A Multifunctional Anti-Proton Electrolyte for High-Rate and Super-Stable Aqueous Zn-Vanadium Oxide Battery
Corresponding Author: Peixin Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 154
Abstract
Large volumetric expansion of cathode hosts and sluggish transport kinetics in the cathode–electrolyte interface, as well as dendrite growth and hydrogen evolution at Zn anode side are considered as the system problems that cause the electrochemical failure of aqueous Zn-vanadium oxide battery. In this work, a multifunctional anti-proton electrolyte was proposed to synchronously solve all those issues. Theoretical and experimental studies confirm that PEG 400 additive can regulate the Zn2+ solvation structure and inhibit the ionization of free water molecules of the electrolyte. Then, smaller lattice expansion of vanadium oxide hosts and less associated by-product formation can be realized by using such electrolyte. Besides, such electrolyte is also beneficial to guide the uniform Zn deposition and suppress the side reaction of hydrogen evolution. Owing to the integrated synergetic modification, a high-rate and ultrastable aqueous Zn-V2O3/C battery can be constructed, which can remain a specific capacity of 222.8 mAh g−1 after 6000 cycles at 5 A g−1, and 121.8 mAh g−1 even after 18,000 cycles at 20 A g−1, respectively. Such “all-in-one” solution based on the electrolyte design provides a new strategy for developing high-performance aqueous Zn-ion battery.
Highlights:
1 The introduction of PEG 400 additive in the aqueous electrolyte enables regulating the Zn2+ solvation structure and inhibiting the ionization of free water molecules.
2 Such anti-proton electrolyte can not only reduce the lattice expansion of cathode hosts and inhibit the associated by-products, but also guide the uniform Zn deposition and inhibit the hydrogen evolution reaction.
3 A high-rate Zn-V2O3/C battery with 18,000-cycle shelf-life can be demonstrated via the integrated synergetic modification mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Huang, X. Wang, X. Liu, L. Mai, Fast ionic storage in aqueous rechargeable batteries: from fundamentals to applications. Adv. Mater. 34(9), 2105611 (2022). https://doi.org/10.1002/adma.202105611
- B. Yong, D. Ma, Y. Wang, H. Mi, C. He et al., Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives. Adv. Energy Mater. 10(45), 2002354 (2020). https://doi.org/10.1002/aenm.202002354
- Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv. Energy Mater. 11(5), 2002529 (2020). https://doi.org/10.1002/aenm.202002529
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10(38), 2001050 (2020). https://doi.org/10.1002/aenm.202001050
- M. Mao, X. Wu, Y. Hu, Q. Yuan, Y.B. He et al., Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J. Energy Chem. 52, 277–283 (2021). https://doi.org/10.1016/j.jechem.2020.04.061
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- Y. Lu, T. Zhu, W. Bergh, M. Stefik, K. Huang, A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers. Angew. Chem. Int. Ed. 59(39), 17004–17011 (2020). https://doi.org/10.1002/anie.202006171
- M. Yang, D. Ma, H. Mi, X. Yang, Y. Wang et al., A unique morphology and interface dual-engineering strategy enables the holey C@VO2 cathode with enhanced storage kinetics for aqueous Zn-ion batteries. J. Mater. Chem. A 9(13), 8792–8804 (2021). https://doi.org/10.1039/D1TA00892G
- Y. Zeng, X.F. Lu, S.L. Zhang, D. Luan, S. Li et al., Construction of Co–Mn prussian blue analog hollow spheres for efficient aqueous zn-ion batteries. Angew. Chem. Int. Ed. 60(41), 22189–22194 (2021). https://doi.org/10.1002/anie.202107697
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17(25), 2100902 (2021). https://doi.org/10.1002/smll.202100902
- F. Wan, Z. Niu, Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(46), 16358–16367 (2019). https://doi.org/10.1002/anie.201903941
- X. Chen, H. Zhang, J.H. Liu, Y. Gao, X. Cao et al., Vanadium-based cathodes for aqueous zinc-ion batteries: mechanism, design strategies and challenges. Energy Storage Mater. 50, 21–46 (2022). https://doi.org/10.1016/j.ensm.2022.04.040
- Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar et al., Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 9(22), 1900237 (2019). https://doi.org/10.1002/aenm.201900237
- Y. Kim, Y. Park, M. Kim, J. Lee, K.J. Kim et al., Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 13, 2371 (2022). https://doi.org/10.1038/s41467-022-29987-x
- Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32(7), 2109749 (2022). https://doi.org/10.1002/adfm.202109749
- Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30(43), 2003932 (2020). https://doi.org/10.1002/adfm.202003932
- M. Qiu, L. Ma, P. Sun, Z. Wang, G. Cui et al., Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode. Nano-Micro Lett. 14, 31 (2021). https://doi.org/10.1007/s40820-021-00777-2
- X. Liu, H. Euchner, M. Zarrabeitia, X. Gao, G.A. Elia et al., Operando pH measurements decipher H+/Zn2+ intercalation chemistry in high-performance aqueous Zn/δ-V2O5 batteries. ACS Energy Lett. 5(9), 2979–2986 (2020). https://doi.org/10.1021/acsenergylett.0c01767
- F. Wang, L.E. Blanc, Q. Li, A. Faraone, X. Ji et al., Quantifying and suppressing proton intercalation to enable high-voltage Zn-ion batteries. Adv. Energy Mater. 11(41), 2102016 (2021). https://doi.org/10.1002/aenm.202102016
- C. Li, R. Kingsbury, L. Zhou, A. Shyamsunder, K.A. Persson et al., Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating. ACS Energy Lett. 7(1), 533–540 (2022). https://doi.org/10.1021/acsenergylett.1c02514
- Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
- Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou et al., Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 13, 168–174 (2018). https://doi.org/10.1016/j.ensm.2018.01.009
- W. Xu, C. Sun, N. Wang, X. Liao, K. Zhao et al., Sn stabilized pyrovanadate structure rearrangement for zinc ion battery. Nano Energy 81, 105584 (2021). https://doi.org/10.1016/j.nanoen.2020.105584
- S. Deng, Z. Yuan, Z. Tie, C. Wang, L. Song et al., Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(49), 22002–22006 (2020). https://doi.org/10.1002/anie.202010287
- D. Dong, J. Xie, Z. Liang, Y.C. Lu, Tuning intermolecular interactions of molecular crowding electrolyte for high-performance aqueous batteries. ACS Energy Lett. 7(1), 123–130 (2021). https://doi.org/10.1021/acsenergylett.1c02064
- Y. Wu, Z. Zhu, D. Shen, L. Chen, T. Song et al., Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Storage Mater. 45, 1084–1091 (2022). https://doi.org/10.1016/j.ensm.2021.11.003
- Y. Guo, J. Gu, R. Zhang, S. Zhang, Z. Li et al., Molecular crowding effect in aqueous electrolytes to suppress hydrogen reduction reaction and enhance electrochemical nitrogen reduction. Adv. Energy Mater. 11(36), 2101699 (2021). https://doi.org/10.1002/aenm.202101699
- J. Pavelec, D. DiGuiseppi, B.Y. Zavlavsky, V.N. Uversky, R. Schweitzer-Stenner, Perturbation of water structure by water-polymer interactions probed by FTIR and polarized Raman spectroscopy. J. Mol. Liq. 275, 463–473 (2019). https://doi.org/10.1016/j.molliq.2018.11.023
- S. Tan, Y. Jiang, Q. Wei, Q. Huang, Y. Dai et al., Multidimensional synergistic nanoarchitecture exhibiting highly stable and ultrafast sodium-ion storage. Adv. Mater. 30(18), 1707122 (2018). https://doi.org/10.1002/adma.201707122
- X. Wang, Z. Zhang, S. Xiong, F. Tian, Z. Feng et al., A high-rate and ultrastable aqueous zinc-ion battery with a novel MgV2O6·1.7H2O nanobelt cathode. Small 17(20), 2100318 (2021). https://doi.org/10.1002/smll.202100318
- R. Baddour-Hadjean, A. Marzouk, J.P. Pereira-Ramos, Structural modifications of LixV2O5 in a composite cathode (0≤ x < 2) investigated by Raman microspectrometry. J. Raman Spectrosc. 43(1), 153–160 (2012). https://doi.org/10.1002/jrs.2984
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
- S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 33(12), 2007480 (2021). https://doi.org/10.1002/adma.202007480
- F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168–3175 (2018). https://doi.org/10.1039/c8ee01883a
- X. Yang, W. Deng, M. Chen, Y. Wang, C.F. Sun, Mass-producible, quasi-zero-strain, lattice-water-rich inorganic open-frameworks for ultrafast-charging and long-cycling zinc-ion batteries. Adv. Mater. 32(45), 2003592 (2020). https://doi.org/10.1002/adma.202003592
- J. Ding, H. Zheng, H. Gao, Q. Liu, Z. Hu et al., In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage. Adv. Energy Mater. 11(26), 2100973 (2021). https://doi.org/10.1002/aenm.202100973
- H.H. Kristoffersen, H. Metiu, Structure of V2O5·nH2O xerogels. J. Phys. Chem. C 120(7), 3986–3992 (2016). https://doi.org/10.1021/acs.jpcc.5b12418
