MOFs-Based Nitric Oxide Therapy for Tendon Regeneration
Corresponding Author: Shiyi Chen
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 23
Abstract
Tendon regeneration is still a great challenge due to its avascular structure and low self-renewal capability. The nitric oxide (NO) therapy emerges as a promising treatment for inducing the regeneration of injured tendon by angiogenesis. Here, in this study, a system that NO-loaded metal–organic frameworks (MOFs) encapsulated in polycaprolactone (PCL)/gelatin (Gel) aligned coaxial scaffolds (NMPGA) is designed and prepared for tendon repair. In this system, NO is able to be released in vitro at a slow and stable average speed of 1.67 nM h−1 as long as 15 d without a burst release stage in the initial 48 h. Furthermore, NMPGA can not only improve the tubular formation capability of endothelial cells in vitro but also obviously increase the blood perfusion near the injured tendon in vivo, leading to accelerating the maturity of collagen and recovery of biomechanical strength of the regenerated tendon tissue. As a NO-loaded MOFs therapeutic system, NMPGA can promote tendon regeneration in a shorter healing period with better biomechanical properties in comparison with control group by angiogenesis. Therefore, this study not only provides a promising scaffold for tendon regeneration, but also paves a new way to develop a NO-based therapy for biomedical application in the future.
Highlights:
1 A system that NO-loaded metal–organic frameworks encapsulated in PCL/Gel aligned coaxial scaffold is successfully constructed.
2 The system enables to release NO slowly (1.67 nM h−1) and stably in a long period (15 d) without a burst release in the initial 48 h.
3 The scaffold can promote the regeneration of the injured tendon with maturer collagen fibers and better mechanical properties by angiogenesis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Nourissat, F. Berenbaum, D. Duprez, Tendon injury: from biology to tendon repair. Nat. Rev. Rheumatol. 11, 223–233 (2015). https://doi.org/10.1038/nrrheum.2015.26
- D. Gaspar, K. Spanoudes, C. Holladay, A. Pandit, D. Zeugolis, Progress in cell-based therapies for tendon repair. Adv. Drug Deliv. Rev. 84, 240–256 (2015). https://doi.org/10.1016/j.addr.2014.11.023
- H. Tempfer, A. Traweger, Tendon vasculature in health and disease. Front. Physiol. 6, 1–7 (2015). https://doi.org/10.3389/fphys.2015.00330
- J. Cui, Z. Chen, W. Wu, Expression of TGF-β1 and VEGF in patients with Achilles tendon rupture and the clinical efficacy. Exp. Ther. Med. 18, 3502–3508 (2019). https://doi.org/10.3892/etm.2019.7968
- S.A. Fenwick, B.L. Hazleman, G.P. Riley, The vasculature and its role in the damaged and healing tendon. Arthritis Res. Ther. 4, 252 (2002). https://doi.org/10.1186/ar416
- P. Kumar, S. Kumar, E.P. Udupa, U. Kumar, P. Rao, T. Honnegowda, Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast. Aesthetic Res. 2, 243 (2015). https://doi.org/10.4103/2347-9264.165438
- W.W. Li, K. Talcott, A. Zhai, E.A. Kruger, V.W. Li, The role of therapeutic angiogenesis in tissue repair and regeneration. Adv. Skin Wound Care. 18, 501–502 (2005). https://doi.org/10.1097/00129334-200511000-00014
