Intercalating Ultrathin MoO3 Nanobelts into MXene Film with Ultrahigh Volumetric Capacitance and Excellent Deformation for High-Energy-Density Devices
Corresponding Author: Guohui Yuan
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 115
Abstract
The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature, portable, wearable or implantable electronic devices. A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement. The introduction of spacers such as graphene, CNTs, cellulose and the like demonstrates limited enhancement in rate capability. The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene, leading to low volumetric capacitance. Therefore, it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials. Herein, for the first time, high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films. In the composites, MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution. As a result, the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance (1817 F cm−3 and 545 F g−1), but also maintains good rate capability and excellent flexibility. Moreover, the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L−1 (13.4 Wh kg−1), rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.
Highlights:
1 All-pseudocapacitive and highly deformable MXene hybrid film is successfully fabricated by a facile and efficient vacuum-assisted filtration of ultrathin MoO3 nanobelts and delaminated MXene nanosheets.
2 The optimal M/MoO3 hybrid electrode delivers an ultrahigh volumetric capacitance of 1817 F cm−3 (545 F g−1), which exceeds large majority of previously reported MXene-based flexible electrodes.
3 The symmetric supercapacitor presents excellent energy density of 44.6 Wh L−1 (13.4 Wh kg−1), indicating the electrode promising in achieving high-energy-density devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3(7), 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
- M. Boota, Y. Gogotsi, MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9(7), 1802917 (2019). https://doi.org/10.1002/aenm.201802917
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- C. Zhang, S.-H. Park, A. Seral-Ascaso, S. Barwich, N. McEvoy et al., High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10(1), 849 (2019). https://doi.org/10.1038/s41467-019-08383-y
- H. Tang, W. Li, L. Pan, C.P. Cullen, Y. Liu et al., In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li–S batteries. Adv. Sci. 5(9), 1800502 (2018). https://doi.org/10.1002/advs.201800502
- S. Zheng, C. Zhang, F. Zhou, Y. Dong, X. Shi, V. Nicolosi, Z.-S. Wu, X. Bao, Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A 7(16), 9478–9485 (2019). https://doi.org/10.1039/c9ta02190f
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan, F. Chen, Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11(1), 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- S. Wang, Q. Wang, W. Zeng, M. Wang, L. Ruan, Y. Ma, A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27(2), 339–345 (2015). https://doi.org/10.1002/adma.201404140
- Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao, Y. Liu, R. Liu, G. Yuan, Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 29(14), 1900326 (2019). https://doi.org/10.1002/adfm.201900326
- Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- Y. Wang, H. Dou, J. Wang, B. Ding, Y. Xu, Z. Chang, X. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 327, 221–228 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.062
- R. Zhao, M. Wang, D. Zhao, H. Li, C. Wang, L. Yin, Molecular-level heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Lett. 3(1), 132–140 (2017). https://doi.org/10.1021/acsenergylett.7b01063
- J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu et al., A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14(51), 1803786 (2018). https://doi.org/10.1002/smll.201803786
- F. Li, Y.-L. Liu, G.-G. Wang, H.-Y. Zhang, B. Zhang et al., Few-layered Ti3C2Tx MXenes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. J. Mater. Chem. A 7(39), 22631–22641 (2019). https://doi.org/10.1039/c9ta08144e
- Q.-L. Wu, S.-X. Zhao, L. Yu, X.-X. Zheng, Y.-F. Wang, L.-Q. Yu, C.-W. Nan, G. Cao, Oxygen vacancy-enriched MoO3−x nanobelts for asymmetric supercapacitors with excellent room/low temperature performance. J. Mater. Chem. A 7(21), 13205–13214 (2019). https://doi.org/10.1039/c9ta03471d
- K. Zhou, W. Zhou, X. Liu, Y. Sang, S. Ji et al., Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12, 510–520 (2015). https://doi.org/10.1016/j.nanoen.2015.01.017
- W. Tian, A. VahidMohammadi, Z. Wang, L. Ouyang, M. Beidaghi, M.M. Hamedi, Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat. Commun. 10(1), 2558 (2019). https://doi.org/10.1038/s41467-019-10631-0
- C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
- X. Zhang, Q. Fu, H. Huang, L. Wei, X. Guo, Silver-quantum-dot-modified MoO3 and MnO2 paper-like freestanding films for flexible solid-state asymmetric supercapacitors. Small 15(13), 1805235 (2019). https://doi.org/10.1002/smll.201805235
