Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
Corresponding Author: Chenguo Hu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 127
Abstract
As hundreds of millions of distributed devices appear in every corner of our lives for information collection and transmission in big data era, the biggest challenge is the energy supply for these devices and the signal transmission of sensors. Triboelectric nanogenerator (TENG) as a new energy technology meets the increasing demand of today's distributed energy supply due to its ability to convert the ambient mechanical energy into electric energy. Meanwhile, TENG can also be used as a sensing system. Direct current triboelectric nanogenerator (DC-TENG) can directly supply power to electronic devices without additional rectification. It has been one of the most important developments of TENG in recent years. Herein, we review recent progress in the novel structure designs, working mechanism and corresponding method to improve the output performance for DC-TENGs from the aspect of mechanical rectifier, tribovoltaic effect, phase control, mechanical delay switch and air-discharge. The basic theory of each mode, key merits and potential development are discussed in detail. At last, we provide a guideline for future challenges of DC-TENGs, and a strategy for improving the output performance for commercial applications.
Highlights:
1 The basic theory, key merits and potential development of direct current triboelectric nanogenerator (DC-TENG) from the aspect of mechanical rectifier, tribovoltaic effect, phase control, mechanical delay switch and air-discharge are discussed in detail.
2 This review provides a guideline for future challenges of DC-TENGs, and a strategy for improving the output performance for commercial applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Ryu, H.J. Yoon, S.W. Kim, Hybrid energy harvesters: toward sustainable energy harvesting. Adv. Mater. 31(34), 1802898 (2019). https://doi.org/10.1002/adma.201802898
- Y. Wang, T. Guo, Z. Tian, K. Bibi, Y.Z. Zhang et al., MXenes for energy harvesting. Adv. Mater. 34(21), 2108560 (2022). https://doi.org/10.1002/adma.202108560
- X. Zhao, H. Askari, J. Chen, Nanogenerators for smart cities in the era of 5g and internet of things. Joule 5(6), 1391–1431 (2021). https://doi.org/10.1016/j.joule.2021.03.013
- B. Stadlober, M. Zirkl, M. Irimia-Vladu, Route towards sustainable smart sensors: Ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem. Soc. Rev. 48(6), 1787–1825 (2019). https://doi.org/10.1039/c8cs00928g
- Y.Y. Ba, J.F. Bao, X.T. Liu, X.W. Li, H.T. Deng et al., Electron-ion coupling mechanism to construct stable output performance nanogenerator. Research 2021, 9817062 (2021). https://doi.org/10.34133/2021/9817062
- M. Tamatani, Contact electrification phenomena on phosphor p surfaces. J. Lumin. 100(1–4), 317–323 (2002). https://doi.org/10.1016/s0022-2313(02)00431-3
- D.L. Li, C.X. Wu, L. Ruan, J.X. Wang, Z.R. Qiu et al., Electron-transfer mechanisms for confirmation of contact-electrification in zno/polyimide-based triboelectric nanogenerators. Nano Energy 75, 104818 (2020). https://doi.org/10.1016/j.nanoen.2020.104818
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- X. Zheng, J. Su, X. Wei, T. Jiang, S. Gao et al., Self-powered electrochemistry for the oxidation of organic molecules by a cross-linked triboelectric nanogenerator. Adv. Mater. 28(26), 5188–5194 (2016). https://doi.org/10.1002/adma.201600133
- Q. Guan, X. Lu, Y. Chen, H. Zhang, Y. Zheng et al., High-performance liquid crystalline polymer for intrinsic fire-resistant and flexible triboelectric nanogenerators. Adv. Mater. 34(34), 2204543 (2022). https://doi.org/10.1002/adma.202204543
- J. Wang, H. Wu, Z. Wang, W. He, C. Shan et al., An ultrafast self-polarization effect in barium titanate filled poly(vinylidene fluoride) composite film enabled by self-charge excitation triboelectric nanogenerator. Adv. Funct. Mater. 32(35), 2204322 (2022). https://doi.org/10.1002/adfm.202204322
- H. Wu, S. Fu, W. He, C. Shan, J. Wang et al., Improving and quantifying surface charge density via charge injection enabled by air breakdown. Adv. Funct. Mater. 32(35), 2203884 (2022). https://doi.org/10.1002/adfm.202203884
- K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
- C. Chen, Z. Wen, J. Shi, X. Jian, P. Li et al., Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 11, 4143 (2020). https://doi.org/10.1038/s41467-020-17842-w
- Z. Zhang, Q. Yan, Z. Liu, X. Zhao, Z. Wang et al., Flexible mxene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing. Nano Energy 88, 106257 (2021). https://doi.org/10.1016/j.nanoen.2021.106257
- G. Li, G. Liu, W. He, L. Long, B. Li et al., Miura folding based charge-excitation triboelectric nanogenerator for potable power supply. Nano Res. 14, 4204–4210 (2021). https://doi.org/10.1007/s12274-021-3401-4
- Z.H. Yu, Y.M. Wang, J.Q. Zheng, Y. Xiang, P. Zhao et al., Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy 68, 104382 (2020). https://doi.org/10.1016/j.nanoen.2019.104382
- J. Wang, H.Y. Wu, S.K. Fu, G. Li, C.C. Shan et al., Enhancement of output charge density of TENG in high humidity by water molecules induced self-polarization effect on dielectric polymers. Nano Energy 104, 107916 (2022). https://doi.org/10.1016/j.nanoen.2022.107916