- W.F. Mao, Y.F. Wu, Q.Q. Yang, Y.L. Zhou, X.T. Wang, P.Y. Liu, J.B. Tang, Modulation of digital flexor tendon healing by vascular endothelial growth factor gene transfection in a chicken model. Gene Ther. 24, 234–240 (2017). https://doi.org/10.1038/gt.2017.12
- J.-F. Kaux, L. Janssen, P. Drion, B. Nusgens, V. Libertiaux et al., Vascular endothelial growth factor-111 (VEGF-111) and tendon healing: preliminary results in a rat model of tendon injury. Muscle Ligaments Tendons J. 04, 24 (2019). https://doi.org/10.32098/mltj.01.2014.05
- P. Praxitelous, G. Edman, P.W. Ackermann, Microcirculation after Achilles tendon rupture correlates with functional and patient-reported outcomes. Scand. J. Med. Sci. Sports 28, 294–302 (2018). https://doi.org/10.1111/sms.12892
- G. Han, L.N. Nguyen, C. MacHerla, Y. Chi, J.M. Friedman, J.D. Nosanchuk, L.R. Martinez, Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am. J. Pathol. 180, 1465–1473 (2012). https://doi.org/10.1016/j.ajpath.2011.12.013
- M.J. Malone-Povolny, S.E. Maloney, M.H. Schoenfisch, Nitric oxide therapy for diabetic wound healing. Adv. Healthc. Mater. 8, 1801210 (2019). https://doi.org/10.1002/adhm.201801210
- H. Yu, L.-X. Cui, N. Huang, Z.-L. Yang, Recent developments in nitric oxide-releasing biomaterials for biomedical applications. Med. Gas Res. 9, 184–191 (2019). https://doi.org/10.4103/2045-9912.273956
- X. Zhou, J. Zhang, G. Feng, J. Shen, D. Kong, Q. Zhao, Nitric oxide-releasing biomaterials for biomedical applications. Curr. Med. Chem. 23, 2579–2601 (2016). https://doi.org/10.2174/0929867323666160729104647
- X. Zhou, H. Wang, J. Zhang, X. Li, Y. Wu et al., Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomater. 54, 128–137 (2017). https://doi.org/10.1016/j.actbio.2017.03.011
- H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.-C. Zhou, Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 21, 108–121 (2018). https://doi.org/10.1016/j.mattod.2017.07.006
- J. Xiao, S. Chen, J. Yi, H.F. Zhang, G.A. Ameer, A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv. Funct. Mater. 27, 1604872 (2017). https://doi.org/10.1002/adfm.201604872
- Y. Sun, L. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 12, 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
- J. Della Rocca, D. Liu, W. Lin, Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011). https://doi.org/10.1021/ar200028a
- H. Xie, Y. Kang, Role of copper in angiogenesis and its medicinal implications. Curr. Med. Chem. 16, 1304–1314 (2009). https://doi.org/10.2174/092986709787846622
- K. Peikert, L.J. McCormick, D. Cattaneo, M.J. Duncan, F. Hoffmann et al., Tuning the nitric oxide release behavior of amino functionalized HKUST-1. Microporous Mesoporous Mater. 216, 118–126 (2015). https://doi.org/10.1016/j.micromeso.2015.06.020
- M.J. Ingleson, R. Heck, J.A. Gould, M.J. Rosseinsky, Nitric oxide chemisorption in a postsynthetically modified metal−organic framework. Inorg. Chem. 48, 9986–9988 (2009). https://doi.org/10.1021/ic9015977
- D. Sheng, J. Li, C. Ai, S. Feng, T. Ying et al., Electrospun PCL/Gel-aligned scaffolds enhance the biomechanical strength in tendon repair. J. Mater. Chem. B 7, 4801–4810 (2019). https://doi.org/10.1039/c9tb00837c
- L.H. Wee, M.R. Lohe, N. Janssens, S. Kaskel, J.A. Martens, Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22, 13742 (2012). https://doi.org/10.1039/c2jm31536j
