High Output Performance and Ultra-Durable DC Output for Triboelectric Nanogenerator Inspired by Primary Cell
Corresponding Author: Chenguo Hu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 155
Abstract
Triboelectric nanogenerator (TENG) is regarded as an effective strategy to convert environment mechanical energy into electricity to meet the distributed energy demand of large number of sensors in the Internet of Things (IoTs). Although TENG based on the coupling of triboelectrification and air-breakdown achieves a large direct current (DC) output, material abrasion is a bottleneck for its applications. Here, inspired by primary cell and its DC signal output characteristics, we propose a novel primary cell structure TENG (PC-TENG) based on contact electrification and electrostatic induction, which has multiple working modes, including contact separation mode, freestanding mode and rotation mode. The PC-TENG produces DC output and operates at low surface contact force. It has an ideal effective charge density (1.02 mC m−2). Meanwhile, the PC-TENG shows a superior durability with 99% initial output after 100,000 operating cycles. Due to its excellent output performance and durability, a variety of commercial electronic devices are powered by PC-TENG via harvesting wind energy. This work offers a facile and ideal scheme for enhancing the electrical output performance of DC-TENG at low surface contact force and shows a great potential for the energy harvesting applications in IoTs.
Highlights:
1 A novel structure of the PC-TENG based on triboelectrification and electrostatic induction is designed.
2 The PC-TENG produce ideal direct current output for driving small electronic devices directly even at low surface contact force.
3 The novel PC-TENG owns a high durability and high output performance due to low wear of materials.
4 The R-PC-TENG can efficiently harvest ambient mechanical energy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.S. Alrowaijeh, M.R. Hajj, Autonomous self-powered water meter. Appl. Phys. Lett. 113(3), 033902 (2018). https://doi.org/10.1063/1.5040712
- Q. Shi, Z. Sun, Z. Zhang, C. Lee, Triboelectric nanogenerators and hybridized systems for enabling next-generation iot applications. Research 2021, 6849171 (2021). https://doi.org/10.34133/2021/6849171
- M. Talal, A.A. Zaidan, B.B. Zaidan, A.S. Albahri, A.H. Alamoodi et al., Smart home-based iot for real-time and secure remote health monitoring of triage and priority system using body sensors: multi-driven systematic review. J. Med. Syst. 43(3), 42 (2019). https://doi.org/10.1007/s10916-019-1158-z
- Z.L. Wang, Entropy theory of distributed energy for internet of things. Nano Energy 58, 669–672 (2019). https://doi.org/10.1016/j.nanoen.2019.02.012
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085
- J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), 2004178 (2021). https://doi.org/10.1002/adma.202004178
- M.L. Seol, S.B. Jeon, J.W. Han, Y.K. Choi, Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017). https://doi.org/10.1016/j.nanoen.2016.11.038
- J. Chen, Z.L. Wang, Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1(3), 480–521 (2017). https://doi.org/10.1016/j.joule.2017.09.004
- J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai et al., Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25(42), 6094–6099 (2013). https://doi.org/10.1002/adma.201302397
- R. Li, H. Zhang, L. Wang, G. Liu, A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations. Sensors 21(4), 1514 (2021). https://doi.org/10.3390/s21041514
- P. Chen, J. An, S. Shu, R. Cheng, J. Nie et al., Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv. Energy Mater. 11(9), 2003066 (2021). https://doi.org/10.1002/aenm.202003066
- S. Fu, W. He, Q. Tang, Z. Wang, W. Liu et al., An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv. Mater. 34(2), 2105882 (2022). https://doi.org/10.1002/adma.202105882