- S.K. Fu, W.C. He, Q. Tang, Z. Wang, W.L. Liu et al., An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv. Mater. 34(2), 2105882 (2022). https://doi.org/10.1002/adma.202105882
- D. Liu, C. Li, P. Chen, X. Zhao, W. Tang et al., Sustainable long-term and wide-area environment monitoring network based on distributed self-powered wireless sensing nodes. Adv. Energy Mater. 13(2), 2202691 (2022). https://doi.org/10.1002/aenm.202202691
- J. Yu, S. Qin, H. Zhang, Y. Wei, X. Zhu et al., Fiber-shaped triboiontronic electrochemical transistor. Research 2021, 9840918 (2021). https://doi.org/10.34133/2021/9840918
- J. Dong, C. Xu, L. Zhu, X. Zhao, H. Zhou et al., A high voltage direct current droplet-based electricity generator inspired by thunderbolts. Nano Energy 90, 106567 (2021). https://doi.org/10.1016/j.nanoen.2021.106567
- Y.M. Zeng, Y. Luo, Y.R. Lu, X. Cao, Self-powered rain droplet sensor based on a liquid–solid triboelectric nanogenerator. Nano Energy 98, 107316 (2022). https://doi.org/10.1016/j.nanoen.2022.107316
- L.X. He, C.G. Zhang, B.F. Zhang, O.U. Yang, W. Yuan et al., A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 16(4), 6244–6254 (2022). https://doi.org/10.1021/acsnano.1c11658
- A.N. Ravichandran, C. Calmes, J.R. Serres, M. Ramuz, S. Blayac, Compact and high performance wind actuated venturi triboelectric energy harvester. Nano Energy 62, 449–457 (2019). https://doi.org/10.1016/j.nanoen.2019.05.053
- C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu et al., High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 32(18), 2111775 (2022). https://doi.org/10.1002/adfm.202111775
- B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang et al., Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 12(46), 2270194 (2022). https://doi.org/10.1002/aenm.202202627
- Z. Deng, L. Xu, H. Qin, X. Li, J. Duan et al., Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing. Adv. Mater. 34(39), 2205064 (2022). https://doi.org/10.1002/adma.202205064
- Q.J. Liang, Q. Zhang, X.Q. Yan, X.Q. Liao, L.H. Han et al., Recyclable and green triboelectric nanogenerator. Adv. Mater. 29(5), 1604961 (2017). https://doi.org/10.1002/adma.201604961
- J.Y. Shen, B. Li, Y.Y. Yang, Z. Yang, X. Liu et al., Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 216, 114595 (2022). https://doi.org/10.1016/j.bios.2022.114595
- Y. Zhou, M. Shen, X. Cui, Y. Shao, L. Li et al., Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 84, 105887 (2021). https://doi.org/10.1016/j.nanoen.2021.105887
- Y. Cao, Y. Yang, X. Qu, B. Shi, L. Xu et al., A self-powered triboelectric hybrid coder for human-machine interaction. Small Methods 6(3), 2101529 (2022). https://doi.org/10.1002/smtd.202101529
- P.C. Zhu, B.S. Zhang, H.Y. Wang, Y.H. Wu, H.J. Cao et al., 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 15, 7460–7467 (2022). https://doi.org/10.1007/s12274-022-4339-x
- Q.Y. Li, W.L. Liu, H.M. Yang, W.C. He, L. Long et al., Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy 90, 106585 (2021). https://doi.org/10.1016/j.nanoen.2021.106585
- H. Yang, Y.K. Pang, T.Z. Bu, W.B. Liu, J.J. Luo et al., Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nat. Commun. 10, 2309 (2019). https://doi.org/10.1038/s41467-019-10298-7
- Z.H. Zhao, D. Liu, Y.H. Li, Z.L. Wang, J. Wang, Direct-current triboelectric nanogenerator based on electrostatic breakdown effect. Nano Energy 102, 107745 (2022). https://doi.org/10.1016/j.nanoen.2022.107745
- D. Liu, L.L. Zhou, Z.L. Wang, J. Wang, Triboelectric nanogenerator: From alternating current to direct current. Iscience 24(1), 102018 (2021). https://doi.org/10.1016/j.isci.2020.102018
- C.C. Shan, W.L. Liu, Z. Wang, X.J. Pu, W.C. He et al., An inverting TENG to realize the ac mode based on the coupling of triboelectrification and air-breakdown. Energy Environ. Sci. 14(10), 5395–5405 (2021). https://doi.org/10.1039/d1ee01641e
- Q.Y. Li, Y.W. Hu, Q.X. Yang, X.C. Li, X.M. Zhang et al., A robust constant-voltage dc triboelectric nanogenerator using the ternary dielectric triboelectrification effect. Adv. Energy Mater. 13(2), 2202921 (2022). https://doi.org/10.1002/aenm.202202921
- W.C. He, W.L. Liu, J. Chen, Z. Wang, Y.K. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
- G.L. Liu, L.F. Xiao, C.Y. Chen, W.L. Liu, X.J. Pu et al., Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 75, 104975 (2020). https://doi.org/10.1016/j.nanoen.2020.104975
- X. Cao, X. Wei, R. Li, Z. Wang, Z. Wu, Thermal-mechanical-electrical energy conversion system based on curie effect and soft-contact rotary triboelectric nanogenerator. Nano Res. 16, 2502 (2022). https://doi.org/10.1007/s12274-022-5056-1
- B. Cheng, Q. Xu, Y. Ding, S. Bai, X. Jia et al., High performance temperature difference triboelectric nanogenerator. Nat. Commun. 12, 4782 (2021). https://doi.org/10.1038/s41467-021-25043-2
- X. Li, X. Yin, Z. Zhao, L. Zhou, D. Liu et al., Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor. Adv. Energy Mater. 10(7), 1903024 (2020). https://doi.org/10.1002/aenm.201903024
- W.L. Liu, Z. Wang, G. Wang, G.L. Liu, J. Chen et al., Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10, 1426 (2019). https://doi.org/10.1038/s41467-019-09464-8
- H.Y. Wu, W.C. He, C.C. Shan, Z. Wang, S.K. Fu et al., Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 34(13), 2109918 (2022). https://doi.org/10.1002/adma.202109918
