Single NIR Laser-Activated Multifunctional Nanoparticles for Cascaded Photothermal and Oxygen-Independent Photodynamic Therapy
Corresponding Author: Zhi Yuan
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 68
Abstract
Inconvenient dual-laser irradiation and tumor hypoxic environment as well as limited judgment of treating region have impeded the development of combined photothermal and photodynamic therapies (PTT and PDT). Herein, Bi2Se3@AIPH nanoparticles (NPs) are facilely developed to overcome these problems. Through a one-step method, free radical generator (AIPH) and phase transition material (lauric acid, LA, 44–46 °C) are encapsulated in hollow bismuth selenide nanoparticles (Bi2Se3 NPs). Under a single 808-nm laser irradiation at the tumor area, hyperthermia produced by Bi2Se3 not only directly leads to cell death, but also promotes AIPH release by melting LA and triggers free radical generation, which could further eradicate tumor cells in hypoxic environments. Moreover, Bi2Se3 with high X-ray attenuation coefficient endows the NPs with high computed tomography (CT) imaging capability, which is important for treating area determination. The results exhibit that Bi2Se3@AIPH NPs possesses 31.2% photothermal conversion efficiency for enhanced PTT, ideal free radical generation for oxygen-independent PDT, and 37.77 HU mL mg−1 X-ray attenuation coefficient for CT imaging with high quality. Most importantly, the tumor growth inhibition rate by synergistic PTT, PDT, and following immunotherapy is 99.6%, and even one tumor disappears completely, which demonstrates excellent cascaded synergistic effect of Bi2Se3@AIPH NPs for the tumor therapy.
Highlights:
1 Bi2Se3@AIPH nanoparticles (NPs) can realize photothermal and photodynamic therapies in a cascading manner when exposed to “one” single NIR laser.
2 Hyperthermia produced by Bi2Se3 NPs under NIR laser irradiation cannot only be used for photothermal therapy, but also the “switch” for controlled release of AIPH and excitation of free radical at the tumor site.
3 Free radical produced by thermal-responsive decomposition of AIPH is oxygen-independent, which treats hypoxic tumor well and further enhances immune response.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Wang, J. Zhang, Y. Wang, C. Wang, J. Xiao, Q. Zhang, Y. Cheng, Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials 81, 114–124 (2016). https://doi.org/10.1016/j.biomaterials.2015.11.037
- A.Y. Rwei, W. Wang, D.S. Kohane, Photoresponsive nanoparticles for drug delivery. Nano Today 10(4), 451–467 (2015). https://doi.org/10.1016/j.nantod.2015.06.004
- Z. Meng, Y. Chao, X. Zhou, C. Liang, J. Liu et al., Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS Nano 12(9), 9412–9422 (2018). https://doi.org/10.1021/acsnano.8b04544
- Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/C8CS00618K
- L. Dong, G. Ji, Y. Liu, X. Xu, P. Lei et al., Multifunctional Cu-Ag2S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy: in vivo. Nanoscale 10(2), 825–831 (2018). https://doi.org/10.1039/c7nr07263e
- Y. Cheng, Y. Chang, Y. Feng, H. Jian, Z. Tang, H. Zhang, Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem. Int. Ed. 57(1), 246–251 (2018). https://doi.org/10.1002/anie.201710399
- B. Liu, C. Li, Z. Cheng, Z. Hou, S. Huang, J. Lin, Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater. Sci. 4(6), 890–909 (2016). https://doi.org/10.1039/C6BM00076B
- R.S. Al-Hamdan, Does bond integrity of bleached enamel increases with phototherapy? A systematic review. Photodiagnosis Photodyn. Ther. 25, 401–405 (2019). https://doi.org/10.1016/j.pdpdt.2019.01.029
- J. Li, K. Pu, Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 48(1), 38–71 (2019). https://doi.org/10.1039/C8CS00001H
