Oxygen-Containing Functional Groups Regulating the Carbon/Electrolyte Interfacial Properties Toward Enhanced K+ Storage
Corresponding Author: Aiping Hu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 192
Abstract
Oxygen-containing functional groups were found to effectively boost the K+ storage performance of carbonaceous materials, however, the mechanism behind the performance enhancement remains unclear. Herein, we report higher rate capability and better long-term cycle performance employing oxygen-doped graphite oxide (GO) as the anode material for potassium ion batteries (PIBs), compared to the raw graphite. The in situ Raman spectroscopy elucidates the adsorption-intercalation hybrid K+ storage mechanism, assigning the capacity enhancement to be mainly correlated with reversible K+ adsorption/desorption at the newly introduced oxygen sites. It is unraveled that the C=O and COOH rather than C-O-C and OH groups contribute to the capacity enhancement. Based on in situ Fourier transform infrared (FT-IR) spectra and in situ electrochemical impedance spectroscopy (EIS), it is found that the oxygen-containing functional groups regulate the components of solid electrolyte interphase (SEI), leading to the formation of highly conductive, intact and robust SEI. Through the systematic investigations, we hereby uncover the K+ storage mechanism of GO-based PIB, and establish a clear relationship between the types/contents of oxygen functional groups and the regulated composition of SEI.
Highlights:
1 Oxygen functional groups improve rate capability as well as long-term cycling stability of graphite oxide.
2 The adsorption-intercalation hybrid K+ storage mechanism of graphite oxide (GO) is elucidated by in situ Raman spectroscopy and systematic electrochemical characterization.
3 It is unraveled that the C = O and COOH rather than C-O-C and OH groups contribute to the formation of highly conductive, intact and robust solid electrolyte interphase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Li, Y. Li, Y. Ye, R. Guo, A. Wang et al., Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 15(4), 6872–6885 (2021). https://doi.org/10.1021/acsnano.0c10624
- Y. Li, K. Xiao, C. Huang, J. Wang, M. Gao et al., Enhanced potassium-ion storage of the 3d carbon superstructure by manipulating the nitrogen-doped species and morphology. Nano-Micro Lett. 13(1), 1 (2020). https://doi.org/10.1007/s40820-020-00525-y
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
- W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
- Y. Xu, J. Ruan, Y. Pang, H. Sun, C. Liang et al., Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 13(1), 14 (2020). https://doi.org/10.1007/s40820-020-00524-z
- M. Chen, Y. Cao, C. Ma, H. Yang, A n/s/o-tridoped hard carbon network anode from mercaptan/polyurethane-acrylate resin for potassium-ion batteries. Nano Energy 81, 105640 (2021). https://doi.org/10.1016/j.nanoen.2020.105640
- J. Gong, G. Zhao, J. Feng, Y. An, T. Li et al., Controllable phosphorylation strategy for free-standing phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 14(10), 14057–14069 (2020). https://doi.org/10.1021/acsnano.0c06690
- W.H. Choi, C.H. Lee, H.-E. Kim, S.U. Lee, J.H. Bang, Designing a high-performance nitrogen-doped titanium dioxide anode material for lithium-ion batteries by unravelling the nitrogen doping effect. Nano Energy 74, 104829 (2020). https://doi.org/10.1016/j.nanoen.2020.104829
- Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu et al., Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020). https://doi.org/10.1016/j.ensm.2020.07.027
- J.-M. Jeong, S.H. Park, H.J. Park, S.B. Jin, S.G. Son et al., Alternative-ultrathin assembling of exfoliated manganese dioxide and nitrogen-doped carbon layers for high-mass-loading supercapacitors with outstanding capacitance and impressive rate capability. Adv. Funct. Mater. 31(17), 2009632 (2021). https://doi.org/10.1002/adfm.202009632
- Y.-N. Zhou, W.-L. Yu, Y.-N. Cao, J. Zhao, B. Dong et al., S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B: Environ. 292, 120150 (2021). https://doi.org/10.1016/j.apcatb.2021.120150
- W. Yang, J. Zhou, S. Wang, Z. Wang, F. Lv et al., A three-dimensional carbon framework constructed by n/s co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 5(5), 1653–1661 (2020). https://doi.org/10.1021/acsenergylett.0c00413