- Y. Wang, X. Huang, F. He, Mechanism and role of nitric oxide signaling in periodontitis. Exp. Ther. Med. 18, 3929–3935 (2019). https://doi.org/10.3892/etm.2019.8044
- D.L. Butler, C. Gooch, K.R. Kinneberg, G.P. Boivin, M.T. Galloway et al., The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons. Nat. Protoc. 5, 849–863 (2010). https://doi.org/10.1038/nprot.2010.14
- M. Butler, A. Perperidis, J.L.M. Zahra, N. Silva, M. Averkiou et al., Differentiation of vascular characteristics using contrast-enhanced ultrasound imaging. Ultrasound Med. Biol. 45, 2444–2455 (2019). https://doi.org/10.1016/j.ultrasmedbio.2019.05.015
- L. Rich, P. Whittaker, Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz J. Morphol. Sci. 22, 97–104 (2005). https://www.jms.periodikos.com.br/article/587cb4587f8c9d0d058b460c
- Z.-Q. Li, L.-G. Qiu, T. Xu, Y. Wu, W. Wang, Z.-Y. Wu, X. Jiang, Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater. Lett. 63, 78–80 (2009). https://doi.org/10.1016/j.matlet.2008.09.010
- X. Cui, X. Sun, L. Liu, Q. Huang, H. Yang et al., In-situ fabrication of cellulose foam HKUST-1 and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides. Chem. Eng. J. 369, 898–907 (2019). https://doi.org/10.1016/j.cej.2019.03.129
- A. Lowe, P. Chittajallu, Q. Gong, J. Li, K.J. Balkus, Storage and delivery of nitric oxide via diazeniumdiolated metal organic framework. Microporous Mesoporous Mater. 181, 17–22 (2013). https://doi.org/10.1016/j.micromeso.2013.07.017
- A. Lowe, W. Deng, D.W. Smith, K.J. Balkus, Acrylonitrile-based nitric oxide releasing melt-spun fibers for enhanced wound healing. Macromolecules 45, 5894–5900 (2012). https://doi.org/10.1021/ma300913w
- X. Ren, Y. Han, J. Wang, Y. Jiang, Z. Yi, H. Xu, Q. Ke, An aligned porous electrospun fibrous membrane with controlled drug delivery—an efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater. 70, 140–153 (2018). https://doi.org/10.1016/j.actbio.2018.02.010
- C. Ai, D. Sheng, J. Chen, J. Cai, S. Wang, J. Jiang, S. Chen, Surface modification of vascular endothelial growth factor-loaded silk fibroin to improve biological performance of ultra-high-molecular-weight polyethylene via promoting angiogenesis. Int. J. Nanomedicine 10, 7737–7750 (2017). https://doi.org/10.2147/IJN.S148845
- S. Jing, D. Jiang, S. Wen, J. Wang, C. Yang, Preparation and characterization of collagen/silica composite scaffolds for peripheral nerve regeneration. J. Porous Mater. 21, 699–708 (2014). https://doi.org/10.1007/s10934-014-9817-4
- F. Lv, J. Wang, P. Xu, Y. Han, H. Ma et al., A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater. 60, 128–143 (2017). https://doi.org/10.1016/j.actbio.2017.07.020
- S. Lee, D.M. Hailey, A.R. Lea, Tensile strength requirements for sutures. J. Pharm. Pharmacol. 35, 65–69 (1983). https://doi.org/10.1111/j.2042-7158.1983.tb04271.x
- T. Yang, A.N. Zelikin, R. Chandrawati, Progress and promise of nitric oxide-releasing platforms. Adv. Sci. 5, 1701043 (2018). https://doi.org/10.1002/advs.201701043
- P.N. Coneski, M.H. Schoenfisch, Nitric oxide release: Part III Measurement and reporting. Chem. Soc. Rev. 41, 3753 (2012). https://doi.org/10.1039/c2cs15271a
