Unleashing the Potential of Electroactive Hybrid Biomaterials and Self-Powered Systems for Bone Therapeutics
Corresponding Author: Xinhua Yin
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 44
Abstract
The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
Highlights:
1 Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.
2 Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices in bone tissue engineering.
3 Emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Vinikoor, G.K. Dzidotor, T.T. Le, Y. Liu, H.-M. Kan et al., Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat. Commun. 14, 6257 (2023). https://doi.org/10.1038/s41467-023-41594-y
- W. Zhang, Y. Luo, J. Xu, C. Guo, J. Shi et al., The possible role of electrical stimulation in osteoporosis: a narrative review. Medicina (Kaunas) 59, 121 (2023). https://doi.org/10.3390/medicina59010121
- T. Yoneda, M. Hiasa, T. Okui, Crosstalk between sensory nerves and cancer in bone. Curr. Osteoporos. Rep. 16, 648–656 (2018). https://doi.org/10.1007/s11914-018-0489-x
- P.J. Nicksic, D.T. Donnelly, N. Verma, A.J. Setiz, A.J. Shoffstall et al., Electrical stimulation of acute fractures: a narrative review of stimulation protocols and device specifications. Front. Bioeng. Biotechnol. 10, 879187 (2022). https://doi.org/10.3389/fbioe.2022.879187
- R. Agarwal, A.J. García, Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev. 94, 53–62 (2015). https://doi.org/10.1016/j.addr.2015.03.013
- T.N. Vo, F.K. Kasper, A.G. Mikos, Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv. Drug Deliv. Rev. 64, 1292–1309 (2012). https://doi.org/10.1016/j.addr.2012.01.016
- G. Conta, A. Libanori, T. Tat, G. Chen, J. Chen, Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 33, 2007502 (2021). https://doi.org/10.1002/adma.202007502
- D.T. Dixon, C.T. Gomillion, Conductive scaffolds for bone tissue engineering: current state and future outlook. J. Funct. Biomater. 13, 1 (2021). https://doi.org/10.3390/jfb13010001
- L.F. George, E.A. Bates, Mechanisms underlying influence of bioelectricity in development. Front. Cell Dev. Biol. 10, 772230 (2022). https://doi.org/10.3389/fcell.2022.772230
- E. Fukada, I. Yasuda, On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12, 1158–1162 (1957). https://doi.org/10.1143/jpsj.12.1158
- B. Amin, M.A. Elahi, A. Shahzad, E. Porter, M. O’Halloran, A review of the dielectric properties of the bone for low frequency medical technologies. Biomed. Phys. Eng. Express 5, 022001 (2019). https://doi.org/10.1088/2057-1976/aaf210
- B.C. Heng, Y. Bai, X. Li, L.W. Lim, W. Li et al., Electroactive biomaterials for facilitating bone defect repair under pathological conditions. Adv. Sci. 10, e2204502 (2023). https://doi.org/10.1002/advs.202204502
- L.A. MacGinitie, G.D. Stanley, W.A. Bieber, D.D. Wu, Bone streaming potentials and currents depend on anatomical structure and loading orientation. J. Biomech. 30, 1133–1139 (1997). https://doi.org/10.1016/S0021-9290(97)85605-9
- D. Pienkowski, S.R. Pollack, The origin of stress-generated potentials in fluid-saturated bone. J. Orthop. Res. 1, 30–41 (1983). https://doi.org/10.1002/jor.1100010105
- J.-X. Zhang, J. Zhang, X.-L. Ye, X.-M. Ma, R. Liu et al., Ultralight and compressive sic nanowires aerogel for high-temperature thermal insulation. Rare Met. 42, 3354–3363 (2023). https://doi.org/10.1007/s12598-023-02370-5
- Y. Qu, Y. Zhou, Q. Yang, J. Cao, Y. Liu et al., Lignin-derived lightweight carbon aerogels for tunable Epsilon-negative response. Adv. Sci. 11, e2401767 (2024). https://doi.org/10.1002/advs.202401767
- J.-B. Yuan, Z.-H. Feng, D.-C. Li, Y. Luo, Y.-L. Zhou, Epidermal visualized health monitoring system based on stretchable and washable TPU hybrid conductive microtextiles. Rare Met. 43, 3185–3193 (2024). https://doi.org/10.1007/s12598-023-02543-2
- Y.-L. Zhou, W.-N. Cheng, Y.-Z. Bai, C. Hou, K. Li et al., Rise of flexible high-temperature electronics. Rare Met. 42, 1773–1777 (2023). https://doi.org/10.1007/s12598-023-02298-w
- Y. Huang, H. Wu, C. Zhu, W. Xiong, F. Chen et al., Programmable robotized ‘transfer-and-jet’ printing for large, 3D curved electronics on complex surfaces. Int. J. Extrem. Manuf. 3, 045101 (2021). https://doi.org/10.1088/2631-7990/ac115a
- Y. Zhou, C. Zhao, J. Wang, Y. Li, C. Li et al., Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 1, 511–518 (2019). https://doi.org/10.1021/acsmaterialslett.9b00376
- Y. Zhou, S. Cao, J. Wang, H. Zhu, J. Wang et al., Bright stretchable electroluminescent devices based on silver nanowire electrodes and high-k thermoplastic elastomers. ACS Appl. Mater. Interfaces 10, 44760–44767 (2018). https://doi.org/10.1021/acsami.8b17423
- X. Chen, F. Manshaii, K. Tioran, S. Wang, Y. Zhou et al., Wearable biosensors for cardiovascular monitoring leveraging nanomaterials. Adv. Compos. Hybrid Mater. 7, 97 (2024). https://doi.org/10.1007/s42114-024-00906-6
- Y. Zhou, L. Yin, S. Xiang, S. Yu, H.M. Johnson et al., Unleashing the potential of MXene-based flexible materials for high-performance energy storage devices. Adv. Sci. (2024). https://doi.org/10.1002/advs.202304874
- W. Xiong, H. Feng, H. Liwang, D. Li, W. Yao et al., Multifunctional tactile feedbacks towards compliant robot manipulations via 3D-shaped electronic skin. IEEE Sens. J. 22, 9046–9056 (2022). https://doi.org/10.1109/JSEN.2022.3162914
- M. Piccolino, Luigi galvani and animal electricity: two centuries after the foundation of electrophysiology. Trends Neurosci. 20, 443–448 (1997). https://doi.org/10.1016/s0166-2236(97)01101-6
- L. Chen, J. Yang, Z. Cai, Y. Huang, P. Xiao et al., Electroactive biomaterials regulate the electrophysiological microenvironment to promote bone and cartilage tissue regeneration. Adv. Funct. Mater. 34, 2314079 (2024). https://doi.org/10.1002/adfm.202314079
- Z. Liu, X. Wan, Z.L. Wang, L. Li, Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications. Adv. Mater. 33, e2007429 (2021). https://doi.org/10.1002/adma.202007429
- R.H.W. Funk, F. Scholkmann, The significance of bioelectricity on all levels of organization of an organism. part 1: from the subcellular level to cells. Prog. Biophys. Mol. Biol. 177, 185–201 (2023). https://doi.org/10.1016/j.pbiomolbio.2022.12.002
- M. Sakellakis, A. Chalkias, The role οf ion channels in the development and progression of prostate cancer. Mol. Diagn. Ther. 27, 227–242 (2023). https://doi.org/10.1007/s40291-022-00636-9
- F. Jin, T. Li, Z. Wei, R. Xiong, L. Qian et al., Biofeedback electrostimulation for bionic and long-lasting neural modulation. Nat. Commun. 13, 5302 (2022). https://doi.org/10.1038/s41467-022-33089-z
- C. Pan, J. Zhai, Z.L. Wang, Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem. Rev. 119, 9303–9359 (2019). https://doi.org/10.1021/acs.chemrev.8b00599
- Y. Liu, Y. Zhang, Q. Yang, S. Niu, Z.L. Wang, Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 14, 257–275 (2015). https://doi.org/10.1016/j.nanoen.2014.11.051
- D.C.F. Wieland, C. Krywka, E. Mick, R. Willumeit-Römer, R. Bader et al., Investigation of the inverse piezoelectric effect of trabecular bone on a micrometer length scale using synchrotron radiation. Acta Biomater. 25, 339–346 (2015). https://doi.org/10.1016/j.actbio.2015.07.021
- V. Jarkov, S.J. Allan, C. Bowen, H. Khanbareh, Piezoelectric materials and systems for tissue engineering and implantable energy harvesting devices for biomedical applications. Int. Mater. Rev. 67, 683–733 (2022). https://doi.org/10.1080/09506608.2021.1988194
- Q. Xu, X. Gao, S. Zhao, Y.-N. Liu, D. Zhang et al., Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Adv. Mater. 33, e2008452 (2021). https://doi.org/10.1002/adma.202008452
- D. Kim, S.A. Han, J.H. Kim, J.H. Lee, S.W. Kim et al., Biomolecular piezoelectric materials: from amino acids to living tissues. Adv. Mater. 32, e1906989 (2020). https://doi.org/10.1002/adma.201906989
- C.R. West, A.E. Bowden, Using tendon inherent electric properties to consistently track induced mechanical strain. Ann. Biomed. Eng. 40, 1568–1574 (2012). https://doi.org/10.1007/s10439-011-0504-1
- C. Xiao, L. Fan, S. Zhou, X. Kang, P. Guan et al., One-dimensional ferroelectric nanoarrays with wireless switchable static and dynamic electrical stimulation for selective regulating osteogenesis and antiosteosarcoma. ACS Nano 16, 20770–20785 (2022). https://doi.org/10.1021/acsnano.2c07900
- S. Ray, J. Behari, Electrical conduction in bone in frequency range 0.4–1.3 GHz. Biomater. Med. Devices Artif. Organs 14, 153–165 (1986). https://doi.org/10.3109/10731198609117540
- Y. Haba, A. Wurm, M. Köckerling, C. Schick, W. Mittelmeier et al., Characterization of human cancellous and subchondral bone with respect to electro physical properties and bone mineral density by means of impedance spectroscopy. Med. Eng. Phys. 45, 34–41 (2017). https://doi.org/10.1016/j.medengphy.2017.04.002
- P. Bhardwaj, D.V. Rai, M.L. Garg, B.P. Mohanty, Potential of electrical impedance spectroscopy to differentiate between healthy and osteopenic bone. Clin. Biomech. 57, 81–88 (2018). https://doi.org/10.1016/j.clinbiomech.2018.05.014
- B.D. Shrivastava, R. Barde, A. Mishra, S. Phadke, Dielectric behavior of biomaterials at different frequencies on room temperature. J. Phys. Conf. Ser. 534, 012063 (2014). https://doi.org/10.1088/1742-6596/534/1/012063
- R.M. Irastorza, M.A. Mayosky, J.R. Grigera, F. Vericat, Dielectric properties of natural and demineralized collagen bone matrix. IEEE Trans. Dielectr. Electr. Insul. 18, 320–328 (2011). https://doi.org/10.1109/TDEI.2011.5704524
- B. Amin, M.A. Elahi, A. Shahzad, E. Porter, B. McDermott et al., Dielectric properties of bones for the monitoring of osteoporosis. Med. Biol. Eng. Comput. 57, 1–13 (2019). https://doi.org/10.1007/s11517-018-1887-z
- H.K. Ravi, F. Simona, J. Hulliger, M. Cascella, Molecular origin of piezo- and pyroelectric properties in collagen investigated by molecular dynamics simulations. J. Phys. Chem. B 116, 1901–1907 (2012). https://doi.org/10.1021/jp208436j
- M.A. El Messiery, G.W. Hastings, S. Rakowski, Ferro-electricity of dry cortical bone. J. Biomed. Eng. 1, 63–65 (1979). https://doi.org/10.1016/0141-5425(79)90013-x
- Y. Liu, X. Zhang, C. Cao, Y. Zhang, J. Wei et al., Built-In electric fields dramatically induce enhancement of osseointegration. Adv. Funct. Mater. 27, 1703771 (2017). https://doi.org/10.1002/adfm.201703771
- A.A. Gandhi, M. Wojtas, S.B. Lang, A.L. Kholkin, S.A.M. Tofail, Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 97, 2867–2872 (2014). https://doi.org/10.1111/jace.13045
- K.N. Kamel, A. Bio-piezoelectricity, fundamentals and applications in tissue engineering and regenerative medicine. Biophys. Rev. 14, 717–733 (2022). https://doi.org/10.1007/s12551-022-00969-z
- A.C. Ahn, A.J. Grodzinsky, Relevance of collagen piezoelectricity to “Wolff’s Law”: A critical review. Med. Eng. Phys. 31, 733–741 (2009). https://doi.org/10.1016/j.medengphy.2009.02.006
- J. Kwon, H. Cho, Piezoelectric heterogeneity in collagen type I fibrils quantitatively characterized by piezoresponse force microscopy. ACS Biomater. Sci. Eng. 6, 6680–6689 (2020). https://doi.org/10.1021/acsbiomaterials.0c01314
- B. Saeidi, M.R. Derakhshandeh, M. Delshad Chermahini, A. Doostmohammadi, Novel porous Barium titanate/nano-bioactive glass composite with high piezoelectric coefficient for bone regeneration applications. J. Mater. Eng. Perform. 29, 5420–5427 (2020). https://doi.org/10.1007/s11665-020-05016-0
- J.-H. Chen, C. Liu, L. You, C.A. Simmons, Boning up on wolff’s law: mechanical regulation of the cells that make and maintain bone. J. Biomech. 43, 108–118 (2010). https://doi.org/10.1016/j.jbiomech.2009.09.016
- D. Gross, W.S. Williams, Streaming potential and the electromechanical response of physiologically-moist bone. J. Biomech. 15, 277–295 (1982). https://doi.org/10.1016/0021-9290(82)90174-9
- M. Mohammadkhah, D. Marinkovic, M. Zehn, S. Checa, A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 127, 544–555 (2019). https://doi.org/10.1016/j.bone.2019.07.024
- B. Tandon, J.J. Blaker, S.H. Cartmell, Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 73, 1–20 (2018). https://doi.org/10.1016/j.actbio.2018.04.026
