Anti-Overturning Fully Symmetrical Triboelectric Nanogenerator Based on an Elliptic Cylindrical Structure for All-Weather Blue Energy Harvesting
Corresponding Author: Guanlin Liu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 124
Abstract
Triboelectric nanogenerators (TENGs) have shown promising potential for large-scale blue energy harvesting. However, the lack of reasonable designs has largely hindered TENG from harvesting energy from both rough and tranquil seas. Herein, a fully symmetrical triboelectric nanogenerator based on an elliptical cylindrical structure (EC-TENG) is proposed for all-weather blue energy harvesting. The novel elliptical cylindrical shell provides a unique self-stability, high sensitivity to wave triggering, and most importantly, an anti-overturning capability for the EC-TENG. Moreover, benefiting from its internal symmetrical design, the EC-TENG can produce energy normally, even if it was overturned under a rude oscillation in the rough seas, which distinguishes this work from previous reported TENGs. The working mechanism and output performance are systematically studied. The as-fabricated EC-TENG is capable of lighting 400 light-emitting diodes and driving small electronics. More than that, an automatic monitoring system powered by the EC-TENG can also monitor the water level in real-time and provide an alarm if necessary. This work presents an innovative and reliable approach toward all-weather wave energy harvesting in actual marine environments.
Highlights:
1 The novel elliptical cylindrical structure (EC) provided an excellent self-stability, high sensitivity in small agitations, and most importantly, a distinctive anti-overturning capability for the EC-triboelectric nanogenerator (EC-TENG).
2 Benefitting from the fully symmetrical design, the EC-TENG could maintain the original output after being overturned under extreme conditions, distinguishing itself from previous TENGs.
3 Two built-in TENGs designed for use in rough seas and tranquil seas improved the collection efficiency for all-weather wave energy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Huang, P. Wang, L. Wang, S. Yang, D. Wu, Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: an overview. Nanotechnol. Rev. 9(1), 716–735 (2020). https://doi.org/10.1515/ntrev-2020-0055
- R. Ahamed, K. McKee, I. Howard, Advancements of wave energy converters based on power take off (PTO) systems: a review. Ocean Eng. 204, 107248 (2020). https://doi.org/10.1016/j.oceaneng.2020.107248
- J. Tollefson, Blue energy. Nature 508(7496), 302–304 (2014). https://doi.org/10.1038/508302a
- A.F. Falcão, Wave energy utilization: a review of the technologies. Renew. Sustain. Energy Rev. 14(3), 899–918 (2010). https://doi.org/10.1016/j.rser.2009.11.003
- R. Pelc, R.M. Fujita, Renewable energy from the ocean. Mar. Pol. 26(6), 471–479 (2002). https://doi.org/10.1016/S0308-597X(02)00045-3
- A. Wolfbrandt, Automated design of a linear generator for wave energy converters-a simplified model. IEEE Trans. Magn. 42(7), 1812–1819 (2006). https://doi.org/10.1109/tmag.2006.874593
- R. Henderson, Design, simulation, and testing of a novel hydraulic power take-off system for the pelamis wave energy converter. Renew. Energy 31(2), 271–283 (2006). https://doi.org/10.1016/j.renene.2005.08.021
- Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
- M. Muthu, R. Pandey, X. Wang, A. Chandrasekhar, I.A. Palani et al., Enhancement of triboelectric nanogenerator output performance by laser 3D-surface pattern method for energy harvesting application. Nano Energy 78, 105205 (2020). https://doi.org/10.1016/j.nanoen.2020.105205