- Y. Peng, R. Zhang, B. Fan, W. Li, Z. Chen et al., Optimized kinetics match and charge balance toward potassium ion hybrid capacitors with ultrahigh energy and power densities. Small 16(42), 2003724 (2020). https://doi.org/10.1002/smll.202003724
- F. Xu, Y. Zhai, E. Zhang, Q. Liu, G. Jiang et al., Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched n-doped porous carbon nanosheets. Angew. Chem. Int. Ed. 59(44), 19460–19467 (2020). https://doi.org/10.1002/anie.202005118
- X. Lu, W.-L. Yim, B.H.R. Suryanto, C. Zhao, Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 137(8), 2901–2907 (2015). https://doi.org/10.1021/ja509879r
- J. Zhang, W. Lv, D. Zheng, Q. Liang, D.-W. Wang et al., The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 8(11), 1702395 (2018). https://doi.org/10.1002/aenm.201702395
- Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan et al., In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 29(18), 1606207 (2017). https://doi.org/10.1002/adma.201606207
- H.R. Byon, B.M. Gallant, S.W. Lee, Y. Shao-Horn, Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv. Funct. Mater. 23(8), 1037–1045 (2013). https://doi.org/10.1002/adfm.201200697
- B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou et al., What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ Sci. 4(8), 2826–2830 (2011). https://doi.org/10.1039/C1EE01198G
- W. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu et al., A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv. Mater. 27(23), 3572–3578 (2015). https://doi.org/10.1002/adma.201500707
- A.K. Nanjundan, R.R. Gaddam, A.H. Farokh Niaei, P.K. Annamalai, D.P. Dubal et al., Potassium-ion storage in cellulose-derived hard carbon: The role of functional groups. Batteries Supercaps. 3(9), 953–960 (2020). https://doi.org/10.1002/batt.202000116
- X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2010). https://doi.org/10.1021/jp909284g
- S. Alvin, H.S. Cahyadi, J. Hwang, W. Chang, S.K. Kwak et al., Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 10(20), 2000283 (2020). https://doi.org/10.1002/aenm.202000283
- A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla et al., Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2(7), 581–587 (2010). https://doi.org/10.1038/nchem.686
- D. Xiong, X. Li, H. Shan, B. Yan, L. Dong et al., Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries. J. Mater. Chem. A 3(21), 11376–11386 (2015). https://doi.org/10.1039/C5TA01574J
- K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec et al., Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 30(15), e1705789 (2018). https://doi.org/10.1002/adma.201705789
- L. Fan, R. Ma, Q. Zhang, X. Jia, B. Lu, Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 58(31), 10500–10505 (2019). https://doi.org/10.1002/anie.201904258
- F. Shi, P.N. Ross, H. Zhao, G. Liu, G.A. Somorjai et al., A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-fourier transform infrared spectroscopy. J. Am. Chem. Soc. 137(9), 3181–3184 (2015). https://doi.org/10.1021/ja5128456
- M. Matsui, S. Deguchi, H. Kuwata, N. Imanishi, In-operando ftir spectroscopy for composite electrodes of lithium-ion batteries. Electrochemistry 83(10), 874–878 (2015). https://doi.org/10.5796/electrochemistry.83.874
- G.G. Eshetu, T. Diemant, S. Grugeon, R.J. Behm, S. Laruelle et al., In-depth interfacial chemistry and reactivity focused investigation of lithium–imide- and lithium–imidazole-based electrolytes. ACS Appl. Mater. Interfaces 8(25), 16087–16100 (2016). https://doi.org/10.1021/acsami.6b04406
- H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9), 2653–2659 (2009). https://doi.org/10.1021/nn900227d
- A. Le Comte, Y. Reynier, C. Vincens, C. Leys, P. Azaïs, First prototypes of hybrid potassium-ion capacitor (kic): An innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 363, 34–43 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.005
- L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30(20), e1800804 (2018). https://doi.org/10.1002/adma.201800804
- Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui et al., Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 4(6), 1394–1401 (2019). https://doi.org/10.1039/C9NH00211A