- M.P. Lutolf, P.M. Gilbert, H.M. Blau, Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009). https://doi.org/10.1038/nature08602
- A.J. Keung, S. Kumar, D.V. Schaffer, Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu. Rev. Cell Dev. Biol. 26, 533–556 (2010). https://doi.org/10.1146/annurev-cellbio-100109-104042
- X. Wei, L. Guan, P. Fan, X. Liu, R. Liu et al., Direct current electric field stimulates nitric oxide production and promotes NO-dependent angiogenesis: involvement of the PI3K/Akt signaling pathway. J. Vasc. Res. 57, 195–205 (2020). https://doi.org/10.1159/000506517
- G. Jin, G. Kim, The effect of sinusoidal AC electric stimulation of 3D PCL/CNT and PCL/β-TCP based bio-composites on cellular activities for bone tissue regeneration. J. Mater. Chem. B 1, 1439 (2013). https://doi.org/10.1039/c2tb00338d
- R. Balint, N.J. Cassidy, S.H. Cartmell, Electrical stimulation: a novel tool for tissue engineering. Tissue Eng. Part B Rev. 19, 48–57 (2013). https://doi.org/10.1089/ten.teb.2012.0183
- G. Eng, B.W. Lee, L. Protas, M. Gagliardi, K. Brown et al., Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 7, 10312 (2016). https://doi.org/10.1038/ncomms10312
- S. Mobini, L. Leppik, V.T. Parameswaran, J.H. Barker, In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ 5, e2821 (2017). https://doi.org/10.7717/peerj.2821
- J.S. Khaw, R. Xue, N.J. Cassidy, S.H. Cartmell, Electrical stimulation of titanium to promote stem cell orientation, elongation and osteogenesis. Acta Biomater. 139, 204–217 (2022). https://doi.org/10.1016/j.actbio.2021.08.010
- G. Parise, N. Özkucur, T.K. Monsees, S. Perike, H.Q. Do et al., Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells. PLoS ONE 4(7), e6131 (2009). https://doi.org/10.1371/journal.pone.0006131
- L. Leppik, M.B. Bhavsar, K.M.C. Oliveira, M. Eischen-Loges, S. Mobini et al., Construction and use of an electrical stimulation chamber for enhancing osteogenic differentiation in mesenchymal stem/stromal cells in vitro. J. Vis. Exp. (2019). https://doi.org/10.3791/59127-v
- L.P. da Silva, S.C. Kundu, R.L. Reis, V.M. Correlo, Electric phenomenon: a disregarded tool in tissue engineering and regenerative medicine. Trends Biotechnol. 38, 24–49 (2020). https://doi.org/10.1016/j.tibtech.2019.07.002
- F. Sahm, J. Ziebart, A. Jonitz-Heincke, D. Hansmann, T. Dauben et al., Alternating electric fields modify the function of human osteoblasts growing on and in the surroundings of titanium electrodes. Int. J. Mol. Sci. 21, 6944 (2020). https://doi.org/10.3390/ijms21186944
- I. Habibagahi, M. Omidbeigi, J. Hadaya, H. Lyu, J. Jang et al., Vagus nerve stimulation using a miniaturized wirelessly powered Stimulator in pigs. Sci. Rep. 12, 8184 (2022). https://doi.org/10.1038/s41598-022-11850-0
- M. Alzahrani, B.J. Roth, The calculation of maximum electric field intensity in brain tissue stimulated by a current pulse through a microcoil via capacitive coupling. Appl. Sci. 14, 2994 (2024). https://doi.org/10.3390/app14072994
- B. Zhu, S.-C. Luo, H. Zhao, H.-A. Lin, J. Sekine et al., Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 5, 4523 (2014). https://doi.org/10.1038/ncomms5523
- C.T. Brighton, J. Black, Z.B. Friedenberg, J.L. Esterhai, L.J. Day et al., A multicenter study of the treatment of non-union with constant direct current. J. Bone Jt. Surg. 63, 2–13 (1981). https://doi.org/10.2106/00004623-198163010-00002
- J. Walleczek, Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 6, 3177–3185 (1992). https://doi.org/10.1096/fasebj.6.13.1397839
- M. Guillot-Ferriols, S. Lanceros-Méndez, J.G. Ribelles, G.G. Ferrer, Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? Biomater. Adv. 138, 212918 (2022). https://doi.org/10.1016/j.bioadv.2022.212918
- J.G.S. Figueiredo, B.M. de Sousa, M.P. Soares dos Santos, S.I. Vieira, Gathering evidence to leverage musculoskeletal magnetic stimulation towards clinical applicability. Small Sci. 4, 2300303 (2024). https://doi.org/10.1002/smsc.202300303
- A.M. Jawad, R. Nordin, S.K. Gharghan, H.M. Jawad, M. Ismail, Opportunities and challenges for near-field wireless power transfer: a review. Energies 10, 1022 (2017). https://doi.org/10.3390/en10071022
- W. Deng, Y. Zhou, A. Libanori, G. Chen, W. Yang et al., Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 51, 3380–3435 (2022). https://doi.org/10.1039/d1cs00858g
- G. Khandelwal, N.P.M.J. Raj, S.J. Kim, Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 33, 100882 (2020). https://doi.org/10.1016/j.nantod.2020.100882
- B. Shi, Z. Li, Y. Fan, Implantable energy-harvesting devices. Adv. Mater. 30, 1801511 (2018). https://doi.org/10.1002/adma.201801511
- B. Basumatary, D. Gogoi, S. Podder, J. Bora, K.B. Singh et al., A π-conjugated organic pyroelectric nanogenerator (OPyNG) based on pyrophototronic effect. Nano Energy 114, 108655 (2023). https://doi.org/10.1016/j.nanoen.2023.108655
- J. Zhou, C. Liu, H. Yu, N. Tang, C. Lei, Research progresses and application of biofuel cells based on immobilized enzymes. Appl. Sci. 13, 5917 (2023). https://doi.org/10.3390/app13105917
- I. Mosnier, M. Teixeira, A. Loiseau, I. Fernandes, O. Sterkers et al., Effects of acute and chronic hypertension on the labyrinthine barriers in rat. Hear. Res. 151, 227–236 (2001). https://doi.org/10.1016/S0378-5955(00)00229-X
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- J. Yin, S. Wang, A. Di Carlo, A. Chang, X. Wan et al., Smart textiles for self-powered biomonitoring. Med-X 1(1), 3 (2023). https://doi.org/10.1007/s44258-023-00001-3
- C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30, e1706790 (2018). https://doi.org/10.1002/adma.201706790
- Y. Zeng, Y. Cheng, J. Zhu, Y. Jie, P. Ma et al., Self-powered sensors driven by Maxwell’s displacement current wirelessly provided by TENG. Appl. Mater. Today 27, 101375 (2022). https://doi.org/10.1016/j.apmt.2022.101375
- Q. Zheng, B. Shi, Z. Li, Z.L. Wang, Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv. Sci. 4, 1700029 (2017). https://doi.org/10.1002/advs.201700029
- G. Li, Q. Zhu, B. Wang, R. Luo, X. Xiao et al., Rejuvenation of senescent bone marrow mesenchymal stromal cells by pulsed triboelectric stimulation. Adv. Sci. 8, e2100964 (2021). https://doi.org/10.1002/advs.202100964
- J. Tian, R. Shi, Z. Liu, H. Ouyang, M. Yu et al., Self-powered implantable electrical Stimulator for osteoblasts’ proliferation and differentiation. Nano Energy 59, 705–714 (2019). https://doi.org/10.1016/j.nanoen.2019.02.073
- J. Yin, V. Kashyap, S. Wang, X. Xiao, T. Tat et al., Self-powered eye-computer interaction via a triboelectric nanogenerator. Device 2, 100252 (2024). https://doi.org/10.1016/j.device.2023.100252
- W. Kwak, J. Yin, S. Wang, J. Chen, Advances in triboelectric nanogenerators for self-powered wearable respiratory monitoring. FlexMat 1, 5–22 (2024). https://doi.org/10.1002/flm2.10
- Y. Ouyang, X. Wang, M. Hou, M. Zheng, D. Hao et al., Smart nanoengineered electronic-scaffolds based on triboelectric nanogenerators as tissue batteries for integrated cartilage therapy. Nano Energy 107, 108158 (2023). https://doi.org/10.1016/j.nanoen.2022.108158
- K. Barri, Q. Zhang, I. Swink, Y. Aucie, K. Holmberg et al., Patient-specific self-powered metamaterial implants for detecting bone healing progress. Adv. Funct. Mater. 32, 2203533 (2022). https://doi.org/10.1002/adfm.202203533
- Y. Qian, Y. Cheng, J. Song, Y. Xu, W.-E. Yuan et al., Mechano-informed biomimetic polymer scaffolds by incorporating self-powered zinc oxide nanogenerators enhance motor recovery and neural function. Small 16, e2000796 (2020). https://doi.org/10.1002/smll.202000796
- R. Shi, J. Zhang, J. Tian, C. Zhao, Z. Li et al., An effective self-powered strategy to endow titanium implant surface with associated activity of anti-biofilm and osteogenesis. Nano Energy 77, 105201 (2020). https://doi.org/10.1016/j.nanoen.2020.105201
- Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
- Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 10, 5025–5031 (2010). https://doi.org/10.1021/nl103203u
- Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics: fundamentals and applications. Natl. Sci. Rev. 1, 62–90 (2014). https://doi.org/10.1093/nsr/nwt002
- K.K. Das, B. Basu, P. Maiti, A.K. Dubey, Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices. Acta Biomater. 171, 85–113 (2023). https://doi.org/10.1016/j.actbio.2023.08.057
- M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody et al., Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31, 1802084 (2019). https://doi.org/10.1002/adma.201802084
- H. Feng, C. Zhao, P. Tan, R. Liu, X. Chen et al., Nanogenerator for biomedical applications. Adv. Healthc. Mater. 7, 1701298 (2018). https://doi.org/10.1002/adhm.201701298
- F. Jin, T. Li, T. Yuan, L. Du, C. Lai et al., Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration. Adv. Mater. 33, e2104175 (2021). https://doi.org/10.1002/adma.202104175
- C. Vargas-Estevez, A. Blanquer, G. Murillo, M. Duque, L. Barrios et al., Electrical stimulation of cells through photovoltaic microcell arrays. Nano Energy 51, 571–578 (2018). https://doi.org/10.1016/j.nanoen.2018.07.012
- X. Long, X. Wang, L. Yao, S. Lin, J. Zhang et al., Graphene/Si-promoted osteogenic differentiation of BMSCs through light illumination. ACS Appl. Mater. Interfaces 11, 43857–43864 (2019). https://doi.org/10.1021/acsami.9b14679
- J. Fu, X. Liu, L. Tan, Z. Cui, Y. Zheng et al., Photoelectric-responsive extracellular matrix for bone engineering. ACS Nano 13, 13581–13594 (2019). https://doi.org/10.1021/acsnano.9b08115
- G. Thrivikraman, S.K. Boda, B. Basu, Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspective. Biomaterials 150, 60–86 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.003
- X. Wan, Z. Liu, L. Li, Manipulation of stem cells fates: the master and multifaceted roles of biophysical cues of biomaterials. Adv. Funct. Mater. 31, 2010626 (2021). https://doi.org/10.1002/adfm.202010626
- B.S. Eftekhari, M. Eskandari, P.A. Janmey, A. Samadikuchaksaraei, M. Gholipourmalekabadi, Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells. Adv. Funct. Mater. 30, 1907792 (2020). https://doi.org/10.1002/adfm.201907792
- F. Xing, S. Li, D. Yin, J. Xie, P.M. Rommens et al., Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. J. Magnes. Alloys 10, 1428–1456 (2022). https://doi.org/10.1016/j.jma.2022.02.013
- H. Jahr, Y. Li, J. Zhou, A.A. Zadpoor, K.-U. Schröder, Additively manufactured absorbable porous metal implants–processing, alloying and corrosion behavior. Front. Mater. 8, 628633 (2021). https://doi.org/10.3389/fmats.2021.628633
- A. Gupta, S. Singh, Multimodal potentials of gold nanops for bone tissue engineering and regenerative medicine: avenues and prospects. Small 18, e2201462 (2022). https://doi.org/10.1002/smll.202201462
- M. Wang, S. Feng, C. Bai, K. Ji, J. Zhang et al., Ultrastretchable MXene microsupercapacitors. Small 19, 2300386 (2023). https://doi.org/10.1002/smll.202300386
- X. Zhang, T. Wang, Z. Zhang, H. Liu, L. Li et al., Electrical stimulation system based on electroactive biomaterials for bone tissue engineering. Mater. Today 68, 177–203 (2023). https://doi.org/10.1016/j.mattod.2023.06.011
- S. Ahadian, S. Yamada, J. Ramón-Azcón, M. Estili, X. Liang et al., Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomater. 31, 134–143 (2016). https://doi.org/10.1016/j.actbio.2015.11.047
- Y. Li, L. Yang, Y. Hou, Z. Zhang, M. Chen et al., Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact. Mater. 18, 213–227 (2022). https://doi.org/10.1016/j.bioactmat.2022.03.021
- P. Piotrowski, K. Klimek, G. Ginalska, A. Kaim, Beneficial influence of water-soluble PEG-functionalized C60 fullerene on human osteoblast growth in vitro. Materials (Basel) 14, 1566 (2021). https://doi.org/10.3390/ma14061566
- L. Wang, H. Jiang, F. Wan, H. Sun, Y. Yang et al., High-performance artificial ligament made from helical polyester fibers wrapped with aligned carbon nanotube sheets. Adv. Healthc. Mater. 12, e2301610 (2023). https://doi.org/10.1002/adhm.202301610