- Y. Zhang, Q. Zeng, Y. Wu, J. Wu, S. Yuan et al., An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 12, 175 (2020). https://doi.org/10.1007/s40820-020-00513-2
- B. Chen, Y. Yang, Z.L. Wang, Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8(10), 1702649 (2018). https://doi.org/10.1002/aenm.201702649
- L. Long, W. Liu, Z. Wang, W. He, G. Li et al., High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 12, 4689 (2021). https://doi.org/10.1038/s41467-021-25047-y
- Y. Fang, X.F. Wang, S.M. Niu, S.M. Li, Y.J. Yin et al., A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2(6), 1501624 (2017). https://doi.org/10.1126/sciadv.1501624
- X.J. Pu, H.Y Guo, J. Chen, Y. Meng, M.H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
- D. Jiang, C. Zhang, G. Liu, W. Li, T. Bu et al., A leaf-shaped triboelectric nanogenerator for multiple ambient mechanical energy harvesting. IEEE Trans. Power Electron. 35(1), 25–32 (2020). https://doi.org/10.1109/tpel.2019.2921152
- Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/c4fd00159a
- Z.H. Ren, Z.X. Zhang, J.X. Wei, H.B. Wang, B.W. Dong et al., Machine learning augmented voc identification by mid-infrared nanoantennas with microfluidics chambers. In: 2021 21st International Solid-State Sensors Actuators and Microsystems Conference, 389–392 (2021) https://doi.org/10.1109/TRANSDUCERS50396.2021.9495761
- Q. Li, W. Liu, H. Yang, W. He, L. Long et al., Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy 90, 106585 (2021). https://doi.org/10.1016/j.nanoen.2021.106585
- Y. Liu, W. Liu, Z. Wang, W. He, Q. Tang et al., Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11, 1599 (2020). https://doi.org/10.1038/s41467-020-15368-9
- J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han et al., Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10, 5147 (2019). https://doi.org/10.1038/s41467-019-13166-6
- H. Wu, W. He, C. Shan, Z. Wang, S. Fu et al., Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 34(13), 2109918 (2022). https://doi.org/10.1002/adma.202109918
- H.Wang, J.X. Zhu, T.Y.Y He, Z.X. Zhang, C.K. Lee, Programmed-triboelectric nanogenerators-A multi-switch regulation methodology for energy manipulation. Nano Energy 78, 105241(2020). https://doi.org/10.1016/j.nanoen.2020.105241
- D. Liu, X. Yin, H.Y. Guo, L.L Zhou, X.Y. Li et al., A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5(4), eaav6437 (2019). https://doi.org/10.1126/sciadv.aav6437
- C. Shan, W. Liu, Z. Wang, X. Pu, W. He et al., An inverting teng to realize the ac mode based on the coupling of triboelectrification and air-breakdown. Energy Environ. Sci. 14(10), 5395–5405 (2021). https://doi.org/10.1039/d1ee01641e
- S. Xu, H. Guo, S.L. Zhang, L. Jin, W. Ding et al., Theoretical investigation of air breakdown direct current triboelectric nanogenerator. Appl. Phys. Lett. 116(26), 263901 (2020). https://doi.org/10.1063/5.0011539
- Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li et al., Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 12, 4686 (2021). https://doi.org/10.1038/s41467-021-25046-z
- J.H. Song, K. Xu, N. Liu, D. Reed, X.L. Li, Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 45, 191–212 (2021). https://doi.org/10.1016/j.mattod.2020.12.003
- K.H. Purohit, S. Emrani, S. Rodriguez, S.S. Liaw, L. Pham et al., A microfluidic galvanic cell on a single layer of paper. J. Power Sourc. 318, 163–169 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.109
- Y. Wang, X. Qiao, C. Zhang, X.Y. Zhou, Self-discharge of a hybrid supercapacitor with incorporated galvanic cell components. Energy 159, 1035–1045 (2018). https://doi.org/10.1016/j.energy.2018.06.170
- W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
- G. Qiao, J. Wang, X. Yu, R. Jia, T. Cheng et al., A bidirectional direct current triboelectric nanogenerator with the mechanical rectifier. Nano Energy 79, 105408 (2021). https://doi.org/10.1016/j.nanoen.2020.105408