- W. He, C. Shan, S. Fu, H. Wu, J. Wang et al., Large harvested energy by self-excited liquid suspension triboelectric nanogenerator with optimized charge transportation behavior. Adv. Mater. 35(7), 2209657 (2022). https://doi.org/10.1002/adma.202209657
- Y. Liu, W. Liu, Z. Wang, W. He, Q. Tang et al., Y Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11, 1599 (2020). https://doi.org/10.1038/s41467-020-15368-9
- D. Yang, L. Zhang, N. Luo, Y. Liu, W. Sun et al., Tribological-behaviour-controlled direct-current triboelectric nanogenerator based on the tribovoltaic effect under high contact pressure. Nano Energy 99, 107370 (2022). https://doi.org/10.1016/j.nanoen.2022.107370
- J. Meng, C. Pan, L. Li, Z.H. Guo, F. Xu et al., Durable flexible direct current generation through the tribovoltaic effect in contact-separation mode. Energy Environ. Sci. 15(12), 5159–5167 (2022). https://doi.org/10.1039/d2ee02762c
- H. Wu, S. Wang, Z.K. Wang, Y.L. Zi, Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 12, 5470 (2021). https://doi.org/10.1038/s41467-021-25753-7
- Y. Du, S. Fu, C. Shan, H. Wu, W. He et al., A novel design based on mechanical time-delay switch and charge space accumulation for high output performance direct-current triboelectric nanogenerator. Adv. Funct. Mater. 32(48), 2208783 (2022). https://doi.org/10.1002/adfm.202208783
- Z. Zhao, Y. Dai, D. Liu, L. Zhou, S. Li et al., Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nat. Commun. 11, 6186 (2020). https://doi.org/10.1038/s41467-020-20045-y
- C. Shan, W. He, H. Wu, S. Fu, Q. Tang et al., A high-performance bidirectional direct current TENG by triboelectrification of two dielectrics and local corona discharge. Adv. Energy Mater. 12(25), 2200963 (2022). https://doi.org/10.1002/aenm.202200963
- M. Li, T. Jiang, Y. Ren, H. Jiang, Constant direct current triboelectric nanogenerator based on soft-contact mode for self-powered cathodic protection. Nano Energy 103, 107777 (2022). https://doi.org/10.1016/j.nanoen.2022.107777
- T. Kim, D.Y. Kim, J. Yun, B. Kim, S.H. Lee et al., Direct-current triboelectric nanogenerator via water electrification and phase control. Nano Energy 52, 95–104 (2018). https://doi.org/10.1016/j.nanoen.2018.07.048
- R. Lei, Y. Shi, Y. Ding, J. Nie, S. Li et al., Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 13(7), 2178–2190 (2020). https://doi.org/10.1039/d0ee01236j
- G. Qiao, J. Wang, X. Yu, R. Jia, T. Cheng et al., A bidirectional direct current triboelectric nanogenerator with the mechanical rectifier. Nano Energy 79, 105408 (2021). https://doi.org/10.1016/j.nanoen.2020.105408
- C. Zhang, T. Zhou, W. Tang, C. Han, L. Zhang et al., Rotating-disk-based direct-current triboelectric nanogenerator. Adv. Energy Mater. 4(24), 1301798 (2014). https://doi.org/10.1002/aenm.201301798
- Y. Yang, H. Zhang, Z.L. Wang, Direct-current triboelectric generator. Adv. Funct. Mater. 24(24), 3745–3750 (2014). https://doi.org/10.1002/adfm.201304295
- J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim et al., Direct-current triboelectricity generation by a sliding schottky nanocontact on MoS2 multilayers. Nat. Nanotechnol. 13, 112–116 (2018). https://doi.org/10.1038/s41565-017-0019-5
- H. Ryu, J.H. Lee, U. Khan, S.S. Kwak, R. Hinchet et al., Sustainable direct current powering a triboelectric nanogenerator via a novel asymmetrical design. Energy Environ. Sci. 11(8), 2057–2063 (2018). https://doi.org/10.1039/c8ee00188j
- J. Luo, L. Xu, W. Tang, T. Jiang, F.R. Fan et al., Direct-current triboelectric nanogenerator realized by air breakdown induced ionized air channel. Adv. Energy Mater. 8(27), 1800889 (2018). https://doi.org/10.1002/aenm.201800889
- D. Liu, X. Yin, H. Guo, L. Zhou, X. Li et al., A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5(4), eaav6437 (2019). https://doi.org/10.1126/sciadv.aav6437
- J. Wang, Z. Wu, L. Pan, R. Gao, B. Zhang et al., Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis. ACS Nano 13(2), 2587–2598 (2019). https://doi.org/10.1021/acsnano.8b09642
- C. He, C.B. Han, G.Q. Gu, T. Jiang, B.D. Chen et al., Hourglass triboelectric nanogenerator as a “direct current” power source. Adv. Energy Mater. 7(19), 1700644 (2017). https://doi.org/10.1002/aenm.201700644
- Y. Lu, S. Feng, R. Shen, Y. Xu, Z. Hao et al., Tunable dynamic black Phosphorus/Insulator/Si heterojunction direct-current generator based on the hot electron transport. Research 2019, 5832382 (2019). https://doi.org/10.34133/2019/5832382
- Y. Lu, Q. Gao, X. Yu, H. Zheng, R. Shen et al., Interfacial built-in electric field-driven direct current generator based on dynamic silicon homojunction. Research 2020, 5714754 (2020). https://doi.org/10.34133/2020/5714754
- Y. Lu, Y. Yan, X. Yu, X. Zhou, S. Feng et al., Polarized water driven dynamic PN junction-based direct-current generator. Research 2021, 7505638 (2021). https://doi.org/10.34133/2021/7505638
- W. Qiao, Z. Zhao, L. Zhou, D. Liu, S. Li et al., Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv. Funct. Mater. 32(46), 2208544 (2022). https://doi.org/10.1002/adfm.202208544
- Z. Zhang, Z. Wang, Y. Chen, Y. Feng, S. Dong et al., Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Adv. Mater. 34(20), 2200146 (2022). https://doi.org/10.1002/adma.202200146
- L. Ren, A. Yu, W. Wang, D. Guo, M. Jia et al., p-n junction based direct-current triboelectric nanogenerator by conjunction of tribovoltaic effect and photovoltaic effect. Nano Lett. 21(23), 10099–10106 (2021). https://doi.org/10.1021/acs.nanolett.1c03922