- B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng et al., Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020). https://doi.org/10.1016/j.ensm.2019.08.004
- K. Wang, S. Margolis, J.M. Cho, S. Wang, B. Arianpour et al., Non-invasive detection of early-stage fatty liver disease via an on-skin impedance sensor and attention-based deep learning. Adv. Sci. 11, e2400596 (2024). https://doi.org/10.1002/advs.202400596
- X. Zhang, S. Koo, J.H. Kim, X. Huang, N. Kong et al., Nanoscale materials-based platforms for the treatment of bone-related diseases. Matter 4, 2727–2764 (2021). https://doi.org/10.1016/j.matt.2021.05.019
- J. Li, B. Xia, X. Xiao, Z. Huang, J. Yin et al., Stretchable thermoelectric fibers with three-dimensional interconnected porous network for low-grade body heat energy harvesting. ACS Nano 17, 19232–19241 (2023). https://doi.org/10.1021/acsnano.3c05797
- Y. Li, T. Fang, J. Zhang, H. Zhu, Y. Sun et al., Ultrasensitive and ultrastretchable electrically self-healing conductors. Proc. Natl. Acad. Sci. U.S.A. 120, e2300953120 (2023). https://doi.org/10.1073/pnas.2300953120
- S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8, eabl5511 (2022). https://doi.org/10.1126/sciadv.abl5511
- T.-H. Le, Y. Kim, H. Yoon, Electrical and electrochemical properties of conducting polymers. Polymers 9, 150 (2017). https://doi.org/10.3390/polym9040150
- T. Zhou, L. Yan, C. Xie, P. Li, L. Jiang et al., A mussel-inspired persistent ROS-scavenging, electroactive, and osteoinductive scaffold based on electrochemical-driven in situ nanoassembly. Small 15, e1805440 (2019). https://doi.org/10.1002/smll.201805440
- Y. Wei, X. Mo, P. Zhang, Y. Li, J. Liao et al., Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array. ACS Nano 11, 5915–5924 (2017). https://doi.org/10.1021/acsnano.7b01661
- Y. Fu, H. He, T. Zhao, Y. Dai, W. Han et al., A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application. Nano-Micro Lett. 10, 76 (2018). https://doi.org/10.1007/s40820-018-0228-y
- C. Yu, X. Ying, M.-A. Shahbazi, L. Yang, Z. Ma et al., A nano-conductive osteogenic hydrogel to locally promote calcium influx for electro-inspired bone defect regeneration. Biomaterials 301, 122266 (2023). https://doi.org/10.1016/j.biomaterials.2023.122266
- G. Jeon, S.Y. Yang, J. Byun, J.K. Kim, Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett. 11, 1284–1288 (2011). https://doi.org/10.1021/nl104329y
- H.P. Savakus, K.A. Klicker, R.E. Newnham, PZT-epoxy piezoelectric transducers: a simplified fabrication procedure. Mater. Res. Bull. 16, 677–680 (1981). https://doi.org/10.1016/0025-5408(81)90267-1
- B. Jiang, J. Iocozzia, L. Zhao, H. Zhang, Y.-W. Harn et al., Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228 (2019). https://doi.org/10.1039/C8CS00583D
- S. Liu, J. Zhai, Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J. Mater. Chem. A 3, 1511–1517 (2015). https://doi.org/10.1039/c4ta04455j
- H. Li, L. Wang, L. Xu, A. Li, P. Mao et al., First-principles study on the structural, elastic, piezoelectric and electronic properties of (BaTiO3, LiTaO3)-modified KNbO3. Mater. Today Commun. 26, 102092 (2021). https://doi.org/10.1016/j.mtcomm.2021.102092
- B.K. Yun, Y.K. Park, M. Lee, N. Lee, W. Jo et al., Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation. Nanoscale Res. Lett. 9, 4 (2014). https://doi.org/10.1186/1556-276X-9-4
- L.-F. Zhu, B.-P. Zhang, J.-Q. Duan, B.-W. Xun, N. Wang et al., Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time. J. Eur. Ceram. Soc. 38, 3463–3471 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.03.044
- C. Li, Y. Li, T. Yao, L. Zhou, C. Xiao et al., Wireless electrochemotherapy by selenium-doped piezoelectric biomaterials to enhance cancer cell apoptosis. ACS Appl. Mater. Interfaces 12, 34505–34513 (2020). https://doi.org/10.1021/acsami.0c04666
- N. Zhang, T. Zheng, J. Wu, Lead-free (K, Na)NbO3-based materials: preparation techniques and piezoelectricity. ACS Omega 5, 3099–3107 (2020). https://doi.org/10.1021/acsomega.9b03658
- J. Wu, Q. Xu, E. Lin, B. Yuan, N. Qin et al., Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces 10, 17842–17849 (2018). https://doi.org/10.1021/acsami.8b01991
- Y. Liu, T. Yang, B. Zhang, T. Williams, Y.-T. Lin et al., Structural insight in the interfacial effect in ferroelectric polymer nanocomposites. Adv. Mater. 34, e2109926 (2022). https://doi.org/10.1002/adma.202109926
- J. Jacob, N. More, C. Mounika, P. Gondaliya, K. Kalia et al., Smart piezoelectric nanohybrid of poly(3-hydroxybutyrate- co-3-hydroxyvalerate) and Barium titanate for stimulated cartilage regeneration. ACS Appl. Bio Mater. 2, 4922–4931 (2019). https://doi.org/10.1021/acsabm.9b00667
- H. Wu, H. Dong, Z. Tang, Y. Chen, Y. Liu et al., Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials 293, 121990 (2023). https://doi.org/10.1016/j.biomaterials.2022.121990
- F. Zhao, Y. Zhao, Y. Liu, R. Hang, Osteogenic activity of Na2Ti3O7/SrTiO3 hybrid coatings on titanium. Surf. Coat. Technol. 398, 126090 (2020). https://doi.org/10.1016/j.surfcoat.2020.126090
- K. Kapat, Q.T.H. Shubhra, M. Zhou, S. Leeuwenburgh, Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater. 30, 1909045 (2020). https://doi.org/10.1002/adfm.201909045
- Z. Liu, M. Cai, X. Zhang, X. Yu, S. Wang et al., Cell-traction-triggered on-demand electrical stimulation for neuron-like differentiation. Adv. Mater. 33, e2106317 (2021). https://doi.org/10.1002/adma.202106317
- N. Adadi, M. Yadid, I. Gal, M. Asulin, R. Feiner et al., Electrospun fibrous PVDF-TrFe scaffolds for cardiac tissue engineering, differentiation, and maturation. Adv. Mater. Technol. 5, 1900820 (2020). https://doi.org/10.1002/admt.201900820
- N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian et al., Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006). https://doi.org/10.1063/1.2336999
- T. Yoshida, K. Imoto, K. Tahara, K. Naka, Y. Uehara et al., Piezoelectricity of poly(L-lactic acid) composite film with stereo complex of poly(L-lactide) and poly(D-lactide). Jpn. J. Appl. Phys. 49, 09MC11 (2010). https://doi.org/10.1143/jjap.49.09mc11
- C. Shuai, G. Liu, Y. Yang, F. Qi, S. Peng et al., A strawberry-like Ag-decorated Barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy 74, 104825 (2020). https://doi.org/10.1016/j.nanoen.2020.104825
- Y. Zhou, Y. Deng, Z. Liu, M. Yin, M. Hou et al., Cytokine-scavenging nanodecoys reconstruct osteoclast/osteoblast balance toward the treatment of postmenopausal osteoporosis. Sci. Adv. 7, eabl6432 (2021). https://doi.org/10.1126/sciadv.abl6432
- C.H. Yao, B.Y. Yang, Y.C.E. Li, Remodeling effects of the combination of GGT scaffolds, percutaneous electrical stimulation, and acupuncture on large bone defects in rats. Front. Bioeng. Biotechnol. 10, 832808 (2022). https://doi.org/10.3389/fbioe.2022.832808
- X. Cui, Y. Shan, J. Li, M. Xiao, Y. Xi et al., Bifunctional piezo-enhanced PLLA/ZA coating prevents aseptic loosening of bone implants. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202403759
- C. Zhang, W. Liu, C. Cao, F. Zhang, Q. Tang et al., Modulating surface potential by controlling the β phase content in poly(vinylidene fluoridetrifluoroethylene) membranes enhances bone regeneration. Adv. Healthc. Mater. 7, e1701466 (2018). https://doi.org/10.1002/adhm.201701466
- X. Wan, X. Zhang, Z. Liu, J. Zhang, Z. Li et al., Noninvasive manipulation of cell adhesion for cell harvesting with piezoelectric composite film. Appl. Mater. Today 25, 101218 (2021). https://doi.org/10.1016/j.apmt.2021.101218
- X. Zhang, C. Zhang, Y. Lin, P. Hu, Y. Shen et al., Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment. ACS Nano 10, 7279–7286 (2016). https://doi.org/10.1021/acsnano.6b02247
- S. Roy Barman, S. Jhunjhunwala, Electrical stimulation for immunomodulation. ACS Omega 9, 52–66 (2024). https://doi.org/10.1021/acsomega.3c06696
- K. Li, W. Xu, Y. Chen, X. Liu, L. Shen et al., Piezoelectric nanostructured surface for ultrasound-driven immunoregulation to rescue titanium implant infection. Adv. Funct. Mater. 33, 2214522 (2023). https://doi.org/10.1002/adfm.202214522
- S.D. Dutta, K. Ganguly, A. Randhawa, T.V. Patil, D.K. Patel et al., Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Biomaterials 294, 121999 (2023). https://doi.org/10.1016/j.biomaterials.2023.121999
- X. Zhang, Y. Zhang, J. Chen, Y. Wu, J. Zhang et al., Nanosecond pulsed electric field inhibits malignant melanoma growth by inducing the change of systemic immunity. Med. Oral Patologia Oral y Cirugia Bucal 24(4), e555 (2019). https://doi.org/10.4317/medoral.22976
- J. Liang, H. Zeng, L. Qiao, H. Jiang, Q. Ye et al., 3D printed piezoelectric wound dressing with dual piezoelectric response models for scar-prevention wound healing. ACS Appl. Mater. Interfaces 14, 30507–30522 (2022). https://doi.org/10.1021/acsami.2c04168
- X. Liu, X. Wan, B. Sui, Q. Hu, Z. Liu et al., Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation. Bioact. Mater. 35, 346–361 (2024). https://doi.org/10.1016/j.bioactmat.2024.02.011
- Y. Kong, F. Liu, B. Ma, J. Duan, W. Yuan et al., Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization. Adv. Sci. 8, 2100962 (2021). https://doi.org/10.1002/advs.202100962
- D. D’Alessandro, C. Ricci, M. Milazzo, G. Strangis, F. Forli et al., Piezoelectric signals in vascularized bone regeneration. Biomolecules 11, 1731 (2021). https://doi.org/10.3390/biom11111731
- R.C. Gonçalves, A. Banfi, M.B. Oliveira, J.F. Mano, Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 269, 120628 (2021). https://doi.org/10.1016/j.biomaterials.2020.120628
- M.N. Collins, G. Ren, K. Young, S. Pina, R.L. Reis et al., Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31, 2010609 (2021). https://doi.org/10.1002/adfm.202010609
- S. Stegen, N. van Gastel, G. Carmeliet, Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70, 19–27 (2015). https://doi.org/10.1016/j.bone.2014.09.017
- L. Faes, S.K. Wagner, D.J. Fu, X. Liu, E. Korot et al., Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Lancet Digit. Health 1, e232–e242 (2019). https://doi.org/10.1016/S2589-7500(19)30108-6
- G. Yao, X. Mo, C. Yin, W. Lou, Q. Wang et al., A programmable and skin temperature-activated electromechanical synergistic dressing for effective wound healing. Sci. Adv. 8, eabl8379 (2022). https://doi.org/10.1126/sciadv.abl8379
- M. Zhao, H. Bai, E. Wang, J.V. Forrester, C.D. McCaig, Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci. 117, 397–405 (2004). https://doi.org/10.1242/jcs.00868
- C. Li, S. Zhang, Y. Yao, Y. Wang, C. Xiao et al., Piezoelectric bioactive glasses composite promotes angiogenesis by the synergistic effect of wireless electrical stimulation and active ions. Adv. Healthc. Mater. 12, e2300064 (2023). https://doi.org/10.1002/adhm.202300064
- J. Sun, C. Xu, K. Wo, Y. Wang, J. Zhang et al., Wireless electric cues mediate autologous DPSC-loaded conductive hydrogel microspheres to engineer the immuno-angiogenic niche for homologous maxillofacial bone regeneration. Adv. Healthc. Mater. 13, e2303405 (2024). https://doi.org/10.1002/adhm.202303405
- J. Yin, S. Pan, X. Guo, Y. Gao, D. Zhu et al., Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett. 13, 30 (2021). https://doi.org/10.1007/s40820-020-00547-6
- S. Pang, Y. He, R. Zhong, Z. Guo, P. He et al., Multifunctional ZnO/TiO2 nanoarray composite coating with antibacterial activity, cytocompatibility and piezoelectricity. Ceram. Int. 45, 12663–12671 (2019). https://doi.org/10.1016/j.ceramint.2019.03.076
- B. Gottenbos, Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother. 48, 7–13 (2001). https://doi.org/10.1093/jac/48.1.7
- Z. Li, D. He, B. Guo, Z. Wang, H. Yu et al., Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat. Commun. 14, 6963 (2023). https://doi.org/10.1038/s41467-023-42598-4
- Q. Pan, Y. Zheng, Y. Zhou, X. Zhang, M. Yuan et al., Doping engineering of piezo-sonocatalytic nanocoating confer dental implants with enhanced antibacterial performances and osteogenic activity. Adv. Funct. Mater. 34, 2313553 (2024). https://doi.org/10.1002/adfm.202313553
- S. Mendis, P. Puska, B. e. Norrving, W. H. Organization, Global atlas on cardiovascular disease prevention and control. (World Health Organization; 2011).