- D.D. Thomas, L.A. Ridnour, M.G. Espey, S. Donzelli, S. Ambs et al., Superoxide fluxes limit nitric oxide-induced signaling. J. Biol. Chem. 281, 25984–25993 (2006). https://doi.org/10.1074/jbc.M602242200
- J. Xiao, Y. Zhu, S. Huddleston, P. Li, B. Xiao, O.K. Farha, G.A. Ameer, Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 12, 1023–1032 (2018). https://doi.org/10.1021/acsnano.7b01850
- V. Coger, N. Million, C. Rehbock, B. Sures, M. Nachev et al., Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biol. Trace Elem. Res. 191, 167–176 (2019). https://doi.org/10.1007/s12011-018-1600-y
- A.P. Kornblatt, V.G. Nicoletti, A. Travaglia, The neglected role of copper ions in wound healing. J. Inorg. Biochem. 161, 1–8 (2016). https://doi.org/10.1016/j.jinorgbio.2016.02.012
- L.A. Bosworth, S. Downes, Physicochemical characterisation of degrading polycaprolactone scaffolds. Polym. Degrad. Stab. 95, 2269–2276 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.09.007
- F. Kabirian, P. Brouki Milan, A. Zamanian, R. Heying, M. Mozafari, Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration. Acta Biomater. 92, 82–91 (2019). https://doi.org/10.1016/j.actbio.2019.05.002
- H.J. Bogaard, S. Mizuno, C. Guignabert, A.A. Al Hussaini, D. Farkas et al., Copper dependence of angioproliferation in pulmonary arterial hypertension in rats and humans. Am. J. Respir. Cell Mol. Biol. 46, 582–591 (2012). https://doi.org/10.1165/rcmb.2011-0296OC
- H. Li, J. Chang, Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater. 9, 5379–5389 (2013). https://doi.org/10.1016/j.actbio.2012.10.019
- C. Greis, Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS). Clin. Hemorheol. Microcirc. 49, 137–149 (2011). https://doi.org/10.3233/CH-2011-1464
- C. La Torre, B. Cinque, F. Lombardi, G. Miconi, P. Palumbo et al., Nitric oxide chemical donor affects the early phases of in vitro wound healing process. J. Cell. Physiol. 231, 2185–2195 (2016). https://doi.org/10.1002/jcp.25331
- K. Ghimire, H.M. Altmann, A.C. Straub, J.S. Isenberg, Nitric oxide: what’s new to NO? Am. J. Physiol. Cell Physiol. 312, C254–C262 (2017). https://doi.org/10.1152/ajpcell.00315.2016
- O. Sulaieva, J.L. Wallace, Gaseous mediator-based anti-inflammatory drugs. Curr. Opin. Pharmacol. 25, 1–6 (2015). https://doi.org/10.1016/j.coph.2015.08.005
- L.C.U. Junqueira, W. Cossermelli, R. Brentani, Differential staining of collagens type I, II and III by sirius red and polarization microscopy. Arch. Histol. Jpn. 41, 267–274 (1978). https://doi.org/10.1679/aohc1950.41.267
- F.E.-Z.E.-D. Yassin, R. El-Dawela, M. Kerim, Picrosirius red staining assessment of collagen after dermal roller application: a minimally invasive percutaneous collagen induction therapy. Indian J. Dermatopathol. Diagnostic Dermatology 1, 68 (2014). https://doi.org/10.4103/2349-6029.147289
- N. Zerbinati, A. Calligaro, Calcium hydroxylapatite treatment of human skin: evidence of collagen turnover through picrosirius red staining and circularly polarized microscopy. Clin. Cosmet. Investig. Dermatol. 11, 29–35 (2018). https://doi.org/10.2147/CCID.S143015
- B. Patel, Z. Xu, C.B. Pinnock, L.S. Kabbani, M.T. Lam, Self-assembled collagen-fibrin hydrogel reinforces tissue engineered adventitia vessels seeded with human fibroblasts. Sci. Rep. 8, 1–13 (2018). https://doi.org/10.1038/s41598-018-21681-7