- W. Fan, P. Huang, X. Chen, Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 45(23), 6488–6519 (2016). https://doi.org/10.1039/C6CS00616G
- J. Li, C. Xie, J. Huang, Y. Jiang, Q. Miao, K. Pu, Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew. Chem. Int. Ed. 57(15), 3995–3998 (2018). https://doi.org/10.1002/anie.201800511
- J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 12(8), 8520–8530 (2018). https://doi.org/10.1021/acsnano.8b04066
- M.R. Younis, C. Wang, R. An, S. Wang, M.A. Younis et al., Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 13(2), 2544–2557 (2019). https://doi.org/10.1021/acsnano.8b09552
- J.R. Melamed, R.S. Edelstein, E.S. Day, Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9(1), 6–11 (2015). https://doi.org/10.1021/acsnano.5b00021
- C.-C. Hung, W.-C. Huang, Y.-W. Lin, T.-W. Yu, H.-H. Chen et al., Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photothermal/chemo combinatorial therapy. Theranostics 6(3), 302–317 (2016). https://doi.org/10.7150/thno.13686
- S. Baek, R.K. Singh, T.-H. Kim, J. Seo, U.S. Shin, W. Chrzanowski, H.-W. Kim, Triple hit with drug carriers: ph- and temperature-responsive theranostics for multimodal chemo- and photothermal therapy and diagnostic applications. ACS Appl. Mater. Interfaces 8(14), 8967–8979 (2016). https://doi.org/10.1021/acsami.6b00963
- K. Zeng, Q. Xu, J. Ouyang, Y. Han, J. Sheng, M. Wen, W. Chen, Y. Liu, Coordination nanosheets of phthalocyanine as multifunctional platform for imaging-guided synergistic therapy of cancer. ACS Appl. Mater. Interfaces 11(7), 6840–6849 (2019). https://doi.org/10.1021/acsami.8b22008
- X. Zhen, C. Xie, K. Pu, Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem. Int. Ed. 57(15), 3938–3942 (2018). https://doi.org/10.1002/anie.201712550
- Y. Jiang, P.K. Upputuri, C. Xie, Z. Zeng, A. Sharma et al., Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 31(11), 1808166 (2019). https://doi.org/10.1002/adma.201808166
- B. Lü, Y. Chen, P. Li, B. Wang, K. Müllen, M. Yin, Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nat. Commun. 10(1), 767 (2019). https://doi.org/10.1038/s41467-019-08434-4
- N. Wang, Z. Zhao, Y. Lv, H. Fan, H. Bai et al., Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/photodynamic therapy. Nano Res. 7(9), 1291 (2014). https://doi.org/10.1007/s12274-014-0493-0
- L. Cheng, D. Jiang, A. Kamkaew, H.F. Valdovinos, H.-J. Im et al., Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv. Funct. Mater. 27(34), 1702928 (2017). https://doi.org/10.1002/adfm.201702928
- W. Wang, Q. Liu, C. Zhan, A. Barhoumi, T. Yang et al., Efficient triplet–triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 15(10), 6332–6338 (2015). https://doi.org/10.1021/acs.nanolett.5b01325
- H. Bi, S. Gai, P. Yang, Honeycomb-satellite structured pH/H2O2-responsive degradable nanoplatform for efficient photodynamic therapy and multimodal imaging. ACS Appl. Mater. Interfaces 10, 33901–33912 (2018). https://doi.org/10.1021/acsami.8b10207
- C. Liu, H. Dong, N. Wu, Y. Cao, X. Zhang, Plasmonic resonance energy transfer enhanced photodynamic therapy with Au@SiO2 @Cu2O/perfluorohexane nanocomposites. ACS Appl. Mater. Interfaces 10(8), 6991–7002 (2018). https://doi.org/10.1021/acsami.8b00112
- D. Hu, Z. Chen, Z. Sheng, D. Gao, F. Yan, T. Ma, H. Zheng, M. Hong, A catalase-loaded hierarchical zeolite as an implantable nanocapsule for ultrasound-guided oxygen self-sufficient photodynamic therapy against pancreatic cancer. Nanoscale 10(36), 17283–17292 (2018). https://doi.org/10.1039/C8NR05548C
- J. Liu, P. Du, H. Mao, L. Zhang, H. Ju, J. Lei, Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials 172, 83–91 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.051