- A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S.J. Kim, Sustainable human-machine interactive triboelectric nanogenerator toward a smart computer mouse. ACS Sustain. Chem. Eng. 7(7), 7177–7182 (2019). https://doi.org/10.1021/acssuschemeng.9b00175
- A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, W.J. Kim, S.J. Kim, Green energy from working surfaces: a contact electrification–enabled data theft protection and monitoring smart table. Mater. Today Energy 18, 100544 (2020). https://doi.org/10.1016/j.mtener.2020.100544
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- M. Ma, Z. Kang, Q. Liao, Q. Zhang, F. Gao et al., Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 11(6), 2951–2969 (2018). https://doi.org/10.1007/s12274-018-1997-9
- K. Tao, Z. Chen, H. Yi, R. Zhang, Q. Shen et al., Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Lett. 13, 123 (2021). https://doi.org/10.1007/s40820-021-00644-0
- Y. Jia, Y. Pan, C. Wang, C. Liu, C. Shen et al., Flexible Ag microp/MXene-based film for energy harvesting. Nano-Micro Lett. 13, 201 (2021). https://doi.org/10.1007/s40820-021-00729-w
- Y. Chen, Z. Gao, F. Zhang, Z. Wen, X. Sun, Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2(1), 20210112 (2022). https://doi.org/10.1002/EXP.20210112
- N. Zhai, Z. Wen, X. Chen, A. Wei, M. Sha et al., Blue energy collection toward all-hours self-powered chemical energy conversion. Adv. Energy Mater. 10(33), 2001041 (2020). https://doi.org/10.1002/aenm.202001041
- L. Xie, N. Zhai, Y. Liu, Z. Wen, X. Sun, Hybrid triboelectric nanogenerators: from energy complementation to integration. Research 2021, 9143762 (2021). https://doi.org/10.34133/2021/9143762
- X. Xie, X. Chen, C. Zhao, Y. Liu, X. Sun et al., Intermediate layer for enhanced triboelectric nanogenerator. Nano Energy 79, 105439 (2021). https://doi.org/10.1016/j.nanoen.2020.105439
- M. Xu, T. Zhao, C. Wang, S.L. Zhang, Z. Li et al., High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 13(2), 1932–1939 (2019). https://doi.org/10.1021/acsnano.8b08274
- Z. Lin, B. Zhang, H. Guo, Z. Wu, H. Zou et al., Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64, 103908 (2019). https://doi.org/10.1016/j.nanoen.2019.103908
- Q. Shi, H. Wang, H. Wu, C. Lee, Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy 40, 203–213 (2017). https://doi.org/10.1016/j.nanoen.2017.08.018
- L.Y. Xu, L. Xu, J. Luo, Y. Yan, B.E. Jia et al., Hybrid all-in-one power source based on high-performance spherical triboelectric nanogenerators for harvesting environmental energy. Adv. Energy Mater. 10(36), 2001669 (2020). https://doi.org/10.1002/aenm.202001669
- L. Xu, T. Jiang, P. Lin, J.J. Shao, C. He et al., Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 12(2), 1849–1858 (2018). https://doi.org/10.1021/acsnano.7b08674
- X. Wen, W. Yang, Q. Jing, Z.L. Wang, Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 8(7), 7405–7412 (2014). https://doi.org/10.1021/nn502618f
- Y. Yao, T. Jiang, L. Zhang, X. Chen, Z. Gao et al., Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl. Mater. Interfaces 8(33), 21398–21406 (2016). https://doi.org/10.1021/acsami.6b07697
- L.M. Zhang, C.B. Han, T. Jiang, T. Zhou, X.H. Li et al., Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22, 87–94 (2016). https://doi.org/10.1016/j.nanoen.2016.01.009
- X. Liang, T. Jiang, G. Liu, T. Xiao, L. Xu et al., Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 29(41), 1807241 (2019). https://doi.org/10.1002/adfm.201807241
- T.X. Xiao, X. Liang, T. Jiang, L. Xu, J.J. Shao et al., Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28(35), 1802634 (2018). https://doi.org/10.1002/adfm.201802634