- S. Muszyński, E. Tomaszewska, M. Kwiecień, P. Dobrowolski, A. Tomczyk-Warunek, Subsequent somatic axis and bone tissue metabolism responses to a low-zinc diet with or without phytase inclusion in broiler chickens. PLoS ONE 13, 1–21 (2018). https://doi.org/10.1371/journal.pone.0191964
- N.D. Reeves, G. Cooper, Is human Achilles tendon deformation greater in regions where cross-sectional area is smaller? J. Exp. Biol. 220, 1634–1642 (2017). https://doi.org/10.1242/jeb.157289
- G. Fessel, C. Gerber, J.G. Snedeker, Potential of collagen cross-linking therapies to mediate tendon mechanical properties. J. Shoulder Elb. Surg. 21, 209–217 (2012). https://doi.org/10.1016/j.jse.2011.10.002
- S. Kato, M. Saito, H. Funasaki, K. Marumo, Distinctive collagen maturation process in fibroblasts derived from rabbit anterior cruciate ligament, medial collateral ligament, and patellar tendon in vitro. Kenee Surg. Sport. Traumatol. Arthrosc. 23, 1384–1392 (2015). https://doi.org/10.1007/s00167-013-2773-8
References
G. Nourissat, F. Berenbaum, D. Duprez, Tendon injury: from biology to tendon repair. Nat. Rev. Rheumatol. 11, 223–233 (2015). https://doi.org/10.1038/nrrheum.2015.26
D. Gaspar, K. Spanoudes, C. Holladay, A. Pandit, D. Zeugolis, Progress in cell-based therapies for tendon repair. Adv. Drug Deliv. Rev. 84, 240–256 (2015). https://doi.org/10.1016/j.addr.2014.11.023
H. Tempfer, A. Traweger, Tendon vasculature in health and disease. Front. Physiol. 6, 1–7 (2015). https://doi.org/10.3389/fphys.2015.00330
J. Cui, Z. Chen, W. Wu, Expression of TGF-β1 and VEGF in patients with Achilles tendon rupture and the clinical efficacy. Exp. Ther. Med. 18, 3502–3508 (2019). https://doi.org/10.3892/etm.2019.7968
S.A. Fenwick, B.L. Hazleman, G.P. Riley, The vasculature and its role in the damaged and healing tendon. Arthritis Res. Ther. 4, 252 (2002). https://doi.org/10.1186/ar416
P. Kumar, S. Kumar, E.P. Udupa, U. Kumar, P. Rao, T. Honnegowda, Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast. Aesthetic Res. 2, 243 (2015). https://doi.org/10.4103/2347-9264.165438
W.W. Li, K. Talcott, A. Zhai, E.A. Kruger, V.W. Li, The role of therapeutic angiogenesis in tissue repair and regeneration. Adv. Skin Wound Care. 18, 501–502 (2005). https://doi.org/10.1097/00129334-200511000-00014
W.F. Mao, Y.F. Wu, Q.Q. Yang, Y.L. Zhou, X.T. Wang, P.Y. Liu, J.B. Tang, Modulation of digital flexor tendon healing by vascular endothelial growth factor gene transfection in a chicken model. Gene Ther. 24, 234–240 (2017). https://doi.org/10.1038/gt.2017.12
J.-F. Kaux, L. Janssen, P. Drion, B. Nusgens, V. Libertiaux et al., Vascular endothelial growth factor-111 (VEGF-111) and tendon healing: preliminary results in a rat model of tendon injury. Muscle Ligaments Tendons J. 04, 24 (2019). https://doi.org/10.32098/mltj.01.2014.05
P. Praxitelous, G. Edman, P.W. Ackermann, Microcirculation after Achilles tendon rupture correlates with functional and patient-reported outcomes. Scand. J. Med. Sci. Sports 28, 294–302 (2018). https://doi.org/10.1111/sms.12892
G. Han, L.N. Nguyen, C. MacHerla, Y. Chi, J.M. Friedman, J.D. Nosanchuk, L.R. Martinez, Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am. J. Pathol. 180, 1465–1473 (2012). https://doi.org/10.1016/j.ajpath.2011.12.013