- J. Liu, P. Du, T. Liu, B.J. Córdova Wong, W. Wang, H. Ju, J. Lei, A black phosphorus/manganese dioxide nanoplatform: oxygen self-supply monitoring, photodynamic therapy enhancement and feedback. Biomaterials 192(2), 179–188 (2019). https://doi.org/10.1016/j.biomaterials.2018.10.018
- J. Li, J. Huang, Y. Lyu, J. Huang, Y. Jiang, C. Xie, K. Pu, Photoactivatable organic semiconducting pro-nanoenzymes. J. Am. Chem. Soc. 141(9), 4073–4079 (2019). https://doi.org/10.1021/jacs.8b13507
- K. Deng, C. Li, S. Huang, B. Xing, D. Jin, Q. Zeng, Z. Hou, J. Lin, Recent progress in near infrared light triggered photodynamic therapy. Small 13(44), 1702299 (2017). https://doi.org/10.1002/smll.201702299
- Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2. Nanoscale 9(11), 3784–3796 (2017). https://doi.org/10.1039/C6NR09042G
- Y. Yu, Z. Zhang, Y. Wang, H. Zhu, F. Li, Y. Shen, S. Guo, A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy. Acta Biomater. 59, 170–180 (2017). https://doi.org/10.1016/j.actbio.2017.06.026
- L. Zou, H. Wang, B. He, L. Zeng, T. Tan et al., Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6(6), 762–772 (2016). https://doi.org/10.7150/thno.14988
- Y. Cao, H. Dong, Z. Yang, X. Zhong, Y. Chen, W. Dai, X. Zhang, Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Appl. Mater. Interfaces 9(1), 159–166 (2017). https://doi.org/10.1021/acsami.6b13150
- W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29(5), 1603864 (2017). https://doi.org/10.1002/adma.201603864
- Y. Liu, W. Zhen, L. Jin, S. Zhang, G. Sun et al., All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 12(5), 4886 (2018). https://doi.org/10.1021/acsnano.8b01893
- X. Dai, Y. Zhao, Y. Yu, X. Chen, X. Wei, X. Zhang, C. Li, Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 9(36), 30470–30479 (2017). https://doi.org/10.1021/acsami.7b09638
- M. Yu, F. Guo, J. Wang, F. Tan, N. Li, Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy. ACS Appl. Mater. Interfaces 7(32), 17592–17597 (2015). https://doi.org/10.1021/acsami.5b05763
- Q. Sun, F. He, H. Bi, Z. Wang, C. Sun et al., An intelligent nanoplatform for simultaneously controlled chemo-, photothermal, and photodynamic therapies mediated by a single NIR light. Chem. Eng. J. 362(1), 679–691 (2019). https://doi.org/10.1016/j.cej.2019.01.095
- Y. Yoshida, N. Itoh, Y. Saito, M. Hayakawa, E. Niki, Application of water-soluble radical initiator, 2,2′-Azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride, to a study of oxidative stress. Free Radic. Res. 38(4), 375–384 (2004). https://doi.org/10.1080/1071576042000191763
- Y. Xu, J. Qi, X. Yang, E. Wu, S.Y. Qian, Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil׳s cytotoxicity. Redox Biol. 2(1), 610–618 (2014). https://doi.org/10.1016/j.redox.2014.01.022
- S. Shen, C. Zhu, D. Huo, M. Yang, J. Xue, Y. Xia, A Hybrid nanomaterial for the controlled generation of free radicals and oxidative destruction of hypoxic cancer cells. Angew. Chem. Int. Ed. 56(30), 8801–8804 (2017). https://doi.org/10.1002/anie.201702898
- X.-Q. Wang, F. Gao, X.-Z. Zhang, Initiator-loaded gold nanocages as a light-induced free-radical generator for cancer therapy. Angew. Chem. Int. Ed. 56(31), 9029–9033 (2017). https://doi.org/10.1002/anie.201703159
- X. Wang, M. Peng, C. Li, Y. Zhang, M. Zhang et al., Real-time imaging of free radicals for mitochondria-targeting hypoxic tumor therapy. Nano Lett. 18, 6804–6811 (2018). https://doi.org/10.1021/acs.nanolett.8b02670
- L. Feng, S. Gai, Y. Dai, F. He, C. Sun et al., Controllable generation of free radicals from multifunctional heat-responsive nanoplatform for targeted cancer therapy. Chem. Mater. 30(2), 526–539 (2018). https://doi.org/10.1021/acs.chemmater.7b04841