- R. Xu, Q. Zhang, J.Y. Wang, D. Liu, J. Wang et al., Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor. Nano Energy 66, 104185 (2019). https://doi.org/10.1016/j.nanoen.2019.104185
- S. Li, S. Deng, R. Xu, D. Liu, Y. Nan et al., High-frequency mechanical energy harvester with direct current output from chemical potential difference. ACS Energy Lett. 7(9), 3080–3086 (2022). https://doi.org/10.1021/acsenergylett.2c01582
- Z. You, S. Wang, Z. Li, Y. Zou, T. Lu et al., High current output direct-current triboelectric nanogenerator based on organic semiconductor heterojunction. Nano Energy 91, 106667 (2022). https://doi.org/10.1016/j.nanoen.2021.106667
- R. Yang, M. Benner, Z. Guo, C. Zhou, J. Liu, High-performance flexible schottky DC generator via metal/conducting polymer sliding contacts. Adv. Funct. Mater. 31(43), 2103132 (2021). https://doi.org/10.1002/adfm.202103132
- P. Chen, J. An, R. Cheng, S. Shu, A. Berbille et al., Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energy Environ. Sci. 14(8), 4523–4532 (2021). https://doi.org/10.1039/d1ee01382c
- J. Wang, Y. Li, Z. Xie, Y. Xu, J. Zhou et al., Cylindrical direct-current triboelectric nanogenerator with constant output current. Adv. Energy Mater. 10(10), 1904227 (2020). https://doi.org/10.1002/aenm.201904227
- S. Fu, W. He, H. Wu, C. Shan, Y. Du et al., High output performance and ultra-durable dc output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Lett. 14, 155 (2022). https://doi.org/10.1007/s40820-022-00898-2
- H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang et al., High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 28(51), 1805216 (2018). https://doi.org/10.1002/adfm.201805216
- W.H. Xu, H.X. Zheng, Y. Liu, X.F. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
- L. Liu, Z. Zhao, Y. Li, X. Li, D. Liu et al., Achieving ultrahigh effective surface charge density of direct-current triboelectric nanogenerator in high humidity. Small 18(24), 2201402 (2022). https://doi.org/10.1002/smll.202201402
- R. Cheng, C. Ning, P. Chen, F. Sheng, C. Wei et al., Enhanced output of on-body direct-current power textiles by efficient energy management for sustainable working of mobile electronics. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201532
- Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li et al., Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 12, 4686 (2021). https://doi.org/10.1038/s41467-021-25046-z
- L. Zhou, D. Liu, Z. Zhao, S. Li, Y. Liu et al., Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Adv. Energy Mater. 10(45), 2002920 (2020). https://doi.org/10.1002/aenm.202002920
- D. Liu, L. Zhou, S. Li, Z. Zhao, X. Yin et al., Hugely enhanced output power of direct-current triboelectric nanogenerators by using electrostatic breakdown effect. Adv. Mater. Technol. 5(7), 2000289 (2020). https://doi.org/10.1002/admt.202000289
- Z. Yi, D. Liu, L. Zhou, S. Li, Z. Zhao et al., Enhancing output performance of direct-current triboelectric nanogenerator under controlled atmosphere. Nano Energy 84, 105864 (2021). https://doi.org/10.1016/j.nanoen.2021.105864
- Y. Gao, D. Liu, L. Zhou, S. Li, Z. Zhao et al., A robust rolling-mode direct-current triboelectric nanogenerator arising from electrostatic breakdown effect. Nano Energy 85, 106014 (2021). https://doi.org/10.1016/j.nanoen.2021.106014
- W. He, C. Shan, H. Wu, S. Fu, Q. Li et al., Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator. Adv. Energy Mater. 12(31), 2201454 (2022). https://doi.org/10.1002/aenm.202201454
- C. Shan, W. He, H. Wu, S. Fu, G. Li et al., Efficiently utilizing shallow and deep trapped charges on polyester fiber cloth surface by double working mode design for high output and durability TENG. Nano Energy 104, 107968 (2022). https://doi.org/10.1016/j.nanoen.2022.107968
- Q. Zeng, A. Chen, X. Zhang, Y. Luo, L. Tan et al., A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv. Mater. 35(7), 2208139 (2022). https://doi.org/10.1002/adma.202208139
- D. Sun, W. Song, C. Li, T. Chen, D. Zhang et al., High-voltage direct current triboelectric nanogenerator based on charge pump and air ionization for electrospinning. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107599
- Q. Zheng, L. Fang, X. Tang, L. Zheng, H. Li, Indoor air dust removal system based on high-voltage direct current triboelectric nanogenerator. Nano Energy 97, 107183 (2022). https://doi.org/10.1016/j.nanoen.2022.107183
- X. Ding, H. Shao, H. Wang, W. Yang, J. Fang et al., Schottky dc generators with considerable enhanced power output and energy conversion efficiency based on polypyrrole-TiO2 nanocomposite. Nano Energy 89, 106367 (2021). https://doi.org/10.1016/j.nanoen.2021.106367
- Z. Zhang, D. Jiang, J. Zhao, G. Liu, T. Bu et al., Tribovoltaic effect on metal-semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 10(9), 1903713 (2020). https://doi.org/10.1002/aenm.201903713
- J. Zhu, H. Wang, Z. Zhang, Z. Ren, Q. Shi et al., Continuous direct current by charge transportation for next-generation iot and real-time virtual reality applications. Nano Energy 73, 104760 (2020). https://doi.org/10.1016/j.nanoen.2020.104760