- A.S. Verma, D. Kumar, A.K. Dubey, Antibacterial and cellular response of piezoelectric Na0.5K0.5NbO3 modified 1393 bioactive glass. Mater. Sci. Eng. C 116, 111138 (2020). https://doi.org/10.1016/j.msec.2020.111138
- C. Angulo-Pineda, K. Srirussamee, P. Palma, V.M. Fuenzalida, S.H. Cartmell et al., Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials (Basel) 10, 428 (2020). https://doi.org/10.3390/nano10030428
- S. Swain, R.N. Padhy, T.R. Rautray, Polarized piezoelectric bioceramic composites exhibit antibacterial activity. Mater. Chem. Phys. 239, 122002 (2020). https://doi.org/10.1016/j.matchemphys.2019.122002
- X. Qu, H. Yang, B. Jia, Z. Yu, Y. Zheng et al., Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomater. 117, 400–417 (2020). https://doi.org/10.1016/j.actbio.2020.09.041
- E.O. Carvalho, M.M. Fernandes, K. Ivanova, P. Rodriguez-Lejarraga, T. Tzanov et al., Multifunctional piezoelectric surfaces enhanced with layer-by-layer coating for improved osseointegration and antibacterial performance. Colloids Surf. B Biointerfaces 243, 114123 (2024). https://doi.org/10.1016/j.colsurfb.2024.114123
- A. Kumar, V. Gajraj, A. Das, D. Sen, H. Xu et al., Silver, copper, magnesium and zinc contained electroactive mesoporous bioactive S53P4 glass–ceramics nanop for bone regeneration: bioactivity, biocompatibility and antibacterial activity. J. Inorg. Organomet. Polym. Mater. 32, 2309–2321 (2022). https://doi.org/10.1007/s10904-022-02295-z
- Y. Huang, X. Wan, Q. Su, C. Zhao, J. Cao et al., Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections. Nat. Commun. 15, 1643 (2024). https://doi.org/10.1038/s41467-024-45619-y
- Y. Long, J. Li, F. Yang, J. Wang, X. Wang, Wearable and implantable electroceuticals for therapeutic electrostimulations. Adv. Sci. 8, 2004023 (2021). https://doi.org/10.1002/advs.202004023
- S. Wang, Q. Cui, P. Abiri, M. Roustaei, E. Zhu et al., A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci. Adv. 9, eadj0540 (2023). https://doi.org/10.1126/sciadv.adj0540
- V. Nair, A.N. Dalrymple, Z. Yu, G. Balakrishnan, C.J. Bettinger et al., Miniature battery-free bioelectronics. Science 382, eabn4732 (2023). https://doi.org/10.1126/science.abn4732
- K. Matsuo, N. Irie, Osteoclast–osteoblast communication. Arch. Biochem. Biophys. 473, 201–209 (2008). https://doi.org/10.1016/j.abb.2008.03.027
- W. Tang, J. Tian, Q. Zheng, L. Yan, J. Wang et al., Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation. ACS Nano 9, 7867–7873 (2015). https://doi.org/10.1021/acsnano.5b03567
- G. Yao, L. Kang, C. Li, S. Chen, Q. Wang et al., A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc. Natl. Acad. Sci. U.S.A. 118, e2100772118 (2021). https://doi.org/10.1073/pnas.2100772118
- Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi et al., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2, e1501478 (2016). https://doi.org/10.1126/sciadv.1501478
- N. Wang, Y. Dai, J.Y.H. Fuh, C.-C. Yen, W.F. Lu, Applications of triboelectric nanogenerators in bone tissue engineering. Adv. Mater. Technol. 8, 2201310 (2023). https://doi.org/10.1002/admt.202201310
- L. Ricotti, A. Cafarelli, C. Manferdini, D. Trucco, L. Vannozzi et al., Ultrasound stimulation of piezoelectric nanocomposite hydrogels boosts chondrogenic differentiation in vitro, in both a normal and inflammatory milieu. ACS Nano 18, 2047–2065 (2024). https://doi.org/10.1021/acsnano.3c08738
- B. Wang, G. Li, Q. Zhu, W. Liu, W. Ke et al., Bone repairment via mechanosensation of Piezo1 using wearable pulsed triboelectric nanogenerator. Small 18, e2201056 (2022). https://doi.org/10.1002/smll.202201056
- J.P. Decuypere, G. Monaco, L. Missiaen, H. De Smedt, J.B. Parys et al., IP(3) receptors, mitochondria, and Ca signaling: implications for aging. J. Aging Res. 2011, 920178 (2011). https://doi.org/10.4061/2011/920178
- S.H. Bhang, W.S. Jang, J. Han, J.-K. Yoon, W.-G. La et al., Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv. Funct. Mater. 27, 1603497 (2017). https://doi.org/10.1002/adfm.201603497
- M. Yao, L. Li, Y. Wang, D. Yang, L. Miao et al., Mechanical energy harvesting and specific potential distribution of a flexible piezoelectric nanogenerator based on 2-D BaTiO3-oriented polycrystals. ACS Sustainable Chem. Eng. 10, 3276–3287 (2022). https://doi.org/10.1021/acssuschemeng.1c07875
- Y. Zhang, L. Xu, Z. Liu, X. Cui, Z. Xiang et al., Self-powered pulsed direct current stimulation system for enhancing osteogenesis in MC3T3-E1. Nano Energy 85, 106009 (2021). https://doi.org/10.1016/j.nanoen.2021.106009
- J. Chen, L. Song, F. Qi, S. Qin, X. Yang et al., Enhanced bone regeneration via ZIF-8 decorated hierarchical polyvinylidene fluoride piezoelectric foam nanogenerator: coupling of bioelectricity, angiogenesis, and osteogenesis. Nano Energy 106, 108076 (2023). https://doi.org/10.1016/j.nanoen.2022.108076
- T. Wang, H. Ouyang, Y. Luo, J. Xue, E. Wang et al., Rehabilitation exercise-driven symbiotic electrical stimulation system accelerating bone regeneration. Sci. Adv. 10, eadi6799 (2024). https://doi.org/10.1126/sciadv.adi6799
- F. Yang, J. Li, Y. Long, Z. Zhang, L. Wang et al., Wafer-scale heterostructured piezoelectric bio-organic thin films. Science 373, 337–342 (2021). https://doi.org/10.1126/science.abf2155
- C. Peter, H. Kliem, Ferroelectric imprint and polarization in the amorphous phase in P(VDF-TrFE). J. Appl. Phys. (2019). https://doi.org/10.1063/1.5091930
- X. Wang, X. Dai, Y. Chen, Sonopiezoelectric nanomedicine and materdicine. Small 19, 2301693 (2023). https://doi.org/10.1002/smll.202301693
- Y. Sun, S. Chao, H. Ouyang, W. Zhang, W. Luo et al., Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Sci. Bull. 67, 1284–1294 (2022). https://doi.org/10.1016/j.scib.2022.04.002
- Y. Bai, L. Yin, C. Hou, Y. Zhou, F. Zhang et al., Response regulation for epidermal fabric strain sensors via mechanical strategy. Adv. Funct. Mater. 33, 2214119 (2023). https://doi.org/10.1002/adfm.202214119
- Y. Zhou, Y. Qu, L. Yin, W. Cheng, Y. Huang et al., Coassembly of elastomeric microfibers and silver nanowires for fabricating ultra-stretchable microtextiles with weakly and tunable negative permittivity. Compos. Sci. Technol. 223, 109415 (2022). https://doi.org/10.1016/j.compscitech.2022.109415
- H. Liu, Z. Wang, L. Gao, Y. Huang, H. Tang et al., Optofluidic resonance of a transparent liquid jet excited by a continuous wave laser. Phys. Rev. Lett. 127, 244502 (2021). https://doi.org/10.1103/PhysRevLett.127.244502
- H. Wang, D. Ye, A. Li, B. Zhang, W. Guo et al., Self-driven, monopolar electrohydrodynamic printing via dielectric nanop layer. Nano Lett. 24, 9511–9519 (2024). https://doi.org/10.1021/acs.nanolett.4c01926
- Y. Tian, Y. Liu, Z. Peng, C. Xu, D. Ye et al., Air entrapment of a neutral drop impacting onto a flat solid surface in electric fields. J. Fluid Mech. 946, A21 (2022). https://doi.org/10.1017/jfm.2022.439
- Y.-P. Qu, Y.-L. Zhou, Y. Luo, Y. Liu, J.-F. Ding et al., Universal paradigm of ternary metacomposites with tunable Epsilon-negative and Epsilon-near-zero response for perfect electromagnetic shielding. Rare Met. 43, 796–809 (2024). https://doi.org/10.1007/s12598-023-02510-x
- Y. Zhou, H. Lian, Z. Li, L. Yin, Q. Ji et al., Crack engineering boosts the performance of flexible sensors. VIEW 3, 20220025 (2022). https://doi.org/10.1002/VIW.20220025
- R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2021). https://doi.org/10.1007/s40820-021-00751-y
- X. Wang, L. Qi, H. Yang, Y. Rao, H. Chen, Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics. Soft Sci. 3, 15 (2023). https://doi.org/10.20517/ss.2023.06
- Y. Huang, Y. Ding, J. Bian, Y. Su, J. Zhou et al., Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy 40, 432–439 (2017). https://doi.org/10.1016/j.nanoen.2017.07.048
- C. Tan, C. Deng, S. Li, A. Abena, P. Jamshidi et al., Mechanical property and biological behaviour of additive manufactured TiNi functionally graded lattice structure. Int. J. Extrem. Manuf. 4, 045003 (2022). https://doi.org/10.1088/2631-7990/ac94fa
- S.D. Kim, K. Park, S. Lee, J. Kum, Y. Kim et al., Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing electrodes. Soft Sci. 3, 18 (2023). https://doi.org/10.20517/ss.2023.08
- Y. Zhou, S. Wang, J. Yin, J. Wang, F. Manshaii et al., Flexible metasurfaces for multifunctional interfaces. ACS Nano 18, 2685–2707 (2024). https://doi.org/10.1021/acsnano.3c09310
- H. Yu, M. Gai, L. Liu, F. Chen, J. Bian et al., Laser-induced direct graphene patterning: from formation mechanism to flexible applications. Soft Sci. 3, 4 (2023). https://doi.org/10.20517/ss.2022.26
- A.C. Da Silva, T.E. Paterson, I.R. Minev, Electro-assisted assembly of conductive polymer and soft hydrogel into core-shell hybrids. Soft Sci. 3, 3 (2023). https://doi.org/10.20517/ss.2022.25
- J. Song, B. Lv, W. Chen, P. Ding, Y. He, Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair. Int. J. Extrem. Manuf. 5, 032008 (2023). https://doi.org/10.1088/2631-7990/acde21
- A. Chen, J. Su, Y. Li, H. Zhang, Y. Shi et al., 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering. Int. J. Extrem. Manuf. 5, 032007 (2023). https://doi.org/10.1088/2631-7990/acd88f
- Y. Jiang, D. Ye, A. Li, B. Zhang, W. Han et al., Transient charge-driven 3D conformal printing via pulsed-plasma impingement. Proc. Natl. Acad. Sci. USA 121, e2402135121 (2024). https://doi.org/10.1073/pnas.2402135121
- X. Han, Q. Saiding, X. Cai, Y. Xiao, P. Wang et al., Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds. Nano-Micro Lett. 15, 239 (2023). https://doi.org/10.1007/s40820-023-01187-2
References
T. Vinikoor, G.K. Dzidotor, T.T. Le, Y. Liu, H.-M. Kan et al., Injectable and biodegradable piezoelectric hydrogel for osteoarthritis treatment. Nat. Commun. 14, 6257 (2023). https://doi.org/10.1038/s41467-023-41594-y
W. Zhang, Y. Luo, J. Xu, C. Guo, J. Shi et al., The possible role of electrical stimulation in osteoporosis: a narrative review. Medicina (Kaunas) 59, 121 (2023). https://doi.org/10.3390/medicina59010121
T. Yoneda, M. Hiasa, T. Okui, Crosstalk between sensory nerves and cancer in bone. Curr. Osteoporos. Rep. 16, 648–656 (2018). https://doi.org/10.1007/s11914-018-0489-x
P.J. Nicksic, D.T. Donnelly, N. Verma, A.J. Setiz, A.J. Shoffstall et al., Electrical stimulation of acute fractures: a narrative review of stimulation protocols and device specifications. Front. Bioeng. Biotechnol. 10, 879187 (2022). https://doi.org/10.3389/fbioe.2022.879187
R. Agarwal, A.J. García, Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev. 94, 53–62 (2015). https://doi.org/10.1016/j.addr.2015.03.013
T.N. Vo, F.K. Kasper, A.G. Mikos, Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv. Drug Deliv. Rev. 64, 1292–1309 (2012). https://doi.org/10.1016/j.addr.2012.01.016
G. Conta, A. Libanori, T. Tat, G. Chen, J. Chen, Triboelectric nanogenerators for therapeutic electrical stimulation. Adv. Mater. 33, 2007502 (2021). https://doi.org/10.1002/adma.202007502
D.T. Dixon, C.T. Gomillion, Conductive scaffolds for bone tissue engineering: current state and future outlook. J. Funct. Biomater. 13, 1 (2021). https://doi.org/10.3390/jfb13010001
L.F. George, E.A. Bates, Mechanisms underlying influence of bioelectricity in development. Front. Cell Dev. Biol. 10, 772230 (2022). https://doi.org/10.3389/fcell.2022.772230