- M. Xu, Y. Feng, B. Chen, R. Meng, M. Xia et al., Armoring black phosphorus anode with stable metal–organic-framework layer for hybrid k-ion capacitors. Nano-Micro Lett. 13(1), 42 (2021). https://doi.org/10.1007/s40820-020-00570-7
- H.V. Ramasamy, B. Senthilkumar, P. Barpanda, Y.-S. Lee, Superior potassium-ion hybrid capacitor based on novel p3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode. Chem. Eng. J. 368, 235–243 (2019). https://doi.org/10.1016/j.cej.2019.02.172
- S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
- Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn et al., High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5), 4319–4327 (2012). https://doi.org/10.1021/nn300920e
- H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen et al., Self-assembled Nb2O5 nanosheets for high energy–high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
- A. Chojnacka, X. Pan, P. Jeżowski, F. Béguin, High performance hybrid sodium-ion capacitor with tin phosphide used as battery-type negative electrode. Energy Storage Mater. 22, 200–206 (2019). https://doi.org/10.1016/j.ensm.2019.07.016
References
L. Li, Y. Li, Y. Ye, R. Guo, A. Wang et al., Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 15(4), 6872–6885 (2021). https://doi.org/10.1021/acsnano.0c10624
Y. Li, K. Xiao, C. Huang, J. Wang, M. Gao et al., Enhanced potassium-ion storage of the 3d carbon superstructure by manipulating the nitrogen-doped species and morphology. Nano-Micro Lett. 13(1), 1 (2020). https://doi.org/10.1007/s40820-020-00525-y
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015). https://doi.org/10.1021/acs.nanolett.5b03667
Y. Xu, J. Ruan, Y. Pang, H. Sun, C. Liang et al., Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 13(1), 14 (2020). https://doi.org/10.1007/s40820-020-00524-z
M. Chen, Y. Cao, C. Ma, H. Yang, A n/s/o-tridoped hard carbon network anode from mercaptan/polyurethane-acrylate resin for potassium-ion batteries. Nano Energy 81, 105640 (2021). https://doi.org/10.1016/j.nanoen.2020.105640
J. Gong, G. Zhao, J. Feng, Y. An, T. Li et al., Controllable phosphorylation strategy for free-standing phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 14(10), 14057–14069 (2020). https://doi.org/10.1021/acsnano.0c06690
W.H. Choi, C.H. Lee, H.-E. Kim, S.U. Lee, J.H. Bang, Designing a high-performance nitrogen-doped titanium dioxide anode material for lithium-ion batteries by unravelling the nitrogen doping effect. Nano Energy 74, 104829 (2020). https://doi.org/10.1016/j.nanoen.2020.104829
Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu et al., Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020). https://doi.org/10.1016/j.ensm.2020.07.027
J.-M. Jeong, S.H. Park, H.J. Park, S.B. Jin, S.G. Son et al., Alternative-ultrathin assembling of exfoliated manganese dioxide and nitrogen-doped carbon layers for high-mass-loading supercapacitors with outstanding capacitance and impressive rate capability. Adv. Funct. Mater. 31(17), 2009632 (2021). https://doi.org/10.1002/adfm.202009632
Y.-N. Zhou, W.-L. Yu, Y.-N. Cao, J. Zhao, B. Dong et al., S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B: Environ. 292, 120150 (2021). https://doi.org/10.1016/j.apcatb.2021.120150
W. Yang, J. Zhou, S. Wang, Z. Wang, F. Lv et al., A three-dimensional carbon framework constructed by n/s co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 5(5), 1653–1661 (2020). https://doi.org/10.1021/acsenergylett.0c00413
Y. Peng, R. Zhang, B. Fan, W. Li, Z. Chen et al., Optimized kinetics match and charge balance toward potassium ion hybrid capacitors with ultrahigh energy and power densities. Small 16(42), 2003724 (2020). https://doi.org/10.1002/smll.202003724
F. Xu, Y. Zhai, E. Zhang, Q. Liu, G. Jiang et al., Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched n-doped porous carbon nanosheets. Angew. Chem. Int. Ed. 59(44), 19460–19467 (2020). https://doi.org/10.1002/anie.202005118
X. Lu, W.-L. Yim, B.H.R. Suryanto, C. Zhao, Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 137(8), 2901–2907 (2015). https://doi.org/10.1021/ja509879r
J. Zhang, W. Lv, D. Zheng, Q. Liang, D.-W. Wang et al., The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 8(11), 1702395 (2018). https://doi.org/10.1002/aenm.201702395
Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan et al., In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 29(18), 1606207 (2017). https://doi.org/10.1002/adma.201606207