- W. Shang, G. Gu, W. Zhang, H. Luo, T. Wang et al., Rotational pulsed triboelectric nanogenerators integrated with synchronously triggered mechanical switches for high efficiency self-powered systems. Nano Energy 82, 105725 (2021). https://doi.org/10.1016/j.nanoen.2020.105725
- C. Chen, H. Guo, L. Chen, Y. Wang, X. Pu et al., Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS Nano 14(4), 4585–4594 (2020). https://doi.org/10.1021/acsnano.0c00138
- G. Li, S. Wu, Z. Sha, Y. Zhou, C. Wang et al., Dual-breakdown direct-current triboelectric nanogenerator with synergistically enhanced performance. Nano Energy 99, 107355 (2022). https://doi.org/10.1016/j.nanoen.2022.107355
- H.J. Yoon, M. Kang, W. Seung, S.S. Kwak, J. Kim et al., Microdischarge-based direct current triboelectric nanogenerator via accumulation of triboelectric charge in atmospheric condition. Adv. Energy Mater. 10(25), 2000730 (2020). https://doi.org/10.1002/aenm.202000730
References
H. Ryu, H.J. Yoon, S.W. Kim, Hybrid energy harvesters: toward sustainable energy harvesting. Adv. Mater. 31(34), 1802898 (2019). https://doi.org/10.1002/adma.201802898
Y. Wang, T. Guo, Z. Tian, K. Bibi, Y.Z. Zhang et al., MXenes for energy harvesting. Adv. Mater. 34(21), 2108560 (2022). https://doi.org/10.1002/adma.202108560
X. Zhao, H. Askari, J. Chen, Nanogenerators for smart cities in the era of 5g and internet of things. Joule 5(6), 1391–1431 (2021). https://doi.org/10.1016/j.joule.2021.03.013
B. Stadlober, M. Zirkl, M. Irimia-Vladu, Route towards sustainable smart sensors: Ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem. Soc. Rev. 48(6), 1787–1825 (2019). https://doi.org/10.1039/c8cs00928g
Y.Y. Ba, J.F. Bao, X.T. Liu, X.W. Li, H.T. Deng et al., Electron-ion coupling mechanism to construct stable output performance nanogenerator. Research 2021, 9817062 (2021). https://doi.org/10.34133/2021/9817062
M. Tamatani, Contact electrification phenomena on phosphor p surfaces. J. Lumin. 100(1–4), 317–323 (2002). https://doi.org/10.1016/s0022-2313(02)00431-3
D.L. Li, C.X. Wu, L. Ruan, J.X. Wang, Z.R. Qiu et al., Electron-transfer mechanisms for confirmation of contact-electrification in zno/polyimide-based triboelectric nanogenerators. Nano Energy 75, 104818 (2020). https://doi.org/10.1016/j.nanoen.2020.104818
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator! Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
X. Zheng, J. Su, X. Wei, T. Jiang, S. Gao et al., Self-powered electrochemistry for the oxidation of organic molecules by a cross-linked triboelectric nanogenerator. Adv. Mater. 28(26), 5188–5194 (2016). https://doi.org/10.1002/adma.201600133
Q. Guan, X. Lu, Y. Chen, H. Zhang, Y. Zheng et al., High-performance liquid crystalline polymer for intrinsic fire-resistant and flexible triboelectric nanogenerators. Adv. Mater. 34(34), 2204543 (2022). https://doi.org/10.1002/adma.202204543
J. Wang, H. Wu, Z. Wang, W. He, C. Shan et al., An ultrafast self-polarization effect in barium titanate filled poly(vinylidene fluoride) composite film enabled by self-charge excitation triboelectric nanogenerator. Adv. Funct. Mater. 32(35), 2204322 (2022). https://doi.org/10.1002/adfm.202204322
H. Wu, S. Fu, W. He, C. Shan, J. Wang et al., Improving and quantifying surface charge density via charge injection enabled by air breakdown. Adv. Funct. Mater. 32(35), 2203884 (2022). https://doi.org/10.1002/adfm.202203884
K. Qin, C. Chen, X. Pu, Q. Tang, W. He et al., Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett. 13, 51 (2021). https://doi.org/10.1007/s40820-020-00575-2
C. Chen, Z. Wen, J. Shi, X. Jian, P. Li et al., Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 11, 4143 (2020). https://doi.org/10.1038/s41467-020-17842-w
Z. Zhang, Q. Yan, Z. Liu, X. Zhao, Z. Wang et al., Flexible mxene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing. Nano Energy 88, 106257 (2021). https://doi.org/10.1016/j.nanoen.2021.106257
G. Li, G. Liu, W. He, L. Long, B. Li et al., Miura folding based charge-excitation triboelectric nanogenerator for potable power supply. Nano Res. 14, 4204–4210 (2021). https://doi.org/10.1007/s12274-021-3401-4
Z.H. Yu, Y.M. Wang, J.Q. Zheng, Y. Xiang, P. Zhao et al., Rapidly fabricated triboelectric nanogenerator employing insoluble and infusible biomass materials by fused deposition modeling. Nano Energy 68, 104382 (2020). https://doi.org/10.1016/j.nanoen.2019.104382
J. Wang, H.Y. Wu, S.K. Fu, G. Li, C.C. Shan et al., Enhancement of output charge density of TENG in high humidity by water molecules induced self-polarization effect on dielectric polymers. Nano Energy 104, 107916 (2022). https://doi.org/10.1016/j.nanoen.2022.107916
S.K. Fu, W.C. He, Q. Tang, Z. Wang, W.L. Liu et al., An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv. Mater. 34(2), 2105882 (2022). https://doi.org/10.1002/adma.202105882
D. Liu, C. Li, P. Chen, X. Zhao, W. Tang et al., Sustainable long-term and wide-area environment monitoring network based on distributed self-powered wireless sensing nodes. Adv. Energy Mater. 13(2), 2202691 (2022). https://doi.org/10.1002/aenm.202202691
J. Yu, S. Qin, H. Zhang, Y. Wei, X. Zhu et al., Fiber-shaped triboiontronic electrochemical transistor. Research 2021, 9840918 (2021). https://doi.org/10.34133/2021/9840918
J. Dong, C. Xu, L. Zhu, X. Zhao, H. Zhou et al., A high voltage direct current droplet-based electricity generator inspired by thunderbolts. Nano Energy 90, 106567 (2021). https://doi.org/10.1016/j.nanoen.2021.106567