- J.X. Zhu, H. Wang, Z.X. Zhang, Z.H. Ren, Q.F. Shi et al., Continuous direct current by charge transportation for next-generation IoT and real-time virtual reality applications. Nano Energy 73, 104760 (2020). https://doi.org/10.1016/j.nanoen.2020.104760
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- M. Bi, S. Wang, X. Wang, X. Ye, Freestanding-electret rotary generator at an average conversion efficiency of 56%: theoretical and experimental studies. Nano Energy 41, 434–442 (2017). https://doi.org/10.1016/j.nanoen.2017.09.057
- S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25(43), 6184–6193 (2013). https://doi.org/10.1002/adma.201302808
- Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing et al., Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 6599–6607 (2014). https://doi.org/10.1002/adma.201402428
- Y.S. Zhou, S. Li, S. Niu, Z.L. Wang, Effect of contact and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 9(12), 3705–3713 (2016). https://doi.org/10.1007/s12274-016-1241-4
References
J.S. Alrowaijeh, M.R. Hajj, Autonomous self-powered water meter. Appl. Phys. Lett. 113(3), 033902 (2018). https://doi.org/10.1063/1.5040712
Q. Shi, Z. Sun, Z. Zhang, C. Lee, Triboelectric nanogenerators and hybridized systems for enabling next-generation iot applications. Research 2021, 6849171 (2021). https://doi.org/10.34133/2021/6849171
M. Talal, A.A. Zaidan, B.B. Zaidan, A.S. Albahri, A.H. Alamoodi et al., Smart home-based iot for real-time and secure remote health monitoring of triage and priority system using body sensors: multi-driven systematic review. J. Med. Syst. 43(3), 42 (2019). https://doi.org/10.1007/s10916-019-1158-z
Z.L. Wang, Entropy theory of distributed energy for internet of things. Nano Energy 58, 669–672 (2019). https://doi.org/10.1016/j.nanoen.2019.02.012
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085
J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), 2004178 (2021). https://doi.org/10.1002/adma.202004178
M.L. Seol, S.B. Jeon, J.W. Han, Y.K. Choi, Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017). https://doi.org/10.1016/j.nanoen.2016.11.038
J. Chen, Z.L. Wang, Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1(3), 480–521 (2017). https://doi.org/10.1016/j.joule.2017.09.004
J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai et al., Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25(42), 6094–6099 (2013). https://doi.org/10.1002/adma.201302397
R. Li, H. Zhang, L. Wang, G. Liu, A contact-mode triboelectric nanogenerator for energy harvesting from marine pipe vibrations. Sensors 21(4), 1514 (2021). https://doi.org/10.3390/s21041514
P. Chen, J. An, S. Shu, R. Cheng, J. Nie et al., Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv. Energy Mater. 11(9), 2003066 (2021). https://doi.org/10.1002/aenm.202003066
S. Fu, W. He, Q. Tang, Z. Wang, W. Liu et al., An ultrarobust and high-performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation. Adv. Mater. 34(2), 2105882 (2022). https://doi.org/10.1002/adma.202105882
Y. Zhang, Q. Zeng, Y. Wu, J. Wu, S. Yuan et al., An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 12, 175 (2020). https://doi.org/10.1007/s40820-020-00513-2
B. Chen, Y. Yang, Z.L. Wang, Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8(10), 1702649 (2018). https://doi.org/10.1002/aenm.201702649
L. Long, W. Liu, Z. Wang, W. He, G. Li et al., High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 12, 4689 (2021). https://doi.org/10.1038/s41467-021-25047-y
Y. Fang, X.F. Wang, S.M. Niu, S.M. Li, Y.J. Yin et al., A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2(6), 1501624 (2017). https://doi.org/10.1126/sciadv.1501624
X.J. Pu, H.Y Guo, J. Chen, Y. Meng, M.H. Yeh et al., A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3(20), eaat2516 (2018). https://doi.org/10.1126/scirobotics.aat2516
D. Jiang, C. Zhang, G. Liu, W. Li, T. Bu et al., A leaf-shaped triboelectric nanogenerator for multiple ambient mechanical energy harvesting. IEEE Trans. Power Electron. 35(1), 25–32 (2020). https://doi.org/10.1109/tpel.2019.2921152
Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/c4fd00159a
Z.H. Ren, Z.X. Zhang, J.X. Wei, H.B. Wang, B.W. Dong et al., Machine learning augmented voc identification by mid-infrared nanoantennas with microfluidics chambers. In: 2021 21st International Solid-State Sensors Actuators and Microsystems Conference, 389–392 (2021) https://doi.org/10.1109/TRANSDUCERS50396.2021.9495761
Q. Li, W. Liu, H. Yang, W. He, L. Long et al., Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy 90, 106585 (2021). https://doi.org/10.1016/j.nanoen.2021.106585
Y. Liu, W. Liu, Z. Wang, W. He, Q. Tang et al., Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11, 1599 (2020). https://doi.org/10.1038/s41467-020-15368-9
J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han et al., Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10, 5147 (2019). https://doi.org/10.1038/s41467-019-13166-6
H. Wu, W. He, C. Shan, Z. Wang, S. Fu et al., Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 34(13), 2109918 (2022). https://doi.org/10.1002/adma.202109918
H.Wang, J.X. Zhu, T.Y.Y He, Z.X. Zhang, C.K. Lee, Programmed-triboelectric nanogenerators-A multi-switch regulation methodology for energy manipulation. Nano Energy 78, 105241(2020). https://doi.org/10.1016/j.nanoen.2020.105241
D. Liu, X. Yin, H.Y. Guo, L.L Zhou, X.Y. Li et al., A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 5(4), eaav6437 (2019). https://doi.org/10.1126/sciadv.aav6437
C. Shan, W. Liu, Z. Wang, X. Pu, W. He et al., An inverting teng to realize the ac mode based on the coupling of triboelectrification and air-breakdown. Energy Environ. Sci. 14(10), 5395–5405 (2021). https://doi.org/10.1039/d1ee01641e
S. Xu, H. Guo, S.L. Zhang, L. Jin, W. Ding et al., Theoretical investigation of air breakdown direct current triboelectric nanogenerator. Appl. Phys. Lett. 116(26), 263901 (2020). https://doi.org/10.1063/5.0011539
Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li et al., Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 12, 4686 (2021). https://doi.org/10.1038/s41467-021-25046-z
J.H. Song, K. Xu, N. Liu, D. Reed, X.L. Li, Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 45, 191–212 (2021). https://doi.org/10.1016/j.mattod.2020.12.003
K.H. Purohit, S. Emrani, S. Rodriguez, S.S. Liaw, L. Pham et al., A microfluidic galvanic cell on a single layer of paper. J. Power Sourc. 318, 163–169 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.109
Y. Wang, X. Qiao, C. Zhang, X.Y. Zhou, Self-discharge of a hybrid supercapacitor with incorporated galvanic cell components. Energy 159, 1035–1045 (2018). https://doi.org/10.1016/j.energy.2018.06.170
W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
G. Qiao, J. Wang, X. Yu, R. Jia, T. Cheng et al., A bidirectional direct current triboelectric nanogenerator with the mechanical rectifier. Nano Energy 79, 105408 (2021). https://doi.org/10.1016/j.nanoen.2020.105408
J.X. Zhu, H. Wang, Z.X. Zhang, Z.H. Ren, Q.F. Shi et al., Continuous direct current by charge transportation for next-generation IoT and real-time virtual reality applications. Nano Energy 73, 104760 (2020). https://doi.org/10.1016/j.nanoen.2020.104760
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
M. Bi, S. Wang, X. Wang, X. Ye, Freestanding-electret rotary generator at an average conversion efficiency of 56%: theoretical and experimental studies. Nano Energy 41, 434–442 (2017). https://doi.org/10.1016/j.nanoen.2017.09.057
S. Niu, Y. Liu, S. Wang, L. Lin, Y.S. Zhou et al., Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 25(43), 6184–6193 (2013). https://doi.org/10.1002/adma.201302808
Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing et al., Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 6599–6607 (2014). https://doi.org/10.1002/adma.201402428
Y.S. Zhou, S. Li, S. Niu, Z.L. Wang, Effect of contact and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Res. 9(12), 3705–3713 (2016). https://doi.org/10.1007/s12274-016-1241-4