E. Fukada, I. Yasuda, On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12, 1158–1162 (1957). https://doi.org/10.1143/jpsj.12.1158
B. Amin, M.A. Elahi, A. Shahzad, E. Porter, M. O’Halloran, A review of the dielectric properties of the bone for low frequency medical technologies. Biomed. Phys. Eng. Express 5, 022001 (2019). https://doi.org/10.1088/2057-1976/aaf210
B.C. Heng, Y. Bai, X. Li, L.W. Lim, W. Li et al., Electroactive biomaterials for facilitating bone defect repair under pathological conditions. Adv. Sci. 10, e2204502 (2023). https://doi.org/10.1002/advs.202204502
L.A. MacGinitie, G.D. Stanley, W.A. Bieber, D.D. Wu, Bone streaming potentials and currents depend on anatomical structure and loading orientation. J. Biomech. 30, 1133–1139 (1997). https://doi.org/10.1016/S0021-9290(97)85605-9
D. Pienkowski, S.R. Pollack, The origin of stress-generated potentials in fluid-saturated bone. J. Orthop. Res. 1, 30–41 (1983). https://doi.org/10.1002/jor.1100010105
J.-X. Zhang, J. Zhang, X.-L. Ye, X.-M. Ma, R. Liu et al., Ultralight and compressive sic nanowires aerogel for high-temperature thermal insulation. Rare Met. 42, 3354–3363 (2023). https://doi.org/10.1007/s12598-023-02370-5
Y. Qu, Y. Zhou, Q. Yang, J. Cao, Y. Liu et al., Lignin-derived lightweight carbon aerogels for tunable Epsilon-negative response. Adv. Sci. 11, e2401767 (2024). https://doi.org/10.1002/advs.202401767
J.-B. Yuan, Z.-H. Feng, D.-C. Li, Y. Luo, Y.-L. Zhou, Epidermal visualized health monitoring system based on stretchable and washable TPU hybrid conductive microtextiles. Rare Met. 43, 3185–3193 (2024). https://doi.org/10.1007/s12598-023-02543-2
Y.-L. Zhou, W.-N. Cheng, Y.-Z. Bai, C. Hou, K. Li et al., Rise of flexible high-temperature electronics. Rare Met. 42, 1773–1777 (2023). https://doi.org/10.1007/s12598-023-02298-w
Y. Huang, H. Wu, C. Zhu, W. Xiong, F. Chen et al., Programmable robotized ‘transfer-and-jet’ printing for large, 3D curved electronics on complex surfaces. Int. J. Extrem. Manuf. 3, 045101 (2021). https://doi.org/10.1088/2631-7990/ac115a
Y. Zhou, C. Zhao, J. Wang, Y. Li, C. Li et al., Stretchable high-permittivity nanocomposites for epidermal alternating-current electroluminescent displays. ACS Mater. Lett. 1, 511–518 (2019). https://doi.org/10.1021/acsmaterialslett.9b00376
Y. Zhou, S. Cao, J. Wang, H. Zhu, J. Wang et al., Bright stretchable electroluminescent devices based on silver nanowire electrodes and high-k thermoplastic elastomers. ACS Appl. Mater. Interfaces 10, 44760–44767 (2018). https://doi.org/10.1021/acsami.8b17423
X. Chen, F. Manshaii, K. Tioran, S. Wang, Y. Zhou et al., Wearable biosensors for cardiovascular monitoring leveraging nanomaterials. Adv. Compos. Hybrid Mater. 7, 97 (2024). https://doi.org/10.1007/s42114-024-00906-6
Y. Zhou, L. Yin, S. Xiang, S. Yu, H.M. Johnson et al., Unleashing the potential of MXene-based flexible materials for high-performance energy storage devices. Adv. Sci. (2024). https://doi.org/10.1002/advs.202304874
W. Xiong, H. Feng, H. Liwang, D. Li, W. Yao et al., Multifunctional tactile feedbacks towards compliant robot manipulations via 3D-shaped electronic skin. IEEE Sens. J. 22, 9046–9056 (2022). https://doi.org/10.1109/JSEN.2022.3162914
M. Piccolino, Luigi galvani and animal electricity: two centuries after the foundation of electrophysiology. Trends Neurosci. 20, 443–448 (1997). https://doi.org/10.1016/s0166-2236(97)01101-6
L. Chen, J. Yang, Z. Cai, Y. Huang, P. Xiao et al., Electroactive biomaterials regulate the electrophysiological microenvironment to promote bone and cartilage tissue regeneration. Adv. Funct. Mater. 34, 2314079 (2024). https://doi.org/10.1002/adfm.202314079
Z. Liu, X. Wan, Z.L. Wang, L. Li, Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications. Adv. Mater. 33, e2007429 (2021). https://doi.org/10.1002/adma.202007429
R.H.W. Funk, F. Scholkmann, The significance of bioelectricity on all levels of organization of an organism. part 1: from the subcellular level to cells. Prog. Biophys. Mol. Biol. 177, 185–201 (2023). https://doi.org/10.1016/j.pbiomolbio.2022.12.002
M. Sakellakis, A. Chalkias, The role οf ion channels in the development and progression of prostate cancer. Mol. Diagn. Ther. 27, 227–242 (2023). https://doi.org/10.1007/s40291-022-00636-9
F. Jin, T. Li, Z. Wei, R. Xiong, L. Qian et al., Biofeedback electrostimulation for bionic and long-lasting neural modulation. Nat. Commun. 13, 5302 (2022). https://doi.org/10.1038/s41467-022-33089-z
C. Pan, J. Zhai, Z.L. Wang, Piezotronics and piezo-phototronics of third generation semiconductor nanowires. Chem. Rev. 119, 9303–9359 (2019). https://doi.org/10.1021/acs.chemrev.8b00599
Y. Liu, Y. Zhang, Q. Yang, S. Niu, Z.L. Wang, Fundamental theories of piezotronics and piezo-phototronics. Nano Energy 14, 257–275 (2015). https://doi.org/10.1016/j.nanoen.2014.11.051
D.C.F. Wieland, C. Krywka, E. Mick, R. Willumeit-Römer, R. Bader et al., Investigation of the inverse piezoelectric effect of trabecular bone on a micrometer length scale using synchrotron radiation. Acta Biomater. 25, 339–346 (2015). https://doi.org/10.1016/j.actbio.2015.07.021
V. Jarkov, S.J. Allan, C. Bowen, H. Khanbareh, Piezoelectric materials and systems for tissue engineering and implantable energy harvesting devices for biomedical applications. Int. Mater. Rev. 67, 683–733 (2022). https://doi.org/10.1080/09506608.2021.1988194
Q. Xu, X. Gao, S. Zhao, Y.-N. Liu, D. Zhang et al., Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Adv. Mater. 33, e2008452 (2021). https://doi.org/10.1002/adma.202008452
D. Kim, S.A. Han, J.H. Kim, J.H. Lee, S.W. Kim et al., Biomolecular piezoelectric materials: from amino acids to living tissues. Adv. Mater. 32, e1906989 (2020). https://doi.org/10.1002/adma.201906989
C.R. West, A.E. Bowden, Using tendon inherent electric properties to consistently track induced mechanical strain. Ann. Biomed. Eng. 40, 1568–1574 (2012). https://doi.org/10.1007/s10439-011-0504-1
C. Xiao, L. Fan, S. Zhou, X. Kang, P. Guan et al., One-dimensional ferroelectric nanoarrays with wireless switchable static and dynamic electrical stimulation for selective regulating osteogenesis and antiosteosarcoma. ACS Nano 16, 20770–20785 (2022). https://doi.org/10.1021/acsnano.2c07900
S. Ray, J. Behari, Electrical conduction in bone in frequency range 0.4–1.3 GHz. Biomater. Med. Devices Artif. Organs 14, 153–165 (1986). https://doi.org/10.3109/10731198609117540
Y. Haba, A. Wurm, M. Köckerling, C. Schick, W. Mittelmeier et al., Characterization of human cancellous and subchondral bone with respect to electro physical properties and bone mineral density by means of impedance spectroscopy. Med. Eng. Phys. 45, 34–41 (2017). https://doi.org/10.1016/j.medengphy.2017.04.002
P. Bhardwaj, D.V. Rai, M.L. Garg, B.P. Mohanty, Potential of electrical impedance spectroscopy to differentiate between healthy and osteopenic bone. Clin. Biomech. 57, 81–88 (2018). https://doi.org/10.1016/j.clinbiomech.2018.05.014
B.D. Shrivastava, R. Barde, A. Mishra, S. Phadke, Dielectric behavior of biomaterials at different frequencies on room temperature. J. Phys. Conf. Ser. 534, 012063 (2014). https://doi.org/10.1088/1742-6596/534/1/012063
R.M. Irastorza, M.A. Mayosky, J.R. Grigera, F. Vericat, Dielectric properties of natural and demineralized collagen bone matrix. IEEE Trans. Dielectr. Electr. Insul. 18, 320–328 (2011). https://doi.org/10.1109/TDEI.2011.5704524
B. Amin, M.A. Elahi, A. Shahzad, E. Porter, B. McDermott et al., Dielectric properties of bones for the monitoring of osteoporosis. Med. Biol. Eng. Comput. 57, 1–13 (2019). https://doi.org/10.1007/s11517-018-1887-z
H.K. Ravi, F. Simona, J. Hulliger, M. Cascella, Molecular origin of piezo- and pyroelectric properties in collagen investigated by molecular dynamics simulations. J. Phys. Chem. B 116, 1901–1907 (2012). https://doi.org/10.1021/jp208436j
M.A. El Messiery, G.W. Hastings, S. Rakowski, Ferro-electricity of dry cortical bone. J. Biomed. Eng. 1, 63–65 (1979). https://doi.org/10.1016/0141-5425(79)90013-x
Y. Liu, X. Zhang, C. Cao, Y. Zhang, J. Wei et al., Built-In electric fields dramatically induce enhancement of osseointegration. Adv. Funct. Mater. 27, 1703771 (2017). https://doi.org/10.1002/adfm.201703771
A.A. Gandhi, M. Wojtas, S.B. Lang, A.L. Kholkin, S.A.M. Tofail, Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 97, 2867–2872 (2014). https://doi.org/10.1111/jace.13045
K.N. Kamel, A. Bio-piezoelectricity, fundamentals and applications in tissue engineering and regenerative medicine. Biophys. Rev. 14, 717–733 (2022). https://doi.org/10.1007/s12551-022-00969-z
A.C. Ahn, A.J. Grodzinsky, Relevance of collagen piezoelectricity to “Wolff’s Law”: A critical review. Med. Eng. Phys. 31, 733–741 (2009). https://doi.org/10.1016/j.medengphy.2009.02.006
J. Kwon, H. Cho, Piezoelectric heterogeneity in collagen type I fibrils quantitatively characterized by piezoresponse force microscopy. ACS Biomater. Sci. Eng. 6, 6680–6689 (2020). https://doi.org/10.1021/acsbiomaterials.0c01314
B. Saeidi, M.R. Derakhshandeh, M. Delshad Chermahini, A. Doostmohammadi, Novel porous Barium titanate/nano-bioactive glass composite with high piezoelectric coefficient for bone regeneration applications. J. Mater. Eng. Perform. 29, 5420–5427 (2020). https://doi.org/10.1007/s11665-020-05016-0
J.-H. Chen, C. Liu, L. You, C.A. Simmons, Boning up on wolff’s law: mechanical regulation of the cells that make and maintain bone. J. Biomech. 43, 108–118 (2010). https://doi.org/10.1016/j.jbiomech.2009.09.016
D. Gross, W.S. Williams, Streaming potential and the electromechanical response of physiologically-moist bone. J. Biomech. 15, 277–295 (1982). https://doi.org/10.1016/0021-9290(82)90174-9
M. Mohammadkhah, D. Marinkovic, M. Zehn, S. Checa, A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 127, 544–555 (2019). https://doi.org/10.1016/j.bone.2019.07.024
B. Tandon, J.J. Blaker, S.H. Cartmell, Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 73, 1–20 (2018). https://doi.org/10.1016/j.actbio.2018.04.026
M.P. Lutolf, P.M. Gilbert, H.M. Blau, Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009). https://doi.org/10.1038/nature08602
A.J. Keung, S. Kumar, D.V. Schaffer, Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu. Rev. Cell Dev. Biol. 26, 533–556 (2010). https://doi.org/10.1146/annurev-cellbio-100109-104042
X. Wei, L. Guan, P. Fan, X. Liu, R. Liu et al., Direct current electric field stimulates nitric oxide production and promotes NO-dependent angiogenesis: involvement of the PI3K/Akt signaling pathway. J. Vasc. Res. 57, 195–205 (2020). https://doi.org/10.1159/000506517
G. Jin, G. Kim, The effect of sinusoidal AC electric stimulation of 3D PCL/CNT and PCL/β-TCP based bio-composites on cellular activities for bone tissue regeneration. J. Mater. Chem. B 1, 1439 (2013). https://doi.org/10.1039/c2tb00338d
R. Balint, N.J. Cassidy, S.H. Cartmell, Electrical stimulation: a novel tool for tissue engineering. Tissue Eng. Part B Rev. 19, 48–57 (2013). https://doi.org/10.1089/ten.teb.2012.0183
G. Eng, B.W. Lee, L. Protas, M. Gagliardi, K. Brown et al., Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat. Commun. 7, 10312 (2016). https://doi.org/10.1038/ncomms10312
S. Mobini, L. Leppik, V.T. Parameswaran, J.H. Barker, In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ 5, e2821 (2017). https://doi.org/10.7717/peerj.2821