Y.M. Zeng, Y. Luo, Y.R. Lu, X. Cao, Self-powered rain droplet sensor based on a liquid–solid triboelectric nanogenerator. Nano Energy 98, 107316 (2022). https://doi.org/10.1016/j.nanoen.2022.107316
L.X. He, C.G. Zhang, B.F. Zhang, O.U. Yang, W. Yuan et al., A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 16(4), 6244–6254 (2022). https://doi.org/10.1021/acsnano.1c11658
A.N. Ravichandran, C. Calmes, J.R. Serres, M. Ramuz, S. Blayac, Compact and high performance wind actuated venturi triboelectric energy harvester. Nano Energy 62, 449–457 (2019). https://doi.org/10.1016/j.nanoen.2019.05.053
C. Zhang, W. Yuan, B. Zhang, O. Yang, Y. Liu et al., High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 32(18), 2111775 (2022). https://doi.org/10.1002/adfm.202111775
B. Cao, P. Wang, P. Rui, X. Wei, Z. Wang et al., Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 12(46), 2270194 (2022). https://doi.org/10.1002/aenm.202202627
Z. Deng, L. Xu, H. Qin, X. Li, J. Duan et al., Rationally structured triboelectric nanogenerator arrays for harvesting water-current energy and self-powered sensing. Adv. Mater. 34(39), 2205064 (2022). https://doi.org/10.1002/adma.202205064
Q.J. Liang, Q. Zhang, X.Q. Yan, X.Q. Liao, L.H. Han et al., Recyclable and green triboelectric nanogenerator. Adv. Mater. 29(5), 1604961 (2017). https://doi.org/10.1002/adma.201604961
J.Y. Shen, B. Li, Y.Y. Yang, Z. Yang, X. Liu et al., Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 216, 114595 (2022). https://doi.org/10.1016/j.bios.2022.114595
Y. Zhou, M. Shen, X. Cui, Y. Shao, L. Li et al., Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 84, 105887 (2021). https://doi.org/10.1016/j.nanoen.2021.105887
Y. Cao, Y. Yang, X. Qu, B. Shi, L. Xu et al., A self-powered triboelectric hybrid coder for human-machine interaction. Small Methods 6(3), 2101529 (2022). https://doi.org/10.1002/smtd.202101529
P.C. Zhu, B.S. Zhang, H.Y. Wang, Y.H. Wu, H.J. Cao et al., 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 15, 7460–7467 (2022). https://doi.org/10.1007/s12274-022-4339-x
Q.Y. Li, W.L. Liu, H.M. Yang, W.C. He, L. Long et al., Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy 90, 106585 (2021). https://doi.org/10.1016/j.nanoen.2021.106585
H. Yang, Y.K. Pang, T.Z. Bu, W.B. Liu, J.J. Luo et al., Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nat. Commun. 10, 2309 (2019). https://doi.org/10.1038/s41467-019-10298-7
Z.H. Zhao, D. Liu, Y.H. Li, Z.L. Wang, J. Wang, Direct-current triboelectric nanogenerator based on electrostatic breakdown effect. Nano Energy 102, 107745 (2022). https://doi.org/10.1016/j.nanoen.2022.107745
D. Liu, L.L. Zhou, Z.L. Wang, J. Wang, Triboelectric nanogenerator: From alternating current to direct current. Iscience 24(1), 102018 (2021). https://doi.org/10.1016/j.isci.2020.102018
C.C. Shan, W.L. Liu, Z. Wang, X.J. Pu, W.C. He et al., An inverting TENG to realize the ac mode based on the coupling of triboelectrification and air-breakdown. Energy Environ. Sci. 14(10), 5395–5405 (2021). https://doi.org/10.1039/d1ee01641e
Q.Y. Li, Y.W. Hu, Q.X. Yang, X.C. Li, X.M. Zhang et al., A robust constant-voltage dc triboelectric nanogenerator using the ternary dielectric triboelectrification effect. Adv. Energy Mater. 13(2), 2202921 (2022). https://doi.org/10.1002/aenm.202202921
W.C. He, W.L. Liu, J. Chen, Z. Wang, Y.K. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
G.L. Liu, L.F. Xiao, C.Y. Chen, W.L. Liu, X.J. Pu et al., Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 75, 104975 (2020). https://doi.org/10.1016/j.nanoen.2020.104975
X. Cao, X. Wei, R. Li, Z. Wang, Z. Wu, Thermal-mechanical-electrical energy conversion system based on curie effect and soft-contact rotary triboelectric nanogenerator. Nano Res. 16, 2502 (2022). https://doi.org/10.1007/s12274-022-5056-1
B. Cheng, Q. Xu, Y. Ding, S. Bai, X. Jia et al., High performance temperature difference triboelectric nanogenerator. Nat. Commun. 12, 4782 (2021). https://doi.org/10.1038/s41467-021-25043-2
X. Li, X. Yin, Z. Zhao, L. Zhou, D. Liu et al., Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor. Adv. Energy Mater. 10(7), 1903024 (2020). https://doi.org/10.1002/aenm.201903024
W.L. Liu, Z. Wang, G. Wang, G.L. Liu, J. Chen et al., Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10, 1426 (2019). https://doi.org/10.1038/s41467-019-09464-8
H.Y. Wu, W.C. He, C.C. Shan, Z. Wang, S.K. Fu et al., Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 34(13), 2109918 (2022). https://doi.org/10.1002/adma.202109918
W. He, C. Shan, S. Fu, H. Wu, J. Wang et al., Large harvested energy by self-excited liquid suspension triboelectric nanogenerator with optimized charge transportation behavior. Adv. Mater. 35(7), 2209657 (2022). https://doi.org/10.1002/adma.202209657
Y. Liu, W. Liu, Z. Wang, W. He, Q. Tang et al., Y Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11, 1599 (2020). https://doi.org/10.1038/s41467-020-15368-9
D. Yang, L. Zhang, N. Luo, Y. Liu, W. Sun et al., Tribological-behaviour-controlled direct-current triboelectric nanogenerator based on the tribovoltaic effect under high contact pressure. Nano Energy 99, 107370 (2022). https://doi.org/10.1016/j.nanoen.2022.107370
J. Meng, C. Pan, L. Li, Z.H. Guo, F. Xu et al., Durable flexible direct current generation through the tribovoltaic effect in contact-separation mode. Energy Environ. Sci. 15(12), 5159–5167 (2022). https://doi.org/10.1039/d2ee02762c