M.J. Malone-Povolny, S.E. Maloney, M.H. Schoenfisch, Nitric oxide therapy for diabetic wound healing. Adv. Healthc. Mater. 8, 1801210 (2019). https://doi.org/10.1002/adhm.201801210
H. Yu, L.-X. Cui, N. Huang, Z.-L. Yang, Recent developments in nitric oxide-releasing biomaterials for biomedical applications. Med. Gas Res. 9, 184–191 (2019). https://doi.org/10.4103/2045-9912.273956
X. Zhou, J. Zhang, G. Feng, J. Shen, D. Kong, Q. Zhao, Nitric oxide-releasing biomaterials for biomedical applications. Curr. Med. Chem. 23, 2579–2601 (2016). https://doi.org/10.2174/0929867323666160729104647
X. Zhou, H. Wang, J. Zhang, X. Li, Y. Wu et al., Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomater. 54, 128–137 (2017). https://doi.org/10.1016/j.actbio.2017.03.011
H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.-C. Zhou, Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 21, 108–121 (2018). https://doi.org/10.1016/j.mattod.2017.07.006
J. Xiao, S. Chen, J. Yi, H.F. Zhang, G.A. Ameer, A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes. Adv. Funct. Mater. 27, 1604872 (2017). https://doi.org/10.1002/adfm.201604872
Y. Sun, L. Zheng, Y. Yang, X. Qian, T. Fu et al., Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 12, 103 (2020). https://doi.org/10.1007/s40820-020-00423-3
J. Della Rocca, D. Liu, W. Lin, Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011). https://doi.org/10.1021/ar200028a
H. Xie, Y. Kang, Role of copper in angiogenesis and its medicinal implications. Curr. Med. Chem. 16, 1304–1314 (2009). https://doi.org/10.2174/092986709787846622
K. Peikert, L.J. McCormick, D. Cattaneo, M.J. Duncan, F. Hoffmann et al., Tuning the nitric oxide release behavior of amino functionalized HKUST-1. Microporous Mesoporous Mater. 216, 118–126 (2015). https://doi.org/10.1016/j.micromeso.2015.06.020
M.J. Ingleson, R. Heck, J.A. Gould, M.J. Rosseinsky, Nitric oxide chemisorption in a postsynthetically modified metal−organic framework. Inorg. Chem. 48, 9986–9988 (2009). https://doi.org/10.1021/ic9015977
D. Sheng, J. Li, C. Ai, S. Feng, T. Ying et al., Electrospun PCL/Gel-aligned scaffolds enhance the biomechanical strength in tendon repair. J. Mater. Chem. B 7, 4801–4810 (2019). https://doi.org/10.1039/c9tb00837c
L.H. Wee, M.R. Lohe, N. Janssens, S. Kaskel, J.A. Martens, Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. J. Mater. Chem. 22, 13742 (2012). https://doi.org/10.1039/c2jm31536j
Y. Wang, X. Huang, F. He, Mechanism and role of nitric oxide signaling in periodontitis. Exp. Ther. Med. 18, 3929–3935 (2019). https://doi.org/10.3892/etm.2019.8044
D.L. Butler, C. Gooch, K.R. Kinneberg, G.P. Boivin, M.T. Galloway et al., The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons. Nat. Protoc. 5, 849–863 (2010). https://doi.org/10.1038/nprot.2010.14
M. Butler, A. Perperidis, J.L.M. Zahra, N. Silva, M. Averkiou et al., Differentiation of vascular characteristics using contrast-enhanced ultrasound imaging. Ultrasound Med. Biol. 45, 2444–2455 (2019). https://doi.org/10.1016/j.ultrasmedbio.2019.05.015
L. Rich, P. Whittaker, Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz J. Morphol. Sci. 22, 97–104 (2005). https://www.jms.periodikos.com.br/article/587cb4587f8c9d0d058b460c