- J. Yang, X. Xiao, P. Chen, K. Zhu, K. Cheng et al., Creating oxygen-vacancies in MoO3−x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 58, 455–465 (2019). https://doi.org/10.1016/j.nanoen.2019.01.071
- B. Yao, L. Huang, J. Zhang, X. Gao, J. Wu et al., Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28(30), 6353–6358 (2016). https://doi.org/10.1002/adma.201600529
- Y. Chen, T. Zhou, L. Li, W.K. Pang, X. He, Y.N. Liu, Z. Guo, Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano 13(8), 9376–9385 (2019). https://doi.org/10.1021/acsnano.9b04005
- J. Hao, J. Zhang, G. Xia, Y. Liu, Y. Zheng et al., Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 12(10), 10430–10438 (2018). https://doi.org/10.1021/acsnano.8b06020
- H. He, D. Huang, Q. Gan, J. Hao, S. Liu et al., Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 13(10), 11843–11852 (2019). https://doi.org/10.1021/acsnano.9b05865
- M. Hu, C. Cui, C. Shi, Z.S. Wu, J. Yang et al., High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 13(6), 6899–6905 (2019). https://doi.org/10.1021/acsnano.9b01762
- M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28(7), 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
- Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang et al., High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 14(37), 1802225 (2018). https://doi.org/10.1002/smll.201802225
- C. Yang, Y. Tang, Y. Tian, Y. Luo, Y. He, X. Yin, W. Que, Achieving of flexible, free-standing, ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric supercapacitors. Adv. Funct. Mater. 28(15), 1705487 (2018). https://doi.org/10.1002/adfm.201705487
- J. Zhang, S. Seyedin, S. Qin, Z. Wang, S. Moradi et al., Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 15(8), 1804732 (2019). https://doi.org/10.1002/smll.201804732
- Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5(10), 1800750 (2018). https://doi.org/10.1002/advs.201800750
- Z. Pan, X. Ji, Facile synthesis of nitrogen and oxygen co-doped C@ Ti3C2 MXene for high performance symmetric supercapacitors. J. Power Sources 439, 227068 (2019). https://doi.org/10.1016/j.jpowsour.2019.227068
- W. Liu, Z. Wang, Y. Su, Q. Li, Z. Zhao, F. Geng, Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 7(22), 1602834 (2017). https://doi.org/10.1002/aenm.201602834
- Z. Pan, F. Cao, X. Hu, X. Ji, A facile method for synthesizing Cus decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A 7(15), 8984–8992 (2019). https://doi.org/10.1039/c9ta00085b
- L. Qin, Q. Tao, A. El Ghazaly, J. Fernandez-Rodriguez, P.O.Å. Persson, J. Rosen, F. Zhang, High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Adv. Funct. Mater. 28(2), 1703808 (2018). https://doi.org/10.1002/adfm.201703808
- Y. Tian, W. Que, Y. Luo, C. Yang, X. Yin, L.B. Kong, Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. J. Mater. Chem. A 7(10), 5416–5425 (2019). https://doi.org/10.1039/c9ta00076c
- H. Li, X. Li, J. Liang, Y. Chen, Hydrous RuO2-decorated mxene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 9(15), 1803987 (2019). https://doi.org/10.1002/aenm.201803987
- C. Couly, M. Alhabeb, K.L. Van Aken, N. Kurra, L. Gomes et al., Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 4(1), 1700339 (2018). https://doi.org/10.1002/aelm.201700339
References
L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3(7), 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718
M. Boota, Y. Gogotsi, MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9(7), 1802917 (2019). https://doi.org/10.1002/aenm.201802917
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
C. Zhang, S.-H. Park, A. Seral-Ascaso, S. Barwich, N. McEvoy et al., High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10(1), 849 (2019). https://doi.org/10.1038/s41467-019-08383-y
H. Tang, W. Li, L. Pan, C.P. Cullen, Y. Liu et al., In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li–S batteries. Adv. Sci. 5(9), 1800502 (2018). https://doi.org/10.1002/advs.201800502
S. Zheng, C. Zhang, F. Zhou, Y. Dong, X. Shi, V. Nicolosi, Z.-S. Wu, X. Bao, Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A 7(16), 9478–9485 (2019). https://doi.org/10.1039/c9ta02190f
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan, F. Chen, Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11(1), 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
S. Wang, Q. Wang, W. Zeng, M. Wang, L. Ruan, Y. Ma, A new free-standing aqueous zinc-ion capacitor based on MnO2–CNTs cathode and MXene anode. Nano-Micro Lett. 11(1), 70 (2019). https://doi.org/10.1007/s40820-019-0301-1
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31(43), 1902432 (2019). https://doi.org/10.1002/adma.201902432
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27(2), 339–345 (2015). https://doi.org/10.1002/adma.201404140
Y. Wang, X. Wang, X. Li, Y. Bai, H. Xiao, Y. Liu, R. Liu, G. Yuan, Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 29(14), 1900326 (2019). https://doi.org/10.1002/adfm.201900326
Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
Y. Wang, H. Dou, J. Wang, B. Ding, Y. Xu, Z. Chang, X. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 327, 221–228 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.062
R. Zhao, M. Wang, D. Zhao, H. Li, C. Wang, L. Yin, Molecular-level heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Lett. 3(1), 132–140 (2017). https://doi.org/10.1021/acsenergylett.7b01063
J. Zhou, J. Yu, L. Shi, Z. Wang, H. Liu et al., A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small 14(51), 1803786 (2018). https://doi.org/10.1002/smll.201803786
F. Li, Y.-L. Liu, G.-G. Wang, H.-Y. Zhang, B. Zhang et al., Few-layered Ti3C2Tx MXenes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. J. Mater. Chem. A 7(39), 22631–22641 (2019). https://doi.org/10.1039/c9ta08144e
Q.-L. Wu, S.-X. Zhao, L. Yu, X.-X. Zheng, Y.-F. Wang, L.-Q. Yu, C.-W. Nan, G. Cao, Oxygen vacancy-enriched MoO3−x nanobelts for asymmetric supercapacitors with excellent room/low temperature performance. J. Mater. Chem. A 7(21), 13205–13214 (2019). https://doi.org/10.1039/c9ta03471d
K. Zhou, W. Zhou, X. Liu, Y. Sang, S. Ji et al., Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12, 510–520 (2015). https://doi.org/10.1016/j.nanoen.2015.01.017
W. Tian, A. VahidMohammadi, Z. Wang, L. Ouyang, M. Beidaghi, M.M. Hamedi, Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat. Commun. 10(1), 2558 (2019). https://doi.org/10.1038/s41467-019-10631-0
C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
X. Zhang, Q. Fu, H. Huang, L. Wei, X. Guo, Silver-quantum-dot-modified MoO3 and MnO2 paper-like freestanding films for flexible solid-state asymmetric supercapacitors. Small 15(13), 1805235 (2019). https://doi.org/10.1002/smll.201805235
J. Yang, X. Xiao, P. Chen, K. Zhu, K. Cheng et al., Creating oxygen-vacancies in MoO3−x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 58, 455–465 (2019). https://doi.org/10.1016/j.nanoen.2019.01.071
B. Yao, L. Huang, J. Zhang, X. Gao, J. Wu et al., Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28(30), 6353–6358 (2016). https://doi.org/10.1002/adma.201600529
Y. Chen, T. Zhou, L. Li, W.K. Pang, X. He, Y.N. Liu, Z. Guo, Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano 13(8), 9376–9385 (2019). https://doi.org/10.1021/acsnano.9b04005
J. Hao, J. Zhang, G. Xia, Y. Liu, Y. Zheng et al., Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 12(10), 10430–10438 (2018). https://doi.org/10.1021/acsnano.8b06020
H. He, D. Huang, Q. Gan, J. Hao, S. Liu et al., Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 13(10), 11843–11852 (2019). https://doi.org/10.1021/acsnano.9b05865
M. Hu, C. Cui, C. Shi, Z.S. Wu, J. Yang et al., High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 13(6), 6899–6905 (2019). https://doi.org/10.1021/acsnano.9b01762
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28(7), 1517–1522 (2016). https://doi.org/10.1002/adma.201504705
Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang et al., High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 14(37), 1802225 (2018). https://doi.org/10.1002/smll.201802225
C. Yang, Y. Tang, Y. Tian, Y. Luo, Y. He, X. Yin, W. Que, Achieving of flexible, free-standing, ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric supercapacitors. Adv. Funct. Mater. 28(15), 1705487 (2018). https://doi.org/10.1002/adfm.201705487
J. Zhang, S. Seyedin, S. Qin, Z. Wang, S. Moradi et al., Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 15(8), 1804732 (2019). https://doi.org/10.1002/smll.201804732
Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5(10), 1800750 (2018). https://doi.org/10.1002/advs.201800750
Z. Pan, X. Ji, Facile synthesis of nitrogen and oxygen co-doped C@ Ti3C2 MXene for high performance symmetric supercapacitors. J. Power Sources 439, 227068 (2019). https://doi.org/10.1016/j.jpowsour.2019.227068
W. Liu, Z. Wang, Y. Su, Q. Li, Z. Zhao, F. Geng, Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 7(22), 1602834 (2017). https://doi.org/10.1002/aenm.201602834
Z. Pan, F. Cao, X. Hu, X. Ji, A facile method for synthesizing Cus decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A 7(15), 8984–8992 (2019). https://doi.org/10.1039/c9ta00085b
L. Qin, Q. Tao, A. El Ghazaly, J. Fernandez-Rodriguez, P.O.Å. Persson, J. Rosen, F. Zhang, High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Adv. Funct. Mater. 28(2), 1703808 (2018). https://doi.org/10.1002/adfm.201703808
Y. Tian, W. Que, Y. Luo, C. Yang, X. Yin, L.B. Kong, Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. J. Mater. Chem. A 7(10), 5416–5425 (2019). https://doi.org/10.1039/c9ta00076c
H. Li, X. Li, J. Liang, Y. Chen, Hydrous RuO2-decorated mxene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 9(15), 1803987 (2019). https://doi.org/10.1002/aenm.201803987
C. Couly, M. Alhabeb, K.L. Van Aken, N. Kurra, L. Gomes et al., Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 4(1), 1700339 (2018). https://doi.org/10.1002/aelm.201700339