H. Wu, S. Wang, Z.K. Wang, Y.L. Zi, Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 12, 5470 (2021). https://doi.org/10.1038/s41467-021-25753-7
Y. Du, S. Fu, C. Shan, H. Wu, W. He et al., A novel design based on mechanical time-delay switch and charge space accumulation for high output performance direct-current triboelectric nanogenerator. Adv. Funct. Mater. 32(48), 2208783 (2022). https://doi.org/10.1002/adfm.202208783
Z. Zhao, Y. Dai, D. Liu, L. Zhou, S. Li et al., Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nat. Commun. 11, 6186 (2020). https://doi.org/10.1038/s41467-020-20045-y
C. Shan, W. He, H. Wu, S. Fu, Q. Tang et al., A high-performance bidirectional direct current TENG by triboelectrification of two dielectrics and local corona discharge. Adv. Energy Mater. 12(25), 2200963 (2022). https://doi.org/10.1002/aenm.202200963
M. Li, T. Jiang, Y. Ren, H. Jiang, Constant direct current triboelectric nanogenerator based on soft-contact mode for self-powered cathodic protection. Nano Energy 103, 107777 (2022). https://doi.org/10.1016/j.nanoen.2022.107777
T. Kim, D.Y. Kim, J. Yun, B. Kim, S.H. Lee et al., Direct-current triboelectric nanogenerator via water electrification and phase control. Nano Energy 52, 95–104 (2018). https://doi.org/10.1016/j.nanoen.2018.07.048
R. Lei, Y. Shi, Y. Ding, J. Nie, S. Li et al., Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 13(7), 2178–2190 (2020). https://doi.org/10.1039/d0ee01236j
G. Qiao, J. Wang, X. Yu, R. Jia, T. Cheng et al., A bidirectional direct current triboelectric nanogenerator with the mechanical rectifier. Nano Energy 79, 105408 (2021). https://doi.org/10.1016/j.nanoen.2020.105408
C. Zhang, T. Zhou, W. Tang, C. Han, L. Zhang et al., Rotating-disk-based direct-current triboelectric nanogenerator. Adv. Energy Mater. 4(24), 1301798 (2014). https://doi.org/10.1002/aenm.201301798
Y. Yang, H. Zhang, Z.L. Wang, Direct-current triboelectric generator. Adv. Funct. Mater. 24(24), 3745–3750 (2014). https://doi.org/10.1002/adfm.201304295
J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim et al., Direct-current triboelectricity generation by a sliding schottky nanocontact on MoS2 multilayers. Nat. Nanotechnol. 13, 112–116 (2018). https://doi.org/10.1038/s41565-017-0019-5
H. Ryu, J.H. Lee, U. Khan, S.S. Kwak, R. Hinchet et al., Sustainable direct current powering a triboelectric nanogenerator via a novel asymmetrical design. Energy Environ. Sci. 11(8), 2057–2063 (2018). https://doi.org/10.1039/c8ee00188j
J. Luo, L. Xu, W. Tang, T. Jiang, F.R. Fan et al., Direct-current triboelectric nanogenerator realized by air breakdown induced ionized air channel. Adv. Energy Mater. 8(27), 1800889 (2018). https://doi.org/10.1002/aenm.201800889
D. Liu, X. Yin, H. Guo, L. Zhou, X. Li et al., A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5(4), eaav6437 (2019). https://doi.org/10.1126/sciadv.aav6437
J. Wang, Z. Wu, L. Pan, R. Gao, B. Zhang et al., Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis. ACS Nano 13(2), 2587–2598 (2019). https://doi.org/10.1021/acsnano.8b09642
C. He, C.B. Han, G.Q. Gu, T. Jiang, B.D. Chen et al., Hourglass triboelectric nanogenerator as a “direct current” power source. Adv. Energy Mater. 7(19), 1700644 (2017). https://doi.org/10.1002/aenm.201700644
Y. Lu, S. Feng, R. Shen, Y. Xu, Z. Hao et al., Tunable dynamic black Phosphorus/Insulator/Si heterojunction direct-current generator based on the hot electron transport. Research 2019, 5832382 (2019). https://doi.org/10.34133/2019/5832382
Y. Lu, Q. Gao, X. Yu, H. Zheng, R. Shen et al., Interfacial built-in electric field-driven direct current generator based on dynamic silicon homojunction. Research 2020, 5714754 (2020). https://doi.org/10.34133/2020/5714754
Y. Lu, Y. Yan, X. Yu, X. Zhou, S. Feng et al., Polarized water driven dynamic PN junction-based direct-current generator. Research 2021, 7505638 (2021). https://doi.org/10.34133/2021/7505638
W. Qiao, Z. Zhao, L. Zhou, D. Liu, S. Li et al., Simultaneously enhancing direct-current density and lifetime of tribovotaic nanogenerator via interface lubrication. Adv. Funct. Mater. 32(46), 2208544 (2022). https://doi.org/10.1002/adfm.202208544
Z. Zhang, Z. Wang, Y. Chen, Y. Feng, S. Dong et al., Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Adv. Mater. 34(20), 2200146 (2022). https://doi.org/10.1002/adma.202200146
L. Ren, A. Yu, W. Wang, D. Guo, M. Jia et al., p-n junction based direct-current triboelectric nanogenerator by conjunction of tribovoltaic effect and photovoltaic effect. Nano Lett. 21(23), 10099–10106 (2021). https://doi.org/10.1021/acs.nanolett.1c03922
R. Xu, Q. Zhang, J.Y. Wang, D. Liu, J. Wang et al., Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor. Nano Energy 66, 104185 (2019). https://doi.org/10.1016/j.nanoen.2019.104185
S. Li, S. Deng, R. Xu, D. Liu, Y. Nan et al., High-frequency mechanical energy harvester with direct current output from chemical potential difference. ACS Energy Lett. 7(9), 3080–3086 (2022). https://doi.org/10.1021/acsenergylett.2c01582
Z. You, S. Wang, Z. Li, Y. Zou, T. Lu et al., High current output direct-current triboelectric nanogenerator based on organic semiconductor heterojunction. Nano Energy 91, 106667 (2022). https://doi.org/10.1016/j.nanoen.2021.106667