Z.-Q. Li, L.-G. Qiu, T. Xu, Y. Wu, W. Wang, Z.-Y. Wu, X. Jiang, Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater. Lett. 63, 78–80 (2009). https://doi.org/10.1016/j.matlet.2008.09.010
X. Cui, X. Sun, L. Liu, Q. Huang, H. Yang et al., In-situ fabrication of cellulose foam HKUST-1 and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides. Chem. Eng. J. 369, 898–907 (2019). https://doi.org/10.1016/j.cej.2019.03.129
A. Lowe, P. Chittajallu, Q. Gong, J. Li, K.J. Balkus, Storage and delivery of nitric oxide via diazeniumdiolated metal organic framework. Microporous Mesoporous Mater. 181, 17–22 (2013). https://doi.org/10.1016/j.micromeso.2013.07.017
A. Lowe, W. Deng, D.W. Smith, K.J. Balkus, Acrylonitrile-based nitric oxide releasing melt-spun fibers for enhanced wound healing. Macromolecules 45, 5894–5900 (2012). https://doi.org/10.1021/ma300913w
X. Ren, Y. Han, J. Wang, Y. Jiang, Z. Yi, H. Xu, Q. Ke, An aligned porous electrospun fibrous membrane with controlled drug delivery—an efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater. 70, 140–153 (2018). https://doi.org/10.1016/j.actbio.2018.02.010
C. Ai, D. Sheng, J. Chen, J. Cai, S. Wang, J. Jiang, S. Chen, Surface modification of vascular endothelial growth factor-loaded silk fibroin to improve biological performance of ultra-high-molecular-weight polyethylene via promoting angiogenesis. Int. J. Nanomedicine 10, 7737–7750 (2017). https://doi.org/10.2147/IJN.S148845
S. Jing, D. Jiang, S. Wen, J. Wang, C. Yang, Preparation and characterization of collagen/silica composite scaffolds for peripheral nerve regeneration. J. Porous Mater. 21, 699–708 (2014). https://doi.org/10.1007/s10934-014-9817-4
F. Lv, J. Wang, P. Xu, Y. Han, H. Ma et al., A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater. 60, 128–143 (2017). https://doi.org/10.1016/j.actbio.2017.07.020
S. Lee, D.M. Hailey, A.R. Lea, Tensile strength requirements for sutures. J. Pharm. Pharmacol. 35, 65–69 (1983). https://doi.org/10.1111/j.2042-7158.1983.tb04271.x
T. Yang, A.N. Zelikin, R. Chandrawati, Progress and promise of nitric oxide-releasing platforms. Adv. Sci. 5, 1701043 (2018). https://doi.org/10.1002/advs.201701043
P.N. Coneski, M.H. Schoenfisch, Nitric oxide release: Part III Measurement and reporting. Chem. Soc. Rev. 41, 3753 (2012). https://doi.org/10.1039/c2cs15271a
D.D. Thomas, L.A. Ridnour, M.G. Espey, S. Donzelli, S. Ambs et al., Superoxide fluxes limit nitric oxide-induced signaling. J. Biol. Chem. 281, 25984–25993 (2006). https://doi.org/10.1074/jbc.M602242200
J. Xiao, Y. Zhu, S. Huddleston, P. Li, B. Xiao, O.K. Farha, G.A. Ameer, Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 12, 1023–1032 (2018). https://doi.org/10.1021/acsnano.7b01850
V. Coger, N. Million, C. Rehbock, B. Sures, M. Nachev et al., Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biol. Trace Elem. Res. 191, 167–176 (2019). https://doi.org/10.1007/s12011-018-1600-y
A.P. Kornblatt, V.G. Nicoletti, A. Travaglia, The neglected role of copper ions in wound healing. J. Inorg. Biochem. 161, 1–8 (2016). https://doi.org/10.1016/j.jinorgbio.2016.02.012
L.A. Bosworth, S. Downes, Physicochemical characterisation of degrading polycaprolactone scaffolds. Polym. Degrad. Stab. 95, 2269–2276 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.09.007