H.R. Byon, B.M. Gallant, S.W. Lee, Y. Shao-Horn, Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv. Funct. Mater. 23(8), 1037–1045 (2013). https://doi.org/10.1002/adfm.201200697
B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou et al., What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ Sci. 4(8), 2826–2830 (2011). https://doi.org/10.1039/C1EE01198G
W. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu et al., A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv. Mater. 27(23), 3572–3578 (2015). https://doi.org/10.1002/adma.201500707
A.K. Nanjundan, R.R. Gaddam, A.H. Farokh Niaei, P.K. Annamalai, D.P. Dubal et al., Potassium-ion storage in cellulose-derived hard carbon: The role of functional groups. Batteries Supercaps. 3(9), 953–960 (2020). https://doi.org/10.1002/batt.202000116
X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2010). https://doi.org/10.1021/jp909284g
S. Alvin, H.S. Cahyadi, J. Hwang, W. Chang, S.K. Kwak et al., Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 10(20), 2000283 (2020). https://doi.org/10.1002/aenm.202000283
A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla et al., Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2(7), 581–587 (2010). https://doi.org/10.1038/nchem.686
D. Xiong, X. Li, H. Shan, B. Yan, L. Dong et al., Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries. J. Mater. Chem. A 3(21), 11376–11386 (2015). https://doi.org/10.1039/C5TA01574J
K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec et al., Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 30(15), e1705789 (2018). https://doi.org/10.1002/adma.201705789
L. Fan, R. Ma, Q. Zhang, X. Jia, B. Lu, Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 58(31), 10500–10505 (2019). https://doi.org/10.1002/anie.201904258
F. Shi, P.N. Ross, H. Zhao, G. Liu, G.A. Somorjai et al., A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-fourier transform infrared spectroscopy. J. Am. Chem. Soc. 137(9), 3181–3184 (2015). https://doi.org/10.1021/ja5128456
M. Matsui, S. Deguchi, H. Kuwata, N. Imanishi, In-operando ftir spectroscopy for composite electrodes of lithium-ion batteries. Electrochemistry 83(10), 874–878 (2015). https://doi.org/10.5796/electrochemistry.83.874
G.G. Eshetu, T. Diemant, S. Grugeon, R.J. Behm, S. Laruelle et al., In-depth interfacial chemistry and reactivity focused investigation of lithium–imide- and lithium–imidazole-based electrolytes. ACS Appl. Mater. Interfaces 8(25), 16087–16100 (2016). https://doi.org/10.1021/acsami.6b04406
H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9), 2653–2659 (2009). https://doi.org/10.1021/nn900227d
A. Le Comte, Y. Reynier, C. Vincens, C. Leys, P. Azaïs, First prototypes of hybrid potassium-ion capacitor (kic): An innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 363, 34–43 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.005
L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30(20), e1800804 (2018). https://doi.org/10.1002/adma.201800804
Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui et al., Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 4(6), 1394–1401 (2019). https://doi.org/10.1039/C9NH00211A
M. Xu, Y. Feng, B. Chen, R. Meng, M. Xia et al., Armoring black phosphorus anode with stable metal–organic-framework layer for hybrid k-ion capacitors. Nano-Micro Lett. 13(1), 42 (2021). https://doi.org/10.1007/s40820-020-00570-7
H.V. Ramasamy, B. Senthilkumar, P. Barpanda, Y.-S. Lee, Superior potassium-ion hybrid capacitor based on novel p3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode. Chem. Eng. J. 368, 235–243 (2019). https://doi.org/10.1016/j.cej.2019.02.172
S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 10(18), 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn et al., High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6(5), 4319–4327 (2012). https://doi.org/10.1021/nn300920e
H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen et al., Self-assembled Nb2O5 nanosheets for high energy–high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988
A. Chojnacka, X. Pan, P. Jeżowski, F. Béguin, High performance hybrid sodium-ion capacitor with tin phosphide used as battery-type negative electrode. Energy Storage Mater. 22, 200–206 (2019). https://doi.org/10.1016/j.ensm.2019.07.016