- F. Qin, H. Zhao, G. Li, H. Yang, J. Li et al., Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale 6(10), 5402–5409 (2014). https://doi.org/10.1039/c3nr06870f
- Z. Li, J. Liu, Y. Hu, K.A. Howard, Z. Li et al., Multimodal imaging-guided antitumor photothermal therapy and drug delivery using bismuth selenide spherical sponge. ACS Nano 10(10), 9646–9658 (2016). https://doi.org/10.1021/acsnano.6b05427
- C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11(6), 2560–2566 (2011). https://doi.org/10.1021/nl201400z
- S. Wang, C. Chi, H. Cheng, X. Pan, S. Li et al., Photothermal adjunctive cytoreductive surgery for treating peritoneal metastasis of gastric cancer. Small Methods 2(4), 1700368 (2018). https://doi.org/10.1002/smtd.201700368
- H. Zhang, T. Chen, J. Jiang, Y. Wong, F. Yang, W. Zheng, Selenium-containing allophycocyanin purified from selenium-enriched spirulina platensis attenuates AAPH-induced oxidative stress in human erythrocytes through inhibition of ROS generation. J. Agric. Food Chem. 59(16), 8683–8690 (2011). https://doi.org/10.1021/jf2019769
- C. Liu, C. Ruan, R. Shi, B.-P. Jiang, S. Ji, X.-C. Shen, A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy. Biomater. Sci. 7(4), 1705–1715 (2019). https://doi.org/10.1039/C8BM01541D
- J. Cao, X. Gao, M. Cheng, X. Niu, X. Li et al., Reversible shielding between dual ligands for enhanced tumor accumulation of ZnPc-loaded micelles. Nano Lett. 19(3), 1665–1674 (2019). https://doi.org/10.1021/acs.nanolett.8b04645
- Z.-H. Chen, Y. Saito, Y. Yoshida, E. Niki, Effect of oxygen concentration on free radical-induced cytotoxicity. Biosci. Biotechnol. Biochem. 72(6), 1491–1497 (2008). https://doi.org/10.1271/bbb.80002
- X. Wang, H. Fang, Z. Huang, W. Shang, T. Hou, A. Cheng, H. Cheng, Imaging ROS signaling in cells and animals. J. Mol. Med. 91(8), 917–927 (2013). https://doi.org/10.1007/s00109-013-1067-4
- M. Li, J. Xia, R. Tian, J. Wang, J. Fan et al., Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors. J. Am. Chem. Soc. 140(44), 14851–14859 (2018). https://doi.org/10.1021/jacs.8b08658
- C. Wang, L. Xu, C. Liang, J. Xiang, R. Peng, Z. Liu, Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 26(48), 8154–8162 (2014). https://doi.org/10.1002/adma.201402996
- Y. Shao, C. Shi, G. Xu, D. Guo, J. Luo, Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 6(13), 10381–10392 (2014). https://doi.org/10.1021/am501913m
- Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng, Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7(1), 13193 (2016). https://doi.org/10.1038/ncomms13193
- R. Wang, Z. He, P. Cai, Y. Zhao, L. Gao et al., Surface-functionalized modified copper sulfide nanoparticles enhance checkpoint blockade tumor immunotherapy by photothermal therapy and antigen capturing. ACS Appl. Mater. Interfaces 11(15), 13964–13972 (2019). https://doi.org/10.1021/acsami.9b01107
References
X. Wang, J. Zhang, Y. Wang, C. Wang, J. Xiao, Q. Zhang, Y. Cheng, Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials 81, 114–124 (2016). https://doi.org/10.1016/j.biomaterials.2015.11.037
A.Y. Rwei, W. Wang, D.S. Kohane, Photoresponsive nanoparticles for drug delivery. Nano Today 10(4), 451–467 (2015). https://doi.org/10.1016/j.nantod.2015.06.004
Z. Meng, Y. Chao, X. Zhou, C. Liang, J. Liu et al., Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS Nano 12(9), 9412–9422 (2018). https://doi.org/10.1021/acsnano.8b04544
Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/C8CS00618K
L. Dong, G. Ji, Y. Liu, X. Xu, P. Lei et al., Multifunctional Cu-Ag2S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy: in vivo. Nanoscale 10(2), 825–831 (2018). https://doi.org/10.1039/c7nr07263e