F. Kabirian, P. Brouki Milan, A. Zamanian, R. Heying, M. Mozafari, Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration. Acta Biomater. 92, 82–91 (2019). https://doi.org/10.1016/j.actbio.2019.05.002
H.J. Bogaard, S. Mizuno, C. Guignabert, A.A. Al Hussaini, D. Farkas et al., Copper dependence of angioproliferation in pulmonary arterial hypertension in rats and humans. Am. J. Respir. Cell Mol. Biol. 46, 582–591 (2012). https://doi.org/10.1165/rcmb.2011-0296OC
H. Li, J. Chang, Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater. 9, 5379–5389 (2013). https://doi.org/10.1016/j.actbio.2012.10.019
C. Greis, Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS). Clin. Hemorheol. Microcirc. 49, 137–149 (2011). https://doi.org/10.3233/CH-2011-1464
C. La Torre, B. Cinque, F. Lombardi, G. Miconi, P. Palumbo et al., Nitric oxide chemical donor affects the early phases of in vitro wound healing process. J. Cell. Physiol. 231, 2185–2195 (2016). https://doi.org/10.1002/jcp.25331
K. Ghimire, H.M. Altmann, A.C. Straub, J.S. Isenberg, Nitric oxide: what’s new to NO? Am. J. Physiol. Cell Physiol. 312, C254–C262 (2017). https://doi.org/10.1152/ajpcell.00315.2016
O. Sulaieva, J.L. Wallace, Gaseous mediator-based anti-inflammatory drugs. Curr. Opin. Pharmacol. 25, 1–6 (2015). https://doi.org/10.1016/j.coph.2015.08.005
L.C.U. Junqueira, W. Cossermelli, R. Brentani, Differential staining of collagens type I, II and III by sirius red and polarization microscopy. Arch. Histol. Jpn. 41, 267–274 (1978). https://doi.org/10.1679/aohc1950.41.267
F.E.-Z.E.-D. Yassin, R. El-Dawela, M. Kerim, Picrosirius red staining assessment of collagen after dermal roller application: a minimally invasive percutaneous collagen induction therapy. Indian J. Dermatopathol. Diagnostic Dermatology 1, 68 (2014). https://doi.org/10.4103/2349-6029.147289
N. Zerbinati, A. Calligaro, Calcium hydroxylapatite treatment of human skin: evidence of collagen turnover through picrosirius red staining and circularly polarized microscopy. Clin. Cosmet. Investig. Dermatol. 11, 29–35 (2018). https://doi.org/10.2147/CCID.S143015
B. Patel, Z. Xu, C.B. Pinnock, L.S. Kabbani, M.T. Lam, Self-assembled collagen-fibrin hydrogel reinforces tissue engineered adventitia vessels seeded with human fibroblasts. Sci. Rep. 8, 1–13 (2018). https://doi.org/10.1038/s41598-018-21681-7
S. Muszyński, E. Tomaszewska, M. Kwiecień, P. Dobrowolski, A. Tomczyk-Warunek, Subsequent somatic axis and bone tissue metabolism responses to a low-zinc diet with or without phytase inclusion in broiler chickens. PLoS ONE 13, 1–21 (2018). https://doi.org/10.1371/journal.pone.0191964
N.D. Reeves, G. Cooper, Is human Achilles tendon deformation greater in regions where cross-sectional area is smaller? J. Exp. Biol. 220, 1634–1642 (2017). https://doi.org/10.1242/jeb.157289
G. Fessel, C. Gerber, J.G. Snedeker, Potential of collagen cross-linking therapies to mediate tendon mechanical properties. J. Shoulder Elb. Surg. 21, 209–217 (2012). https://doi.org/10.1016/j.jse.2011.10.002
S. Kato, M. Saito, H. Funasaki, K. Marumo, Distinctive collagen maturation process in fibroblasts derived from rabbit anterior cruciate ligament, medial collateral ligament, and patellar tendon in vitro. Kenee Surg. Sport. Traumatol. Arthrosc. 23, 1384–1392 (2015). https://doi.org/10.1007/s00167-013-2773-8