R. Yang, M. Benner, Z. Guo, C. Zhou, J. Liu, High-performance flexible schottky DC generator via metal/conducting polymer sliding contacts. Adv. Funct. Mater. 31(43), 2103132 (2021). https://doi.org/10.1002/adfm.202103132
P. Chen, J. An, R. Cheng, S. Shu, A. Berbille et al., Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energy Environ. Sci. 14(8), 4523–4532 (2021). https://doi.org/10.1039/d1ee01382c
J. Wang, Y. Li, Z. Xie, Y. Xu, J. Zhou et al., Cylindrical direct-current triboelectric nanogenerator with constant output current. Adv. Energy Mater. 10(10), 1904227 (2020). https://doi.org/10.1002/aenm.201904227
S. Fu, W. He, H. Wu, C. Shan, Y. Du et al., High output performance and ultra-durable dc output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Lett. 14, 155 (2022). https://doi.org/10.1007/s40820-022-00898-2
H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang et al., High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Funct. Mater. 28(51), 1805216 (2018). https://doi.org/10.1002/adfm.201805216
W.H. Xu, H.X. Zheng, Y. Liu, X.F. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
L. Liu, Z. Zhao, Y. Li, X. Li, D. Liu et al., Achieving ultrahigh effective surface charge density of direct-current triboelectric nanogenerator in high humidity. Small 18(24), 2201402 (2022). https://doi.org/10.1002/smll.202201402
R. Cheng, C. Ning, P. Chen, F. Sheng, C. Wei et al., Enhanced output of on-body direct-current power textiles by efficient energy management for sustainable working of mobile electronics. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202201532
Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li et al., Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 12, 4686 (2021). https://doi.org/10.1038/s41467-021-25046-z
L. Zhou, D. Liu, Z. Zhao, S. Li, Y. Liu et al., Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Adv. Energy Mater. 10(45), 2002920 (2020). https://doi.org/10.1002/aenm.202002920
D. Liu, L. Zhou, S. Li, Z. Zhao, X. Yin et al., Hugely enhanced output power of direct-current triboelectric nanogenerators by using electrostatic breakdown effect. Adv. Mater. Technol. 5(7), 2000289 (2020). https://doi.org/10.1002/admt.202000289
Z. Yi, D. Liu, L. Zhou, S. Li, Z. Zhao et al., Enhancing output performance of direct-current triboelectric nanogenerator under controlled atmosphere. Nano Energy 84, 105864 (2021). https://doi.org/10.1016/j.nanoen.2021.105864
Y. Gao, D. Liu, L. Zhou, S. Li, Z. Zhao et al., A robust rolling-mode direct-current triboelectric nanogenerator arising from electrostatic breakdown effect. Nano Energy 85, 106014 (2021). https://doi.org/10.1016/j.nanoen.2021.106014
W. He, C. Shan, H. Wu, S. Fu, Q. Li et al., Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator. Adv. Energy Mater. 12(31), 2201454 (2022). https://doi.org/10.1002/aenm.202201454
C. Shan, W. He, H. Wu, S. Fu, G. Li et al., Efficiently utilizing shallow and deep trapped charges on polyester fiber cloth surface by double working mode design for high output and durability TENG. Nano Energy 104, 107968 (2022). https://doi.org/10.1016/j.nanoen.2022.107968
Q. Zeng, A. Chen, X. Zhang, Y. Luo, L. Tan et al., A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs. Adv. Mater. 35(7), 2208139 (2022). https://doi.org/10.1002/adma.202208139
D. Sun, W. Song, C. Li, T. Chen, D. Zhang et al., High-voltage direct current triboelectric nanogenerator based on charge pump and air ionization for electrospinning. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107599
Q. Zheng, L. Fang, X. Tang, L. Zheng, H. Li, Indoor air dust removal system based on high-voltage direct current triboelectric nanogenerator. Nano Energy 97, 107183 (2022). https://doi.org/10.1016/j.nanoen.2022.107183
X. Ding, H. Shao, H. Wang, W. Yang, J. Fang et al., Schottky dc generators with considerable enhanced power output and energy conversion efficiency based on polypyrrole-TiO2 nanocomposite. Nano Energy 89, 106367 (2021). https://doi.org/10.1016/j.nanoen.2021.106367
Z. Zhang, D. Jiang, J. Zhao, G. Liu, T. Bu et al., Tribovoltaic effect on metal-semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 10(9), 1903713 (2020). https://doi.org/10.1002/aenm.201903713
J. Zhu, H. Wang, Z. Zhang, Z. Ren, Q. Shi et al., Continuous direct current by charge transportation for next-generation iot and real-time virtual reality applications. Nano Energy 73, 104760 (2020). https://doi.org/10.1016/j.nanoen.2020.104760
W. Shang, G. Gu, W. Zhang, H. Luo, T. Wang et al., Rotational pulsed triboelectric nanogenerators integrated with synchronously triggered mechanical switches for high efficiency self-powered systems. Nano Energy 82, 105725 (2021). https://doi.org/10.1016/j.nanoen.2020.105725
C. Chen, H. Guo, L. Chen, Y. Wang, X. Pu et al., Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS Nano 14(4), 4585–4594 (2020). https://doi.org/10.1021/acsnano.0c00138
G. Li, S. Wu, Z. Sha, Y. Zhou, C. Wang et al., Dual-breakdown direct-current triboelectric nanogenerator with synergistically enhanced performance. Nano Energy 99, 107355 (2022). https://doi.org/10.1016/j.nanoen.2022.107355
H.J. Yoon, M. Kang, W. Seung, S.S. Kwak, J. Kim et al., Microdischarge-based direct current triboelectric nanogenerator via accumulation of triboelectric charge in atmospheric condition. Adv. Energy Mater. 10(25), 2000730 (2020). https://doi.org/10.1002/aenm.202000730