Y. Cheng, Y. Chang, Y. Feng, H. Jian, Z. Tang, H. Zhang, Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem. Int. Ed. 57(1), 246–251 (2018). https://doi.org/10.1002/anie.201710399
B. Liu, C. Li, Z. Cheng, Z. Hou, S. Huang, J. Lin, Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater. Sci. 4(6), 890–909 (2016). https://doi.org/10.1039/C6BM00076B
R.S. Al-Hamdan, Does bond integrity of bleached enamel increases with phototherapy? A systematic review. Photodiagnosis Photodyn. Ther. 25, 401–405 (2019). https://doi.org/10.1016/j.pdpdt.2019.01.029
J. Li, K. Pu, Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 48(1), 38–71 (2019). https://doi.org/10.1039/C8CS00001H
W. Fan, P. Huang, X. Chen, Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 45(23), 6488–6519 (2016). https://doi.org/10.1039/C6CS00616G
J. Li, C. Xie, J. Huang, Y. Jiang, Q. Miao, K. Pu, Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew. Chem. Int. Ed. 57(15), 3995–3998 (2018). https://doi.org/10.1002/anie.201800511
J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu, Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano 12(8), 8520–8530 (2018). https://doi.org/10.1021/acsnano.8b04066
M.R. Younis, C. Wang, R. An, S. Wang, M.A. Younis et al., Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 13(2), 2544–2557 (2019). https://doi.org/10.1021/acsnano.8b09552
J.R. Melamed, R.S. Edelstein, E.S. Day, Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9(1), 6–11 (2015). https://doi.org/10.1021/acsnano.5b00021
C.-C. Hung, W.-C. Huang, Y.-W. Lin, T.-W. Yu, H.-H. Chen et al., Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photothermal/chemo combinatorial therapy. Theranostics 6(3), 302–317 (2016). https://doi.org/10.7150/thno.13686
S. Baek, R.K. Singh, T.-H. Kim, J. Seo, U.S. Shin, W. Chrzanowski, H.-W. Kim, Triple hit with drug carriers: ph- and temperature-responsive theranostics for multimodal chemo- and photothermal therapy and diagnostic applications. ACS Appl. Mater. Interfaces 8(14), 8967–8979 (2016). https://doi.org/10.1021/acsami.6b00963
K. Zeng, Q. Xu, J. Ouyang, Y. Han, J. Sheng, M. Wen, W. Chen, Y. Liu, Coordination nanosheets of phthalocyanine as multifunctional platform for imaging-guided synergistic therapy of cancer. ACS Appl. Mater. Interfaces 11(7), 6840–6849 (2019). https://doi.org/10.1021/acsami.8b22008
X. Zhen, C. Xie, K. Pu, Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem. Int. Ed. 57(15), 3938–3942 (2018). https://doi.org/10.1002/anie.201712550
Y. Jiang, P.K. Upputuri, C. Xie, Z. Zeng, A. Sharma et al., Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 31(11), 1808166 (2019). https://doi.org/10.1002/adma.201808166
B. Lü, Y. Chen, P. Li, B. Wang, K. Müllen, M. Yin, Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nat. Commun. 10(1), 767 (2019). https://doi.org/10.1038/s41467-019-08434-4
N. Wang, Z. Zhao, Y. Lv, H. Fan, H. Bai et al., Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/photodynamic therapy. Nano Res. 7(9), 1291 (2014). https://doi.org/10.1007/s12274-014-0493-0
L. Cheng, D. Jiang, A. Kamkaew, H.F. Valdovinos, H.-J. Im et al., Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv. Funct. Mater. 27(34), 1702928 (2017). https://doi.org/10.1002/adfm.201702928
W. Wang, Q. Liu, C. Zhan, A. Barhoumi, T. Yang et al., Efficient triplet–triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 15(10), 6332–6338 (2015). https://doi.org/10.1021/acs.nanolett.5b01325
H. Bi, S. Gai, P. Yang, Honeycomb-satellite structured pH/H2O2-responsive degradable nanoplatform for efficient photodynamic therapy and multimodal imaging. ACS Appl. Mater. Interfaces 10, 33901–33912 (2018). https://doi.org/10.1021/acsami.8b10207