- T.X. Xiao, T. Jiang, J.X. Zhu, X. Liang, L. Xu et al., Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl. Mater. Interfaces 10(4), 3616–3623 (2018). https://doi.org/10.1021/acsami.7b17239
- B.D. Chen, W. Tang, C. He, C.R. Deng, L.J. Yang et al., Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 21(1), 88–97 (2018). https://doi.org/10.1016/j.mattod.2017.10.006
- Z. Saadatnia, E. Asadi, H. Askari, J. Zu, E. Esmailzadeh, Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting. Int. J. Energy Res. 41(14), 2392–2404 (2017). https://doi.org/10.1002/er.3811
- R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai et al., Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 4(3), 1800514 (2019). https://doi.org/10.1002/admt.201800514
- Z. Saadatnia, E. Asadi, H. Askari, E. Esmailzadeh, H.E. Naguib, A heaving point absorber-based triboelectric-electromagnetic wave energy harvester: an efficient approach toward blue energy. Int. J. Energy Res. 42(7), 2431–2447 (2018). https://doi.org/10.1002/er.4024
- X. Wang, Z. Wen, H. Guo, C. Wu, X. He et al., Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). https://doi.org/10.1021/acsnano.6b06622
- H. Guo, Z. Wen, Y. Zi, M.H. Yeh, J. Wang et al., A water-proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
- Y. Wu, Q. Zeng, Q. Tang, W. Liu, G. Liu et al., A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 67, 104205 (2020). https://doi.org/10.1016/j.nanoen.2019.104205
- H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10, 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
- W. Zhong, L. Xu, H. Wang, J. An, Z.L. Wang, Tilting-sensitive triboelectric nanogenerators for energy harvesting from unstable/fluctuating surfaces. Adv. Funct. Mater. 29(45), 1905319 (2019). https://doi.org/10.1002/adfm.201905319
- G. Liu, H. Guo, S. Xu, C. Hu, Z.L. Wang, Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 9(26), 1900801 (2019). https://doi.org/10.1002/aenm.201900801
- P. Cheng, Y. Liu, Z. Wen, H. Shao, A. Wei et al., Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 54, 156–162 (2018). https://doi.org/10.1016/j.nanoen.2018.10.007
- C. Zhang, L. He, L. Zhou, O. Yang, W. Yuan et al., Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 5(6), 1613–1623 (2021). https://doi.org/10.1016/j.joule.2021.04.016
- G. Liu, L. Xiao, C. Chen, W. Liu, X. Pu et al., Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 75, 104975 (2020). https://doi.org/10.1016/j.nanoen.2020.104975
- T. Jiang, H. Pang, J. An, P. Lu, Y. Feng et al., Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10(23), 2000064 (2020). https://doi.org/10.1002/aenm.202000064
- Y. Feng, T. Jiang, X. Liang, J. An, Z.L. Wang, Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 7(2), 021401 (2020). https://doi.org/10.1063/1.5135734
- S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24(22), 3332–3340 (2014). https://doi.org/10.1002/adfm.201303799
- C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906
References
B. Huang, P. Wang, L. Wang, S. Yang, D. Wu, Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: an overview. Nanotechnol. Rev. 9(1), 716–735 (2020). https://doi.org/10.1515/ntrev-2020-0055
R. Ahamed, K. McKee, I. Howard, Advancements of wave energy converters based on power take off (PTO) systems: a review. Ocean Eng. 204, 107248 (2020). https://doi.org/10.1016/j.oceaneng.2020.107248
J. Tollefson, Blue energy. Nature 508(7496), 302–304 (2014). https://doi.org/10.1038/508302a
A.F. Falcão, Wave energy utilization: a review of the technologies. Renew. Sustain. Energy Rev. 14(3), 899–918 (2010). https://doi.org/10.1016/j.rser.2009.11.003
R. Pelc, R.M. Fujita, Renewable energy from the ocean. Mar. Pol. 26(6), 471–479 (2002). https://doi.org/10.1016/S0308-597X(02)00045-3