J.S. Khaw, R. Xue, N.J. Cassidy, S.H. Cartmell, Electrical stimulation of titanium to promote stem cell orientation, elongation and osteogenesis. Acta Biomater. 139, 204–217 (2022). https://doi.org/10.1016/j.actbio.2021.08.010
G. Parise, N. Özkucur, T.K. Monsees, S. Perike, H.Q. Do et al., Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells. PLoS ONE 4(7), e6131 (2009). https://doi.org/10.1371/journal.pone.0006131
L. Leppik, M.B. Bhavsar, K.M.C. Oliveira, M. Eischen-Loges, S. Mobini et al., Construction and use of an electrical stimulation chamber for enhancing osteogenic differentiation in mesenchymal stem/stromal cells in vitro. J. Vis. Exp. (2019). https://doi.org/10.3791/59127-v
L.P. da Silva, S.C. Kundu, R.L. Reis, V.M. Correlo, Electric phenomenon: a disregarded tool in tissue engineering and regenerative medicine. Trends Biotechnol. 38, 24–49 (2020). https://doi.org/10.1016/j.tibtech.2019.07.002
F. Sahm, J. Ziebart, A. Jonitz-Heincke, D. Hansmann, T. Dauben et al., Alternating electric fields modify the function of human osteoblasts growing on and in the surroundings of titanium electrodes. Int. J. Mol. Sci. 21, 6944 (2020). https://doi.org/10.3390/ijms21186944
I. Habibagahi, M. Omidbeigi, J. Hadaya, H. Lyu, J. Jang et al., Vagus nerve stimulation using a miniaturized wirelessly powered Stimulator in pigs. Sci. Rep. 12, 8184 (2022). https://doi.org/10.1038/s41598-022-11850-0
M. Alzahrani, B.J. Roth, The calculation of maximum electric field intensity in brain tissue stimulated by a current pulse through a microcoil via capacitive coupling. Appl. Sci. 14, 2994 (2024). https://doi.org/10.3390/app14072994
B. Zhu, S.-C. Luo, H. Zhao, H.-A. Lin, J. Sekine et al., Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 5, 4523 (2014). https://doi.org/10.1038/ncomms5523
C.T. Brighton, J. Black, Z.B. Friedenberg, J.L. Esterhai, L.J. Day et al., A multicenter study of the treatment of non-union with constant direct current. J. Bone Jt. Surg. 63, 2–13 (1981). https://doi.org/10.2106/00004623-198163010-00002
J. Walleczek, Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 6, 3177–3185 (1992). https://doi.org/10.1096/fasebj.6.13.1397839
M. Guillot-Ferriols, S. Lanceros-Méndez, J.G. Ribelles, G.G. Ferrer, Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? Biomater. Adv. 138, 212918 (2022). https://doi.org/10.1016/j.bioadv.2022.212918
J.G.S. Figueiredo, B.M. de Sousa, M.P. Soares dos Santos, S.I. Vieira, Gathering evidence to leverage musculoskeletal magnetic stimulation towards clinical applicability. Small Sci. 4, 2300303 (2024). https://doi.org/10.1002/smsc.202300303
A.M. Jawad, R. Nordin, S.K. Gharghan, H.M. Jawad, M. Ismail, Opportunities and challenges for near-field wireless power transfer: a review. Energies 10, 1022 (2017). https://doi.org/10.3390/en10071022
W. Deng, Y. Zhou, A. Libanori, G. Chen, W. Yang et al., Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 51, 3380–3435 (2022). https://doi.org/10.1039/d1cs00858g
G. Khandelwal, N.P.M.J. Raj, S.J. Kim, Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 33, 100882 (2020). https://doi.org/10.1016/j.nantod.2020.100882
B. Shi, Z. Li, Y. Fan, Implantable energy-harvesting devices. Adv. Mater. 30, 1801511 (2018). https://doi.org/10.1002/adma.201801511
B. Basumatary, D. Gogoi, S. Podder, J. Bora, K.B. Singh et al., A π-conjugated organic pyroelectric nanogenerator (OPyNG) based on pyrophototronic effect. Nano Energy 114, 108655 (2023). https://doi.org/10.1016/j.nanoen.2023.108655
J. Zhou, C. Liu, H. Yu, N. Tang, C. Lei, Research progresses and application of biofuel cells based on immobilized enzymes. Appl. Sci. 13, 5917 (2023). https://doi.org/10.3390/app13105917
I. Mosnier, M. Teixeira, A. Loiseau, I. Fernandes, O. Sterkers et al., Effects of acute and chronic hypertension on the labyrinthine barriers in rat. Hear. Res. 151, 227–236 (2001). https://doi.org/10.1016/S0378-5955(00)00229-X
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
J. Yin, S. Wang, A. Di Carlo, A. Chang, X. Wan et al., Smart textiles for self-powered biomonitoring. Med-X 1(1), 3 (2023). https://doi.org/10.1007/s44258-023-00001-3
C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai et al., On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 30, e1706790 (2018). https://doi.org/10.1002/adma.201706790
Y. Zeng, Y. Cheng, J. Zhu, Y. Jie, P. Ma et al., Self-powered sensors driven by Maxwell’s displacement current wirelessly provided by TENG. Appl. Mater. Today 27, 101375 (2022). https://doi.org/10.1016/j.apmt.2022.101375
Q. Zheng, B. Shi, Z. Li, Z.L. Wang, Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv. Sci. 4, 1700029 (2017). https://doi.org/10.1002/advs.201700029
G. Li, Q. Zhu, B. Wang, R. Luo, X. Xiao et al., Rejuvenation of senescent bone marrow mesenchymal stromal cells by pulsed triboelectric stimulation. Adv. Sci. 8, e2100964 (2021). https://doi.org/10.1002/advs.202100964
J. Tian, R. Shi, Z. Liu, H. Ouyang, M. Yu et al., Self-powered implantable electrical Stimulator for osteoblasts’ proliferation and differentiation. Nano Energy 59, 705–714 (2019). https://doi.org/10.1016/j.nanoen.2019.02.073
J. Yin, V. Kashyap, S. Wang, X. Xiao, T. Tat et al., Self-powered eye-computer interaction via a triboelectric nanogenerator. Device 2, 100252 (2024). https://doi.org/10.1016/j.device.2023.100252
W. Kwak, J. Yin, S. Wang, J. Chen, Advances in triboelectric nanogenerators for self-powered wearable respiratory monitoring. FlexMat 1, 5–22 (2024). https://doi.org/10.1002/flm2.10
Y. Ouyang, X. Wang, M. Hou, M. Zheng, D. Hao et al., Smart nanoengineered electronic-scaffolds based on triboelectric nanogenerators as tissue batteries for integrated cartilage therapy. Nano Energy 107, 108158 (2023). https://doi.org/10.1016/j.nanoen.2022.108158
K. Barri, Q. Zhang, I. Swink, Y. Aucie, K. Holmberg et al., Patient-specific self-powered metamaterial implants for detecting bone healing progress. Adv. Funct. Mater. 32, 2203533 (2022). https://doi.org/10.1002/adfm.202203533
Y. Qian, Y. Cheng, J. Song, Y. Xu, W.-E. Yuan et al., Mechano-informed biomimetic polymer scaffolds by incorporating self-powered zinc oxide nanogenerators enhance motor recovery and neural function. Small 16, e2000796 (2020). https://doi.org/10.1002/smll.202000796
R. Shi, J. Zhang, J. Tian, C. Zhao, Z. Li et al., An effective self-powered strategy to endow titanium implant surface with associated activity of anti-biofilm and osteogenesis. Nano Energy 77, 105201 (2020). https://doi.org/10.1016/j.nanoen.2020.105201
Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 10, 5025–5031 (2010). https://doi.org/10.1021/nl103203u
Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics: fundamentals and applications. Natl. Sci. Rev. 1, 62–90 (2014). https://doi.org/10.1093/nsr/nwt002
K.K. Das, B. Basu, P. Maiti, A.K. Dubey, Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices. Acta Biomater. 171, 85–113 (2023). https://doi.org/10.1016/j.actbio.2023.08.057
M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody et al., Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31, 1802084 (2019). https://doi.org/10.1002/adma.201802084
H. Feng, C. Zhao, P. Tan, R. Liu, X. Chen et al., Nanogenerator for biomedical applications. Adv. Healthc. Mater. 7, 1701298 (2018). https://doi.org/10.1002/adhm.201701298
F. Jin, T. Li, T. Yuan, L. Du, C. Lai et al., Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration. Adv. Mater. 33, e2104175 (2021). https://doi.org/10.1002/adma.202104175
C. Vargas-Estevez, A. Blanquer, G. Murillo, M. Duque, L. Barrios et al., Electrical stimulation of cells through photovoltaic microcell arrays. Nano Energy 51, 571–578 (2018). https://doi.org/10.1016/j.nanoen.2018.07.012
X. Long, X. Wang, L. Yao, S. Lin, J. Zhang et al., Graphene/Si-promoted osteogenic differentiation of BMSCs through light illumination. ACS Appl. Mater. Interfaces 11, 43857–43864 (2019). https://doi.org/10.1021/acsami.9b14679
J. Fu, X. Liu, L. Tan, Z. Cui, Y. Zheng et al., Photoelectric-responsive extracellular matrix for bone engineering. ACS Nano 13, 13581–13594 (2019). https://doi.org/10.1021/acsnano.9b08115
G. Thrivikraman, S.K. Boda, B. Basu, Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspective. Biomaterials 150, 60–86 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.003
X. Wan, Z. Liu, L. Li, Manipulation of stem cells fates: the master and multifaceted roles of biophysical cues of biomaterials. Adv. Funct. Mater. 31, 2010626 (2021). https://doi.org/10.1002/adfm.202010626
B.S. Eftekhari, M. Eskandari, P.A. Janmey, A. Samadikuchaksaraei, M. Gholipourmalekabadi, Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells. Adv. Funct. Mater. 30, 1907792 (2020). https://doi.org/10.1002/adfm.201907792
F. Xing, S. Li, D. Yin, J. Xie, P.M. Rommens et al., Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. J. Magnes. Alloys 10, 1428–1456 (2022). https://doi.org/10.1016/j.jma.2022.02.013
H. Jahr, Y. Li, J. Zhou, A.A. Zadpoor, K.-U. Schröder, Additively manufactured absorbable porous metal implants–processing, alloying and corrosion behavior. Front. Mater. 8, 628633 (2021). https://doi.org/10.3389/fmats.2021.628633
A. Gupta, S. Singh, Multimodal potentials of gold nanops for bone tissue engineering and regenerative medicine: avenues and prospects. Small 18, e2201462 (2022). https://doi.org/10.1002/smll.202201462
M. Wang, S. Feng, C. Bai, K. Ji, J. Zhang et al., Ultrastretchable MXene microsupercapacitors. Small 19, 2300386 (2023). https://doi.org/10.1002/smll.202300386
X. Zhang, T. Wang, Z. Zhang, H. Liu, L. Li et al., Electrical stimulation system based on electroactive biomaterials for bone tissue engineering. Mater. Today 68, 177–203 (2023). https://doi.org/10.1016/j.mattod.2023.06.011
S. Ahadian, S. Yamada, J. Ramón-Azcón, M. Estili, X. Liang et al., Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomater. 31, 134–143 (2016). https://doi.org/10.1016/j.actbio.2015.11.047
Y. Li, L. Yang, Y. Hou, Z. Zhang, M. Chen et al., Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact. Mater. 18, 213–227 (2022). https://doi.org/10.1016/j.bioactmat.2022.03.021
P. Piotrowski, K. Klimek, G. Ginalska, A. Kaim, Beneficial influence of water-soluble PEG-functionalized C60 fullerene on human osteoblast growth in vitro. Materials (Basel) 14, 1566 (2021). https://doi.org/10.3390/ma14061566
L. Wang, H. Jiang, F. Wan, H. Sun, Y. Yang et al., High-performance artificial ligament made from helical polyester fibers wrapped with aligned carbon nanotube sheets. Adv. Healthc. Mater. 12, e2301610 (2023). https://doi.org/10.1002/adhm.202301610
B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng et al., Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020). https://doi.org/10.1016/j.ensm.2019.08.004
K. Wang, S. Margolis, J.M. Cho, S. Wang, B. Arianpour et al., Non-invasive detection of early-stage fatty liver disease via an on-skin impedance sensor and attention-based deep learning. Adv. Sci. 11, e2400596 (2024). https://doi.org/10.1002/advs.202400596
X. Zhang, S. Koo, J.H. Kim, X. Huang, N. Kong et al., Nanoscale materials-based platforms for the treatment of bone-related diseases. Matter 4, 2727–2764 (2021). https://doi.org/10.1016/j.matt.2021.05.019
J. Li, B. Xia, X. Xiao, Z. Huang, J. Yin et al., Stretchable thermoelectric fibers with three-dimensional interconnected porous network for low-grade body heat energy harvesting. ACS Nano 17, 19232–19241 (2023). https://doi.org/10.1021/acsnano.3c05797