C. Liu, H. Dong, N. Wu, Y. Cao, X. Zhang, Plasmonic resonance energy transfer enhanced photodynamic therapy with Au@SiO2 @Cu2O/perfluorohexane nanocomposites. ACS Appl. Mater. Interfaces 10(8), 6991–7002 (2018). https://doi.org/10.1021/acsami.8b00112
D. Hu, Z. Chen, Z. Sheng, D. Gao, F. Yan, T. Ma, H. Zheng, M. Hong, A catalase-loaded hierarchical zeolite as an implantable nanocapsule for ultrasound-guided oxygen self-sufficient photodynamic therapy against pancreatic cancer. Nanoscale 10(36), 17283–17292 (2018). https://doi.org/10.1039/C8NR05548C
J. Liu, P. Du, H. Mao, L. Zhang, H. Ju, J. Lei, Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials 172, 83–91 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.051
J. Liu, P. Du, T. Liu, B.J. Córdova Wong, W. Wang, H. Ju, J. Lei, A black phosphorus/manganese dioxide nanoplatform: oxygen self-supply monitoring, photodynamic therapy enhancement and feedback. Biomaterials 192(2), 179–188 (2019). https://doi.org/10.1016/j.biomaterials.2018.10.018
J. Li, J. Huang, Y. Lyu, J. Huang, Y. Jiang, C. Xie, K. Pu, Photoactivatable organic semiconducting pro-nanoenzymes. J. Am. Chem. Soc. 141(9), 4073–4079 (2019). https://doi.org/10.1021/jacs.8b13507
K. Deng, C. Li, S. Huang, B. Xing, D. Jin, Q. Zeng, Z. Hou, J. Lin, Recent progress in near infrared light triggered photodynamic therapy. Small 13(44), 1702299 (2017). https://doi.org/10.1002/smll.201702299
Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2. Nanoscale 9(11), 3784–3796 (2017). https://doi.org/10.1039/C6NR09042G
Y. Yu, Z. Zhang, Y. Wang, H. Zhu, F. Li, Y. Shen, S. Guo, A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy. Acta Biomater. 59, 170–180 (2017). https://doi.org/10.1016/j.actbio.2017.06.026
L. Zou, H. Wang, B. He, L. Zeng, T. Tan et al., Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6(6), 762–772 (2016). https://doi.org/10.7150/thno.14988
Y. Cao, H. Dong, Z. Yang, X. Zhong, Y. Chen, W. Dai, X. Zhang, Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Appl. Mater. Interfaces 9(1), 159–166 (2017). https://doi.org/10.1021/acsami.6b13150
W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng et al., Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29(5), 1603864 (2017). https://doi.org/10.1002/adma.201603864
Y. Liu, W. Zhen, L. Jin, S. Zhang, G. Sun et al., All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 12(5), 4886 (2018). https://doi.org/10.1021/acsnano.8b01893
X. Dai, Y. Zhao, Y. Yu, X. Chen, X. Wei, X. Zhang, C. Li, Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 9(36), 30470–30479 (2017). https://doi.org/10.1021/acsami.7b09638
M. Yu, F. Guo, J. Wang, F. Tan, N. Li, Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy. ACS Appl. Mater. Interfaces 7(32), 17592–17597 (2015). https://doi.org/10.1021/acsami.5b05763
Q. Sun, F. He, H. Bi, Z. Wang, C. Sun et al., An intelligent nanoplatform for simultaneously controlled chemo-, photothermal, and photodynamic therapies mediated by a single NIR light. Chem. Eng. J. 362(1), 679–691 (2019). https://doi.org/10.1016/j.cej.2019.01.095
Y. Yoshida, N. Itoh, Y. Saito, M. Hayakawa, E. Niki, Application of water-soluble radical initiator, 2,2′-Azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride, to a study of oxidative stress. Free Radic. Res. 38(4), 375–384 (2004). https://doi.org/10.1080/1071576042000191763
Y. Xu, J. Qi, X. Yang, E. Wu, S.Y. Qian, Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil׳s cytotoxicity. Redox Biol. 2(1), 610–618 (2014). https://doi.org/10.1016/j.redox.2014.01.022
S. Shen, C. Zhu, D. Huo, M. Yang, J. Xue, Y. Xia, A Hybrid nanomaterial for the controlled generation of free radicals and oxidative destruction of hypoxic cancer cells. Angew. Chem. Int. Ed. 56(30), 8801–8804 (2017). https://doi.org/10.1002/anie.201702898