A. Wolfbrandt, Automated design of a linear generator for wave energy converters-a simplified model. IEEE Trans. Magn. 42(7), 1812–1819 (2006). https://doi.org/10.1109/tmag.2006.874593
R. Henderson, Design, simulation, and testing of a novel hydraulic power take-off system for the pelamis wave energy converter. Renew. Energy 31(2), 271–283 (2006). https://doi.org/10.1016/j.renene.2005.08.021
Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
M. Muthu, R. Pandey, X. Wang, A. Chandrasekhar, I.A. Palani et al., Enhancement of triboelectric nanogenerator output performance by laser 3D-surface pattern method for energy harvesting application. Nano Energy 78, 105205 (2020). https://doi.org/10.1016/j.nanoen.2020.105205
A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S.J. Kim, Sustainable human-machine interactive triboelectric nanogenerator toward a smart computer mouse. ACS Sustain. Chem. Eng. 7(7), 7177–7182 (2019). https://doi.org/10.1021/acssuschemeng.9b00175
A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, W.J. Kim, S.J. Kim, Green energy from working surfaces: a contact electrification–enabled data theft protection and monitoring smart table. Mater. Today Energy 18, 100544 (2020). https://doi.org/10.1016/j.mtener.2020.100544
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
M. Ma, Z. Kang, Q. Liao, Q. Zhang, F. Gao et al., Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 11(6), 2951–2969 (2018). https://doi.org/10.1007/s12274-018-1997-9
K. Tao, Z. Chen, H. Yi, R. Zhang, Q. Shen et al., Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Lett. 13, 123 (2021). https://doi.org/10.1007/s40820-021-00644-0
Y. Jia, Y. Pan, C. Wang, C. Liu, C. Shen et al., Flexible Ag microp/MXene-based film for energy harvesting. Nano-Micro Lett. 13, 201 (2021). https://doi.org/10.1007/s40820-021-00729-w
Y. Chen, Z. Gao, F. Zhang, Z. Wen, X. Sun, Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2(1), 20210112 (2022). https://doi.org/10.1002/EXP.20210112
N. Zhai, Z. Wen, X. Chen, A. Wei, M. Sha et al., Blue energy collection toward all-hours self-powered chemical energy conversion. Adv. Energy Mater. 10(33), 2001041 (2020). https://doi.org/10.1002/aenm.202001041
L. Xie, N. Zhai, Y. Liu, Z. Wen, X. Sun, Hybrid triboelectric nanogenerators: from energy complementation to integration. Research 2021, 9143762 (2021). https://doi.org/10.34133/2021/9143762
X. Xie, X. Chen, C. Zhao, Y. Liu, X. Sun et al., Intermediate layer for enhanced triboelectric nanogenerator. Nano Energy 79, 105439 (2021). https://doi.org/10.1016/j.nanoen.2020.105439
M. Xu, T. Zhao, C. Wang, S.L. Zhang, Z. Li et al., High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 13(2), 1932–1939 (2019). https://doi.org/10.1021/acsnano.8b08274
Z. Lin, B. Zhang, H. Guo, Z. Wu, H. Zou et al., Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64, 103908 (2019). https://doi.org/10.1016/j.nanoen.2019.103908
Q. Shi, H. Wang, H. Wu, C. Lee, Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy 40, 203–213 (2017). https://doi.org/10.1016/j.nanoen.2017.08.018
L.Y. Xu, L. Xu, J. Luo, Y. Yan, B.E. Jia et al., Hybrid all-in-one power source based on high-performance spherical triboelectric nanogenerators for harvesting environmental energy. Adv. Energy Mater. 10(36), 2001669 (2020). https://doi.org/10.1002/aenm.202001669
L. Xu, T. Jiang, P. Lin, J.J. Shao, C. He et al., Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 12(2), 1849–1858 (2018). https://doi.org/10.1021/acsnano.7b08674
X. Wen, W. Yang, Q. Jing, Z.L. Wang, Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 8(7), 7405–7412 (2014). https://doi.org/10.1021/nn502618f