- M.J. Park, H.Y. Asl, A. Manthiram, Multivalent-ion versus proton insertion into battery electrodes. ACS Energy Lett. 5(7), 2367–2375 (2020). https://doi.org/10.1021/acsenergylett.0c01021
- L. Wang, K.W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5(10), eaax4279 (2019). https://doi.org/10.1126/sciadv.aax4279
- P. Oberholzer, E. Tervoort, A. Bouzid, A. Pasquarello, D. Kundu, Oxide versus nonoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof. ACS Appl. Mater. Interfaces 11(1), 674–682 (2019). https://doi.org/10.1021/acsami.8b16284
- G. Yang, Q. Li, K. Ma, C. Hong, C. Wang, The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 8084–8095 (2020). https://doi.org/10.1039/d0ta00615g
- F. Wan, S. Huang, H. Cao, Z. Niu, Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 14(6), 6752–6760 (2020). https://doi.org/10.1021/acsnano.9b10214
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- S. Liu, J. Mao, W.K. Pang, J. Vongsvivut, X. Zeng et al., Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 31(38), 2104281 (2021). https://doi.org/10.1002/adfm.202104281
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
References
M. Huang, X. Wang, X. Liu, L. Mai, Fast ionic storage in aqueous rechargeable batteries: from fundamentals to applications. Adv. Mater. 34(9), 2105611 (2022). https://doi.org/10.1002/adma.202105611
B. Yong, D. Ma, Y. Wang, H. Mi, C. He et al., Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives. Adv. Energy Mater. 10(45), 2002354 (2020). https://doi.org/10.1002/aenm.202002354
Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv. Energy Mater. 11(5), 2002529 (2020). https://doi.org/10.1002/aenm.202002529
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10(38), 2001050 (2020). https://doi.org/10.1002/aenm.202001050
M. Mao, X. Wu, Y. Hu, Q. Yuan, Y.B. He et al., Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J. Energy Chem. 52, 277–283 (2021). https://doi.org/10.1016/j.jechem.2020.04.061
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
Y. Lu, T. Zhu, W. Bergh, M. Stefik, K. Huang, A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers. Angew. Chem. Int. Ed. 59(39), 17004–17011 (2020). https://doi.org/10.1002/anie.202006171
M. Yang, D. Ma, H. Mi, X. Yang, Y. Wang et al., A unique morphology and interface dual-engineering strategy enables the holey C@VO2 cathode with enhanced storage kinetics for aqueous Zn-ion batteries. J. Mater. Chem. A 9(13), 8792–8804 (2021). https://doi.org/10.1039/D1TA00892G
Y. Zeng, X.F. Lu, S.L. Zhang, D. Luan, S. Li et al., Construction of Co–Mn prussian blue analog hollow spheres for efficient aqueous zn-ion batteries. Angew. Chem. Int. Ed. 60(41), 22189–22194 (2021). https://doi.org/10.1002/anie.202107697
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13, 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17(25), 2100902 (2021). https://doi.org/10.1002/smll.202100902
F. Wan, Z. Niu, Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(46), 16358–16367 (2019). https://doi.org/10.1002/anie.201903941
X. Chen, H. Zhang, J.H. Liu, Y. Gao, X. Cao et al., Vanadium-based cathodes for aqueous zinc-ion batteries: mechanism, design strategies and challenges. Energy Storage Mater. 50, 21–46 (2022). https://doi.org/10.1016/j.ensm.2022.04.040
Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar et al., Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 9(22), 1900237 (2019). https://doi.org/10.1002/aenm.201900237
Y. Kim, Y. Park, M. Kim, J. Lee, K.J. Kim et al., Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 13, 2371 (2022). https://doi.org/10.1038/s41467-022-29987-x
Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32(7), 2109749 (2022). https://doi.org/10.1002/adfm.202109749
Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30(43), 2003932 (2020). https://doi.org/10.1002/adfm.202003932
M. Qiu, L. Ma, P. Sun, Z. Wang, G. Cui et al., Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode. Nano-Micro Lett. 14, 31 (2021). https://doi.org/10.1007/s40820-021-00777-2
X. Liu, H. Euchner, M. Zarrabeitia, X. Gao, G.A. Elia et al., Operando pH measurements decipher H+/Zn2+ intercalation chemistry in high-performance aqueous Zn/δ-V2O5 batteries. ACS Energy Lett. 5(9), 2979–2986 (2020). https://doi.org/10.1021/acsenergylett.0c01767
F. Wang, L.E. Blanc, Q. Li, A. Faraone, X. Ji et al., Quantifying and suppressing proton intercalation to enable high-voltage Zn-ion batteries. Adv. Energy Mater. 11(41), 2102016 (2021). https://doi.org/10.1002/aenm.202102016