X.-Q. Wang, F. Gao, X.-Z. Zhang, Initiator-loaded gold nanocages as a light-induced free-radical generator for cancer therapy. Angew. Chem. Int. Ed. 56(31), 9029–9033 (2017). https://doi.org/10.1002/anie.201703159
X. Wang, M. Peng, C. Li, Y. Zhang, M. Zhang et al., Real-time imaging of free radicals for mitochondria-targeting hypoxic tumor therapy. Nano Lett. 18, 6804–6811 (2018). https://doi.org/10.1021/acs.nanolett.8b02670
L. Feng, S. Gai, Y. Dai, F. He, C. Sun et al., Controllable generation of free radicals from multifunctional heat-responsive nanoplatform for targeted cancer therapy. Chem. Mater. 30(2), 526–539 (2018). https://doi.org/10.1021/acs.chemmater.7b04841
F. Qin, H. Zhao, G. Li, H. Yang, J. Li et al., Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale 6(10), 5402–5409 (2014). https://doi.org/10.1039/c3nr06870f
Z. Li, J. Liu, Y. Hu, K.A. Howard, Z. Li et al., Multimodal imaging-guided antitumor photothermal therapy and drug delivery using bismuth selenide spherical sponge. ACS Nano 10(10), 9646–9658 (2016). https://doi.org/10.1021/acsnano.6b05427
C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy. Nano Lett. 11(6), 2560–2566 (2011). https://doi.org/10.1021/nl201400z
S. Wang, C. Chi, H. Cheng, X. Pan, S. Li et al., Photothermal adjunctive cytoreductive surgery for treating peritoneal metastasis of gastric cancer. Small Methods 2(4), 1700368 (2018). https://doi.org/10.1002/smtd.201700368
H. Zhang, T. Chen, J. Jiang, Y. Wong, F. Yang, W. Zheng, Selenium-containing allophycocyanin purified from selenium-enriched spirulina platensis attenuates AAPH-induced oxidative stress in human erythrocytes through inhibition of ROS generation. J. Agric. Food Chem. 59(16), 8683–8690 (2011). https://doi.org/10.1021/jf2019769
C. Liu, C. Ruan, R. Shi, B.-P. Jiang, S. Ji, X.-C. Shen, A near infrared-modulated thermosensitive hydrogel for stabilization of indocyanine green and combinatorial anticancer phototherapy. Biomater. Sci. 7(4), 1705–1715 (2019). https://doi.org/10.1039/C8BM01541D
J. Cao, X. Gao, M. Cheng, X. Niu, X. Li et al., Reversible shielding between dual ligands for enhanced tumor accumulation of ZnPc-loaded micelles. Nano Lett. 19(3), 1665–1674 (2019). https://doi.org/10.1021/acs.nanolett.8b04645
Z.-H. Chen, Y. Saito, Y. Yoshida, E. Niki, Effect of oxygen concentration on free radical-induced cytotoxicity. Biosci. Biotechnol. Biochem. 72(6), 1491–1497 (2008). https://doi.org/10.1271/bbb.80002
X. Wang, H. Fang, Z. Huang, W. Shang, T. Hou, A. Cheng, H. Cheng, Imaging ROS signaling in cells and animals. J. Mol. Med. 91(8), 917–927 (2013). https://doi.org/10.1007/s00109-013-1067-4
M. Li, J. Xia, R. Tian, J. Wang, J. Fan et al., Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors. J. Am. Chem. Soc. 140(44), 14851–14859 (2018). https://doi.org/10.1021/jacs.8b08658
C. Wang, L. Xu, C. Liang, J. Xiang, R. Peng, Z. Liu, Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 26(48), 8154–8162 (2014). https://doi.org/10.1002/adma.201402996
Y. Shao, C. Shi, G. Xu, D. Guo, J. Luo, Photo and redox dual responsive reversibly cross-linked nanocarrier for efficient tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 6(13), 10381–10392 (2014). https://doi.org/10.1021/am501913m
Q. Chen, L. Xu, C. Liang, C. Wang, R. Peng, Z. Liu, Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7(1), 13193 (2016). https://doi.org/10.1038/ncomms13193
R. Wang, Z. He, P. Cai, Y. Zhao, L. Gao et al., Surface-functionalized modified copper sulfide nanoparticles enhance checkpoint blockade tumor immunotherapy by photothermal therapy and antigen capturing. ACS Appl. Mater. Interfaces 11(15), 13964–13972 (2019). https://doi.org/10.1021/acsami.9b01107