Y. Yao, T. Jiang, L. Zhang, X. Chen, Z. Gao et al., Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl. Mater. Interfaces 8(33), 21398–21406 (2016). https://doi.org/10.1021/acsami.6b07697
L.M. Zhang, C.B. Han, T. Jiang, T. Zhou, X.H. Li et al., Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 22, 87–94 (2016). https://doi.org/10.1016/j.nanoen.2016.01.009
X. Liang, T. Jiang, G. Liu, T. Xiao, L. Xu et al., Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 29(41), 1807241 (2019). https://doi.org/10.1002/adfm.201807241
T.X. Xiao, X. Liang, T. Jiang, L. Xu, J.J. Shao et al., Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv. Funct. Mater. 28(35), 1802634 (2018). https://doi.org/10.1002/adfm.201802634
T.X. Xiao, T. Jiang, J.X. Zhu, X. Liang, L. Xu et al., Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl. Mater. Interfaces 10(4), 3616–3623 (2018). https://doi.org/10.1021/acsami.7b17239
B.D. Chen, W. Tang, C. He, C.R. Deng, L.J. Yang et al., Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 21(1), 88–97 (2018). https://doi.org/10.1016/j.mattod.2017.10.006
Z. Saadatnia, E. Asadi, H. Askari, J. Zu, E. Esmailzadeh, Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting. Int. J. Energy Res. 41(14), 2392–2404 (2017). https://doi.org/10.1002/er.3811
R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai et al., Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 4(3), 1800514 (2019). https://doi.org/10.1002/admt.201800514
Z. Saadatnia, E. Asadi, H. Askari, E. Esmailzadeh, H.E. Naguib, A heaving point absorber-based triboelectric-electromagnetic wave energy harvester: an efficient approach toward blue energy. Int. J. Energy Res. 42(7), 2431–2447 (2018). https://doi.org/10.1002/er.4024
X. Wang, Z. Wen, H. Guo, C. Wu, X. He et al., Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). https://doi.org/10.1021/acsnano.6b06622
H. Guo, Z. Wen, Y. Zi, M.H. Yeh, J. Wang et al., A water-proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
Y. Wu, Q. Zeng, Q. Tang, W. Liu, G. Liu et al., A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy 67, 104205 (2020). https://doi.org/10.1016/j.nanoen.2019.104205
H. Shao, P. Cheng, R. Chen, L. Xie, N. Sun et al., Triboelectric-electromagnetic hybrid generator for harvesting blue energy. Nano-Micro Lett. 10, 54 (2018). https://doi.org/10.1007/s40820-018-0207-3
W. Zhong, L. Xu, H. Wang, J. An, Z.L. Wang, Tilting-sensitive triboelectric nanogenerators for energy harvesting from unstable/fluctuating surfaces. Adv. Funct. Mater. 29(45), 1905319 (2019). https://doi.org/10.1002/adfm.201905319
G. Liu, H. Guo, S. Xu, C. Hu, Z.L. Wang, Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 9(26), 1900801 (2019). https://doi.org/10.1002/aenm.201900801
P. Cheng, Y. Liu, Z. Wen, H. Shao, A. Wei et al., Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 54, 156–162 (2018). https://doi.org/10.1016/j.nanoen.2018.10.007
C. Zhang, L. He, L. Zhou, O. Yang, W. Yuan et al., Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 5(6), 1613–1623 (2021). https://doi.org/10.1016/j.joule.2021.04.016
G. Liu, L. Xiao, C. Chen, W. Liu, X. Pu et al., Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 75, 104975 (2020). https://doi.org/10.1016/j.nanoen.2020.104975
T. Jiang, H. Pang, J. An, P. Lu, Y. Feng et al., Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10(23), 2000064 (2020). https://doi.org/10.1002/aenm.202000064
Y. Feng, T. Jiang, X. Liang, J. An, Z.L. Wang, Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 7(2), 021401 (2020). https://doi.org/10.1063/1.5135734
S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 24(22), 3332–3340 (2014). https://doi.org/10.1002/adfm.201303799
C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906