera-Titus, L. Leclercq, J.M. Clacens, F. De Campo, V. Nardello-Rataj, Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions. Angew. Chem. Int. Ed. 54(7), 2006–2021 (2015). https://doi.org/10.1002/anie.201402069
C. Zhang, C.Y. Hu, Y.L. Zhao, M. Moller, K. Yan et al., Encapsulation of laccase in silica colloidosomes for catalysis in organic media. Langmuir 29(49), 15457–15462 (2013). https://doi.org/10.1021/la404087w
V. Stepankova, S. Bidmanova, T. Koudelakova, Z. Prokop, R. Chaloupkova et al., Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3(12), 2823–2836 (2013). https://doi.org/10.1021/cs400684x
K. Piradashvili, E.M. Alexandrino, F.R. Wurm, K. Landfester, Reactions and polymerizations at the liquid-liquid interface. Chem. Rev. 116(4), 2141–2169 (2016). https://doi.org/10.1021/acs.chemrev.5b00567
L. Schoonen, J.C. van Hest, Compartmentalization approaches in soft matter science: from nanoreactor development to organelle mimics. Adv. Mater. 28(6), 1109–1128 (2016). https://doi.org/10.1002/adma.201502389
Z. Zhu, H.Y. Tan, J. Wang, S.Z. Yu, K.B. Zhou, Hydrodeoxygenation of vanillin as a bio-oil model over carbonaceous microspheres-supported pd catalysts in the aqueous phase and Pickering emulsions. Green Chem. 16(5), 2636–2643 (2014). https://doi.org/10.1039/c3gc42647e
Z.W. Chen, H.W. Ji, C.Q. Zhao, E.G. Ju, J.S. Ren et al., Individual surface-engineered microorganisms as robust pickering interfacial biocatalysts for resistance-minimized phase-transfer bioconversion. Angew. Chem. Int. Ed. 54(16), 4904–4908 (2015). https://doi.org/10.1002/anie.201412049
D.C. Dewey, C.A. Strulson, D.N. Cacace, P.C. Bevilacqua, C.D. Keating, Bioreactor droplets from liposome-stabilized all-aqueous emulsions. Nat. Commun. 5, 4670–4678 (2014). https://doi.org/10.1038/ncomms5670
A. Walther, A.H.E. Müller, Janus particles. Soft Matter 4(4), 663–668 (2008). https://doi.org/10.1039/b718131k
J. Hu, S.X. Zhou, Y.Y. Sun, X.S. Fang, L.M. Wu, Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 41(11), 4356–4378 (2012). https://doi.org/10.1039/c2cs35032g
F. Tu, D. Lee, Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties. J. Am. Chem. Soc. 136(28), 9999–10006 (2014). https://doi.org/10.1021/ja503189r
S.P. Crossley, J. Faria, M. Shen, D.E. Resasco, Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327(5961), 68–72 (2010). https://doi.org/10.1126/science.1180769
B.J. Park, D. Lee, Equilibrium orientation of nonspherical Janus particles at fluid–fluid interfaces. ACS Nano 6(1), 782–790 (2012). https://doi.org/10.1021/nn204261w
W.X. Wang, P.Y. Wang, L. Chen, M.Y. Zhao, C.T. Hung et al., Engine-trailer-structured nanotrucks for efficient nano-bio interactions and bioimaging-guided drug delivery. Chem 6(5), 1097–1112 (2020). https://doi.org/10.1016/j.chempr.2020.01.010
X. Ma, K. Hahn, S. Sanchez, Catalytic mesoporous Janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 137(15), 4976–4979 (2015). https://doi.org/10.1021/jacs.5b02700
X. Ma, A. Jannasch, U.R. Albrecht, K. Hahn, A. Miguel-Lopez et al., Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15(10), 7043–7050 (2015). https://doi.org/10.1021/acs.nanolett.5b03100
M.M. Wan, Q. Wang, X.Y. Li, B. Xu, D. Fang et al., Systematic research and evaluation models of nanomotors for cancer combined therapy. Angew. Chem. Int. Ed. 59(34), 14458–14465 (2020). https://doi.org/10.1002/anie.202002452
C.Y. Gao, Y. Wang, Z.H. Ye, Z.H. Lin, X. Ma et al., Biomedical micro-/nanomotors: from overcoming biological barriers to In vivo imaging. Adv. Mater. 33(6), e2000512 (2020). https://doi.org/10.1002/adma.202000512
A. Saghatelian, N.H. Volcker, K.M. Guckian, V.S. Lin, M.R. Ghadiri, DNA-based photonic logic gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 125(2), 346–347 (2003). https://doi.org/10.1021/ja029009m
Y. Yi, L. Sanchez, Y. Gao, Y. Yu, Janus particles for biological imaging and sensing. Analyst 141(12), 3526–3539 (2016). https://doi.org/10.1039/c6an00325g