Y. Li, T. Fang, J. Zhang, H. Zhu, Y. Sun et al., Ultrasensitive and ultrastretchable electrically self-healing conductors. Proc. Natl. Acad. Sci. U.S.A. 120, e2300953120 (2023). https://doi.org/10.1073/pnas.2300953120
S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8, eabl5511 (2022). https://doi.org/10.1126/sciadv.abl5511
T.-H. Le, Y. Kim, H. Yoon, Electrical and electrochemical properties of conducting polymers. Polymers 9, 150 (2017). https://doi.org/10.3390/polym9040150
T. Zhou, L. Yan, C. Xie, P. Li, L. Jiang et al., A mussel-inspired persistent ROS-scavenging, electroactive, and osteoinductive scaffold based on electrochemical-driven in situ nanoassembly. Small 15, e1805440 (2019). https://doi.org/10.1002/smll.201805440
Y. Wei, X. Mo, P. Zhang, Y. Li, J. Liao et al., Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array. ACS Nano 11, 5915–5924 (2017). https://doi.org/10.1021/acsnano.7b01661
Y. Fu, H. He, T. Zhao, Y. Dai, W. Han et al., A self-powered breath analyzer based on PANI/PVDF piezo-gas-sensing arrays for potential diagnostics application. Nano-Micro Lett. 10, 76 (2018). https://doi.org/10.1007/s40820-018-0228-y
C. Yu, X. Ying, M.-A. Shahbazi, L. Yang, Z. Ma et al., A nano-conductive osteogenic hydrogel to locally promote calcium influx for electro-inspired bone defect regeneration. Biomaterials 301, 122266 (2023). https://doi.org/10.1016/j.biomaterials.2023.122266
G. Jeon, S.Y. Yang, J. Byun, J.K. Kim, Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett. 11, 1284–1288 (2011). https://doi.org/10.1021/nl104329y
H.P. Savakus, K.A. Klicker, R.E. Newnham, PZT-epoxy piezoelectric transducers: a simplified fabrication procedure. Mater. Res. Bull. 16, 677–680 (1981). https://doi.org/10.1016/0025-5408(81)90267-1
B. Jiang, J. Iocozzia, L. Zhao, H. Zhang, Y.-W. Harn et al., Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228 (2019). https://doi.org/10.1039/C8CS00583D
S. Liu, J. Zhai, Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J. Mater. Chem. A 3, 1511–1517 (2015). https://doi.org/10.1039/c4ta04455j
H. Li, L. Wang, L. Xu, A. Li, P. Mao et al., First-principles study on the structural, elastic, piezoelectric and electronic properties of (BaTiO3, LiTaO3)-modified KNbO3. Mater. Today Commun. 26, 102092 (2021). https://doi.org/10.1016/j.mtcomm.2021.102092
B.K. Yun, Y.K. Park, M. Lee, N. Lee, W. Jo et al., Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation. Nanoscale Res. Lett. 9, 4 (2014). https://doi.org/10.1186/1556-276X-9-4
L.-F. Zhu, B.-P. Zhang, J.-Q. Duan, B.-W. Xun, N. Wang et al., Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time. J. Eur. Ceram. Soc. 38, 3463–3471 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.03.044
C. Li, Y. Li, T. Yao, L. Zhou, C. Xiao et al., Wireless electrochemotherapy by selenium-doped piezoelectric biomaterials to enhance cancer cell apoptosis. ACS Appl. Mater. Interfaces 12, 34505–34513 (2020). https://doi.org/10.1021/acsami.0c04666
N. Zhang, T. Zheng, J. Wu, Lead-free (K, Na)NbO3-based materials: preparation techniques and piezoelectricity. ACS Omega 5, 3099–3107 (2020). https://doi.org/10.1021/acsomega.9b03658
J. Wu, Q. Xu, E. Lin, B. Yuan, N. Qin et al., Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces 10, 17842–17849 (2018). https://doi.org/10.1021/acsami.8b01991
Y. Liu, T. Yang, B. Zhang, T. Williams, Y.-T. Lin et al., Structural insight in the interfacial effect in ferroelectric polymer nanocomposites. Adv. Mater. 34, e2109926 (2022). https://doi.org/10.1002/adma.202109926
J. Jacob, N. More, C. Mounika, P. Gondaliya, K. Kalia et al., Smart piezoelectric nanohybrid of poly(3-hydroxybutyrate- co-3-hydroxyvalerate) and Barium titanate for stimulated cartilage regeneration. ACS Appl. Bio Mater. 2, 4922–4931 (2019). https://doi.org/10.1021/acsabm.9b00667
H. Wu, H. Dong, Z. Tang, Y. Chen, Y. Liu et al., Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials 293, 121990 (2023). https://doi.org/10.1016/j.biomaterials.2022.121990
F. Zhao, Y. Zhao, Y. Liu, R. Hang, Osteogenic activity of Na2Ti3O7/SrTiO3 hybrid coatings on titanium. Surf. Coat. Technol. 398, 126090 (2020). https://doi.org/10.1016/j.surfcoat.2020.126090
K. Kapat, Q.T.H. Shubhra, M. Zhou, S. Leeuwenburgh, Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater. 30, 1909045 (2020). https://doi.org/10.1002/adfm.201909045
Z. Liu, M. Cai, X. Zhang, X. Yu, S. Wang et al., Cell-traction-triggered on-demand electrical stimulation for neuron-like differentiation. Adv. Mater. 33, e2106317 (2021). https://doi.org/10.1002/adma.202106317
N. Adadi, M. Yadid, I. Gal, M. Asulin, R. Feiner et al., Electrospun fibrous PVDF-TrFe scaffolds for cardiac tissue engineering, differentiation, and maturation. Adv. Mater. Technol. 5, 1900820 (2020). https://doi.org/10.1002/admt.201900820
N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian et al., Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006). https://doi.org/10.1063/1.2336999
T. Yoshida, K. Imoto, K. Tahara, K. Naka, Y. Uehara et al., Piezoelectricity of poly(L-lactic acid) composite film with stereo complex of poly(L-lactide) and poly(D-lactide). Jpn. J. Appl. Phys. 49, 09MC11 (2010). https://doi.org/10.1143/jjap.49.09mc11
C. Shuai, G. Liu, Y. Yang, F. Qi, S. Peng et al., A strawberry-like Ag-decorated Barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy 74, 104825 (2020). https://doi.org/10.1016/j.nanoen.2020.104825
Y. Zhou, Y. Deng, Z. Liu, M. Yin, M. Hou et al., Cytokine-scavenging nanodecoys reconstruct osteoclast/osteoblast balance toward the treatment of postmenopausal osteoporosis. Sci. Adv. 7, eabl6432 (2021). https://doi.org/10.1126/sciadv.abl6432
C.H. Yao, B.Y. Yang, Y.C.E. Li, Remodeling effects of the combination of GGT scaffolds, percutaneous electrical stimulation, and acupuncture on large bone defects in rats. Front. Bioeng. Biotechnol. 10, 832808 (2022). https://doi.org/10.3389/fbioe.2022.832808
X. Cui, Y. Shan, J. Li, M. Xiao, Y. Xi et al., Bifunctional piezo-enhanced PLLA/ZA coating prevents aseptic loosening of bone implants. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202403759
C. Zhang, W. Liu, C. Cao, F. Zhang, Q. Tang et al., Modulating surface potential by controlling the β phase content in poly(vinylidene fluoridetrifluoroethylene) membranes enhances bone regeneration. Adv. Healthc. Mater. 7, e1701466 (2018). https://doi.org/10.1002/adhm.201701466
X. Wan, X. Zhang, Z. Liu, J. Zhang, Z. Li et al., Noninvasive manipulation of cell adhesion for cell harvesting with piezoelectric composite film. Appl. Mater. Today 25, 101218 (2021). https://doi.org/10.1016/j.apmt.2021.101218
X. Zhang, C. Zhang, Y. Lin, P. Hu, Y. Shen et al., Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment. ACS Nano 10, 7279–7286 (2016). https://doi.org/10.1021/acsnano.6b02247
S. Roy Barman, S. Jhunjhunwala, Electrical stimulation for immunomodulation. ACS Omega 9, 52–66 (2024). https://doi.org/10.1021/acsomega.3c06696
K. Li, W. Xu, Y. Chen, X. Liu, L. Shen et al., Piezoelectric nanostructured surface for ultrasound-driven immunoregulation to rescue titanium implant infection. Adv. Funct. Mater. 33, 2214522 (2023). https://doi.org/10.1002/adfm.202214522
S.D. Dutta, K. Ganguly, A. Randhawa, T.V. Patil, D.K. Patel et al., Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization. Biomaterials 294, 121999 (2023). https://doi.org/10.1016/j.biomaterials.2023.121999
X. Zhang, Y. Zhang, J. Chen, Y. Wu, J. Zhang et al., Nanosecond pulsed electric field inhibits malignant melanoma growth by inducing the change of systemic immunity. Med. Oral Patologia Oral y Cirugia Bucal 24(4), e555 (2019). https://doi.org/10.4317/medoral.22976
J. Liang, H. Zeng, L. Qiao, H. Jiang, Q. Ye et al., 3D printed piezoelectric wound dressing with dual piezoelectric response models for scar-prevention wound healing. ACS Appl. Mater. Interfaces 14, 30507–30522 (2022). https://doi.org/10.1021/acsami.2c04168
X. Liu, X. Wan, B. Sui, Q. Hu, Z. Liu et al., Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation. Bioact. Mater. 35, 346–361 (2024). https://doi.org/10.1016/j.bioactmat.2024.02.011
Y. Kong, F. Liu, B. Ma, J. Duan, W. Yuan et al., Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization. Adv. Sci. 8, 2100962 (2021). https://doi.org/10.1002/advs.202100962
D. D’Alessandro, C. Ricci, M. Milazzo, G. Strangis, F. Forli et al., Piezoelectric signals in vascularized bone regeneration. Biomolecules 11, 1731 (2021). https://doi.org/10.3390/biom11111731
R.C. Gonçalves, A. Banfi, M.B. Oliveira, J.F. Mano, Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 269, 120628 (2021). https://doi.org/10.1016/j.biomaterials.2020.120628
M.N. Collins, G. Ren, K. Young, S. Pina, R.L. Reis et al., Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31, 2010609 (2021). https://doi.org/10.1002/adfm.202010609
S. Stegen, N. van Gastel, G. Carmeliet, Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70, 19–27 (2015). https://doi.org/10.1016/j.bone.2014.09.017
L. Faes, S.K. Wagner, D.J. Fu, X. Liu, E. Korot et al., Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Lancet Digit. Health 1, e232–e242 (2019). https://doi.org/10.1016/S2589-7500(19)30108-6
G. Yao, X. Mo, C. Yin, W. Lou, Q. Wang et al., A programmable and skin temperature-activated electromechanical synergistic dressing for effective wound healing. Sci. Adv. 8, eabl8379 (2022). https://doi.org/10.1126/sciadv.abl8379
M. Zhao, H. Bai, E. Wang, J.V. Forrester, C.D. McCaig, Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci. 117, 397–405 (2004). https://doi.org/10.1242/jcs.00868
C. Li, S. Zhang, Y. Yao, Y. Wang, C. Xiao et al., Piezoelectric bioactive glasses composite promotes angiogenesis by the synergistic effect of wireless electrical stimulation and active ions. Adv. Healthc. Mater. 12, e2300064 (2023). https://doi.org/10.1002/adhm.202300064
J. Sun, C. Xu, K. Wo, Y. Wang, J. Zhang et al., Wireless electric cues mediate autologous DPSC-loaded conductive hydrogel microspheres to engineer the immuno-angiogenic niche for homologous maxillofacial bone regeneration. Adv. Healthc. Mater. 13, e2303405 (2024). https://doi.org/10.1002/adhm.202303405
J. Yin, S. Pan, X. Guo, Y. Gao, D. Zhu et al., Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett. 13, 30 (2021). https://doi.org/10.1007/s40820-020-00547-6
S. Pang, Y. He, R. Zhong, Z. Guo, P. He et al., Multifunctional ZnO/TiO2 nanoarray composite coating with antibacterial activity, cytocompatibility and piezoelectricity. Ceram. Int. 45, 12663–12671 (2019). https://doi.org/10.1016/j.ceramint.2019.03.076
B. Gottenbos, Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother. 48, 7–13 (2001). https://doi.org/10.1093/jac/48.1.7
Z. Li, D. He, B. Guo, Z. Wang, H. Yu et al., Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat. Commun. 14, 6963 (2023). https://doi.org/10.1038/s41467-023-42598-4
Q. Pan, Y. Zheng, Y. Zhou, X. Zhang, M. Yuan et al., Doping engineering of piezo-sonocatalytic nanocoating confer dental implants with enhanced antibacterial performances and osteogenic activity. Adv. Funct. Mater. 34, 2313553 (2024). https://doi.org/10.1002/adfm.202313553
S. Mendis, P. Puska, B. e. Norrving, W. H. Organization, Global atlas on cardiovascular disease prevention and control. (World Health Organization; 2011).