C. Li, R. Kingsbury, L. Zhou, A. Shyamsunder, K.A. Persson et al., Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating. ACS Energy Lett. 7(1), 533–540 (2022). https://doi.org/10.1021/acsenergylett.1c02514
Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou et al., Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 13, 168–174 (2018). https://doi.org/10.1016/j.ensm.2018.01.009
W. Xu, C. Sun, N. Wang, X. Liao, K. Zhao et al., Sn stabilized pyrovanadate structure rearrangement for zinc ion battery. Nano Energy 81, 105584 (2021). https://doi.org/10.1016/j.nanoen.2020.105584
S. Deng, Z. Yuan, Z. Tie, C. Wang, L. Song et al., Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(49), 22002–22006 (2020). https://doi.org/10.1002/anie.202010287
D. Dong, J. Xie, Z. Liang, Y.C. Lu, Tuning intermolecular interactions of molecular crowding electrolyte for high-performance aqueous batteries. ACS Energy Lett. 7(1), 123–130 (2021). https://doi.org/10.1021/acsenergylett.1c02064
Y. Wu, Z. Zhu, D. Shen, L. Chen, T. Song et al., Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Storage Mater. 45, 1084–1091 (2022). https://doi.org/10.1016/j.ensm.2021.11.003
Y. Guo, J. Gu, R. Zhang, S. Zhang, Z. Li et al., Molecular crowding effect in aqueous electrolytes to suppress hydrogen reduction reaction and enhance electrochemical nitrogen reduction. Adv. Energy Mater. 11(36), 2101699 (2021). https://doi.org/10.1002/aenm.202101699
J. Pavelec, D. DiGuiseppi, B.Y. Zavlavsky, V.N. Uversky, R. Schweitzer-Stenner, Perturbation of water structure by water-polymer interactions probed by FTIR and polarized Raman spectroscopy. J. Mol. Liq. 275, 463–473 (2019). https://doi.org/10.1016/j.molliq.2018.11.023
S. Tan, Y. Jiang, Q. Wei, Q. Huang, Y. Dai et al., Multidimensional synergistic nanoarchitecture exhibiting highly stable and ultrafast sodium-ion storage. Adv. Mater. 30(18), 1707122 (2018). https://doi.org/10.1002/adma.201707122
X. Wang, Z. Zhang, S. Xiong, F. Tian, Z. Feng et al., A high-rate and ultrastable aqueous zinc-ion battery with a novel MgV2O6·1.7H2O nanobelt cathode. Small 17(20), 2100318 (2021). https://doi.org/10.1002/smll.202100318
R. Baddour-Hadjean, A. Marzouk, J.P. Pereira-Ramos, Structural modifications of LixV2O5 in a composite cathode (0≤ x < 2) investigated by Raman microspectrometry. J. Raman Spectrosc. 43(1), 153–160 (2012). https://doi.org/10.1002/jrs.2984
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 33(12), 2007480 (2021). https://doi.org/10.1002/adma.202007480
F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168–3175 (2018). https://doi.org/10.1039/c8ee01883a
X. Yang, W. Deng, M. Chen, Y. Wang, C.F. Sun, Mass-producible, quasi-zero-strain, lattice-water-rich inorganic open-frameworks for ultrafast-charging and long-cycling zinc-ion batteries. Adv. Mater. 32(45), 2003592 (2020). https://doi.org/10.1002/adma.202003592
J. Ding, H. Zheng, H. Gao, Q. Liu, Z. Hu et al., In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage. Adv. Energy Mater. 11(26), 2100973 (2021). https://doi.org/10.1002/aenm.202100973
H.H. Kristoffersen, H. Metiu, Structure of V2O5·nH2O xerogels. J. Phys. Chem. C 120(7), 3986–3992 (2016). https://doi.org/10.1021/acs.jpcc.5b12418
M.J. Park, H.Y. Asl, A. Manthiram, Multivalent-ion versus proton insertion into battery electrodes. ACS Energy Lett. 5(7), 2367–2375 (2020). https://doi.org/10.1021/acsenergylett.0c01021
L. Wang, K.W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5(10), eaax4279 (2019). https://doi.org/10.1126/sciadv.aax4279
P. Oberholzer, E. Tervoort, A. Bouzid, A. Pasquarello, D. Kundu, Oxide versus nonoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof. ACS Appl. Mater. Interfaces 11(1), 674–682 (2019). https://doi.org/10.1021/acsami.8b16284
G. Yang, Q. Li, K. Ma, C. Hong, C. Wang, The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 8084–8095 (2020). https://doi.org/10.1039/d0ta00615g
F. Wan, S. Huang, H. Cao, Z. Niu, Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 14(6), 6752–6760 (2020). https://doi.org/10.1021/acsnano.9b10214
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
S. Liu, J. Mao, W.K. Pang, J. Vongsvivut, X. Zeng et al., Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 31(38), 2104281 (2021). https://doi.org/10.1002/adfm.202104281
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3