A.S. Verma, D. Kumar, A.K. Dubey, Antibacterial and cellular response of piezoelectric Na0.5K0.5NbO3 modified 1393 bioactive glass. Mater. Sci. Eng. C 116, 111138 (2020). https://doi.org/10.1016/j.msec.2020.111138
C. Angulo-Pineda, K. Srirussamee, P. Palma, V.M. Fuenzalida, S.H. Cartmell et al., Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials (Basel) 10, 428 (2020). https://doi.org/10.3390/nano10030428
S. Swain, R.N. Padhy, T.R. Rautray, Polarized piezoelectric bioceramic composites exhibit antibacterial activity. Mater. Chem. Phys. 239, 122002 (2020). https://doi.org/10.1016/j.matchemphys.2019.122002
X. Qu, H. Yang, B. Jia, Z. Yu, Y. Zheng et al., Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomater. 117, 400–417 (2020). https://doi.org/10.1016/j.actbio.2020.09.041
E.O. Carvalho, M.M. Fernandes, K. Ivanova, P. Rodriguez-Lejarraga, T. Tzanov et al., Multifunctional piezoelectric surfaces enhanced with layer-by-layer coating for improved osseointegration and antibacterial performance. Colloids Surf. B Biointerfaces 243, 114123 (2024). https://doi.org/10.1016/j.colsurfb.2024.114123
A. Kumar, V. Gajraj, A. Das, D. Sen, H. Xu et al., Silver, copper, magnesium and zinc contained electroactive mesoporous bioactive S53P4 glass–ceramics nanop for bone regeneration: bioactivity, biocompatibility and antibacterial activity. J. Inorg. Organomet. Polym. Mater. 32, 2309–2321 (2022). https://doi.org/10.1007/s10904-022-02295-z
Y. Huang, X. Wan, Q. Su, C. Zhao, J. Cao et al., Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections. Nat. Commun. 15, 1643 (2024). https://doi.org/10.1038/s41467-024-45619-y
Y. Long, J. Li, F. Yang, J. Wang, X. Wang, Wearable and implantable electroceuticals for therapeutic electrostimulations. Adv. Sci. 8, 2004023 (2021). https://doi.org/10.1002/advs.202004023
S. Wang, Q. Cui, P. Abiri, M. Roustaei, E. Zhu et al., A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci. Adv. 9, eadj0540 (2023). https://doi.org/10.1126/sciadv.adj0540
V. Nair, A.N. Dalrymple, Z. Yu, G. Balakrishnan, C.J. Bettinger et al., Miniature battery-free bioelectronics. Science 382, eabn4732 (2023). https://doi.org/10.1126/science.abn4732
K. Matsuo, N. Irie, Osteoclast–osteoblast communication. Arch. Biochem. Biophys. 473, 201–209 (2008). https://doi.org/10.1016/j.abb.2008.03.027
W. Tang, J. Tian, Q. Zheng, L. Yan, J. Wang et al., Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation. ACS Nano 9, 7867–7873 (2015). https://doi.org/10.1021/acsnano.5b03567
G. Yao, L. Kang, C. Li, S. Chen, Q. Wang et al., A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc. Natl. Acad. Sci. U.S.A. 118, e2100772118 (2021). https://doi.org/10.1073/pnas.2100772118
Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi et al., Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2, e1501478 (2016). https://doi.org/10.1126/sciadv.1501478
N. Wang, Y. Dai, J.Y.H. Fuh, C.-C. Yen, W.F. Lu, Applications of triboelectric nanogenerators in bone tissue engineering. Adv. Mater. Technol. 8, 2201310 (2023). https://doi.org/10.1002/admt.202201310
L. Ricotti, A. Cafarelli, C. Manferdini, D. Trucco, L. Vannozzi et al., Ultrasound stimulation of piezoelectric nanocomposite hydrogels boosts chondrogenic differentiation in vitro, in both a normal and inflammatory milieu. ACS Nano 18, 2047–2065 (2024). https://doi.org/10.1021/acsnano.3c08738
B. Wang, G. Li, Q. Zhu, W. Liu, W. Ke et al., Bone repairment via mechanosensation of Piezo1 using wearable pulsed triboelectric nanogenerator. Small 18, e2201056 (2022). https://doi.org/10.1002/smll.202201056
J.P. Decuypere, G. Monaco, L. Missiaen, H. De Smedt, J.B. Parys et al., IP(3) receptors, mitochondria, and Ca signaling: implications for aging. J. Aging Res. 2011, 920178 (2011). https://doi.org/10.4061/2011/920178
S.H. Bhang, W.S. Jang, J. Han, J.-K. Yoon, W.-G. La et al., Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv. Funct. Mater. 27, 1603497 (2017). https://doi.org/10.1002/adfm.201603497
M. Yao, L. Li, Y. Wang, D. Yang, L. Miao et al., Mechanical energy harvesting and specific potential distribution of a flexible piezoelectric nanogenerator based on 2-D BaTiO3-oriented polycrystals. ACS Sustainable Chem. Eng. 10, 3276–3287 (2022). https://doi.org/10.1021/acssuschemeng.1c07875
Y. Zhang, L. Xu, Z. Liu, X. Cui, Z. Xiang et al., Self-powered pulsed direct current stimulation system for enhancing osteogenesis in MC3T3-E1. Nano Energy 85, 106009 (2021). https://doi.org/10.1016/j.nanoen.2021.106009
J. Chen, L. Song, F. Qi, S. Qin, X. Yang et al., Enhanced bone regeneration via ZIF-8 decorated hierarchical polyvinylidene fluoride piezoelectric foam nanogenerator: coupling of bioelectricity, angiogenesis, and osteogenesis. Nano Energy 106, 108076 (2023). https://doi.org/10.1016/j.nanoen.2022.108076
T. Wang, H. Ouyang, Y. Luo, J. Xue, E. Wang et al., Rehabilitation exercise-driven symbiotic electrical stimulation system accelerating bone regeneration. Sci. Adv. 10, eadi6799 (2024). https://doi.org/10.1126/sciadv.adi6799
F. Yang, J. Li, Y. Long, Z. Zhang, L. Wang et al., Wafer-scale heterostructured piezoelectric bio-organic thin films. Science 373, 337–342 (2021). https://doi.org/10.1126/science.abf2155
C. Peter, H. Kliem, Ferroelectric imprint and polarization in the amorphous phase in P(VDF-TrFE). J. Appl. Phys. (2019). https://doi.org/10.1063/1.5091930
X. Wang, X. Dai, Y. Chen, Sonopiezoelectric nanomedicine and materdicine. Small 19, 2301693 (2023). https://doi.org/10.1002/smll.202301693
Y. Sun, S. Chao, H. Ouyang, W. Zhang, W. Luo et al., Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Sci. Bull. 67, 1284–1294 (2022). https://doi.org/10.1016/j.scib.2022.04.002
Y. Bai, L. Yin, C. Hou, Y. Zhou, F. Zhang et al., Response regulation for epidermal fabric strain sensors via mechanical strategy. Adv. Funct. Mater. 33, 2214119 (2023). https://doi.org/10.1002/adfm.202214119
Y. Zhou, Y. Qu, L. Yin, W. Cheng, Y. Huang et al., Coassembly of elastomeric microfibers and silver nanowires for fabricating ultra-stretchable microtextiles with weakly and tunable negative permittivity. Compos. Sci. Technol. 223, 109415 (2022). https://doi.org/10.1016/j.compscitech.2022.109415
H. Liu, Z. Wang, L. Gao, Y. Huang, H. Tang et al., Optofluidic resonance of a transparent liquid jet excited by a continuous wave laser. Phys. Rev. Lett. 127, 244502 (2021). https://doi.org/10.1103/PhysRevLett.127.244502
H. Wang, D. Ye, A. Li, B. Zhang, W. Guo et al., Self-driven, monopolar electrohydrodynamic printing via dielectric nanop layer. Nano Lett. 24, 9511–9519 (2024). https://doi.org/10.1021/acs.nanolett.4c01926
Y. Tian, Y. Liu, Z. Peng, C. Xu, D. Ye et al., Air entrapment of a neutral drop impacting onto a flat solid surface in electric fields. J. Fluid Mech. 946, A21 (2022). https://doi.org/10.1017/jfm.2022.439
Y.-P. Qu, Y.-L. Zhou, Y. Luo, Y. Liu, J.-F. Ding et al., Universal paradigm of ternary metacomposites with tunable Epsilon-negative and Epsilon-near-zero response for perfect electromagnetic shielding. Rare Met. 43, 796–809 (2024). https://doi.org/10.1007/s12598-023-02510-x
Y. Zhou, H. Lian, Z. Li, L. Yin, Q. Ji et al., Crack engineering boosts the performance of flexible sensors. VIEW 3, 20220025 (2022). https://doi.org/10.1002/VIW.20220025
R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2021). https://doi.org/10.1007/s40820-021-00751-y
X. Wang, L. Qi, H. Yang, Y. Rao, H. Chen, Stretchable synaptic transistors based on the field effect for flexible neuromorphic electronics. Soft Sci. 3, 15 (2023). https://doi.org/10.20517/ss.2023.06
Y. Huang, Y. Ding, J. Bian, Y. Su, J. Zhou et al., Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy 40, 432–439 (2017). https://doi.org/10.1016/j.nanoen.2017.07.048
C. Tan, C. Deng, S. Li, A. Abena, P. Jamshidi et al., Mechanical property and biological behaviour of additive manufactured TiNi functionally graded lattice structure. Int. J. Extrem. Manuf. 4, 045003 (2022). https://doi.org/10.1088/2631-7990/ac94fa
S.D. Kim, K. Park, S. Lee, J. Kum, Y. Kim et al., Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing electrodes. Soft Sci. 3, 18 (2023). https://doi.org/10.20517/ss.2023.08
Y. Zhou, S. Wang, J. Yin, J. Wang, F. Manshaii et al., Flexible metasurfaces for multifunctional interfaces. ACS Nano 18, 2685–2707 (2024). https://doi.org/10.1021/acsnano.3c09310
H. Yu, M. Gai, L. Liu, F. Chen, J. Bian et al., Laser-induced direct graphene patterning: from formation mechanism to flexible applications. Soft Sci. 3, 4 (2023). https://doi.org/10.20517/ss.2022.26
A.C. Da Silva, T.E. Paterson, I.R. Minev, Electro-assisted assembly of conductive polymer and soft hydrogel into core-shell hybrids. Soft Sci. 3, 3 (2023). https://doi.org/10.20517/ss.2022.25
J. Song, B. Lv, W. Chen, P. Ding, Y. He, Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair. Int. J. Extrem. Manuf. 5, 032008 (2023). https://doi.org/10.1088/2631-7990/acde21
A. Chen, J. Su, Y. Li, H. Zhang, Y. Shi et al., 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering. Int. J. Extrem. Manuf. 5, 032007 (2023). https://doi.org/10.1088/2631-7990/acd88f
Y. Jiang, D. Ye, A. Li, B. Zhang, W. Han et al., Transient charge-driven 3D conformal printing via pulsed-plasma impingement. Proc. Natl. Acad. Sci. USA 121, e2402135121 (2024). https://doi.org/10.1073/pnas.2402135121
X. Han, Q. Saiding, X. Cai, Y. Xiao, P. Wang et al., Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds. Nano-Micro Lett. 15, 239 (2023). https://doi.org/10.1007/s40820-023-01187-2