3D Artificial Array Interface Engineering Enabling Dendrite-Free Stable Zn Metal Anode
Corresponding Author: Peixin Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 37
Abstract
The ripple effect induced by uncontrollable Zn deposition is considered as the Achilles heel for developing high-performance aqueous Zn-ion batteries. For this problem, this work reports a design concept of 3D artificial array interface engineering to achieve volume stress elimination, preferred orientation growth and dendrite-free stable Zn metal anode. The mechanism of MXene array interface on modulating the growth kinetics and deposition behavior of Zn atoms were firstly disclosed on the multi-scale level, including the in-situ optical microscopy and transient simulation at the mesoscopic scale, in-situ Raman spectroscopy and in-situ X-ray diffraction at the microscopic scale, as well as density functional theory calculation at the atomic scale. As indicated by the electrochemical performance tests, such engineered electrode exhibits the comprehensive enhancements not only in the resistance of corrosion and hydrogen evolution, but also the rate capability and cyclic stability. High-rate performance (20 mA cm−2) and durable cycle lifespan (1350 h at 0.5 mA cm−2, 1500 h at 1 mA cm−2 and 800 h at 5 mA cm−2) can be realized. Moreover, the improvement of rate capability (214.1 mAh g−1 obtained at 10 A g−1) and cyclic stability also can be demonstrated in the case of 3D MXene array@Zn/VO2 battery. Beyond the previous 2D closed interface engineering, this research offers a unique 3D open array interface engineering to stabilize Zn metal anode, the controllable Zn deposition mechanism revealed is also expected to deepen the fundamental of rechargeable batteries including but not limited to aqueous Zn metal batteries.
Highlights:
1 The design concept of 3D artificial array interface engineering was proposed to achieve eliminated volume stress, preferred orientation growth and dendrite-free Zn metal anode.
2 The mechanism of MXene array interface on modulating the growth kinetics and deposition behavior of Zn atoms were firstly uncovered at a multiscale level.
3 The engineered electrode exhibits comprehensive enhancements in the resistance of corrosion and hydrogen evolution reaction, as well as the rate capability and cyclic stability.
4 3D MXene array@Zn/VO2 batteries with enhanced rate performance (214.1 mAh g−1 at 10 A g−1) and cycle lifespan can be demonstrated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- B. Li, K. Yang, J. Ma, P. Shi, L. Chen et al., Multicomponent copper-zinc alloy layer enabling ultra-stable zinc metal anode of aqueous Zn-ion battery. Angew. Chem. Int. Ed. 61(47), e202212587 (2022). https://doi.org/10.1002/anie.202212587
- C. Li, X. Xie, H. Liu, Pi. Wang, C. Deng et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2022). https://doi.org/10.1093/nsr/nwab177
- X. Chen, P. Ruan, X. Wu, S. Liang, J. Zhou, Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries. Acta Phys.-Chim. Sin. 38(11), 2111003 (2022)
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
- H. Zhang, S. Li, L. Xu, R. Momen, W. Deng et al., High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy Mater. 12(26), 2200665 (2022). https://doi.org/10.1002/aenm.202200665
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32(7), 2109749 (2021). https://doi.org/10.1002/adfm.202109749
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 34(1), 2106897 (2022). https://doi.org/10.1002/adma.202106897
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
- Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021). https://doi.org/10.1002/adma.202101649
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- G.-L. Song, Z. Xu, Crystal orientation and electrochemical corrosion of polycrystalline Mg. Corros. Sci. 63, 100–112 (2012). https://doi.org/10.1016/j.corsci.2012.05.019
- X. Chen, W. Li, S. Hu, N.G. Akhmedov, D. Reed et al., Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy 98, 107269 (2022). https://doi.org/10.1016/j.nanoen.2022.107269
- M. Qiu, P. Sun, A. Qin, G. Cui, W. Mai, Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode. Energy Storage Mater. 49, 463–470 (2022). https://doi.org/10.1016/j.ensm.2022.04.018
- X. Li, Q. Li, Y. Hou, Q. Yang, Z. Chen et al., Toward a practical Zn powder anode: Ti3C2T2 MXene as a lattice-match electrons/ions redistributor. ACS Nano 15(9), 14631–14642 (2021). https://doi.org/10.1021/acsnano.1c04354
- Y. An, Y. Tian, C. Liu, S. Xiong, J. Feng et al., Rational design of sulfur-doped three-dimensional Ti3C2T2 MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 15(9), 15259–15273 (2021). https://doi.org/10.1021/acsnano.1c05934
- C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
- J. Feng, D. Ma, K. Ouyang, M. Yang, Y. Wang et al., Multifunctional MXene-bonded transport network embedded in polymer electrolyte enables high-rate and stable solid-state zinc metal batteries. Adv. Funct. Mater. 32(45), 2207909 (2022). https://doi.org/10.1002/adfm.202207909
- Y. Tian, Y. An, C. Liu, S. Xiong, J. Feng et al., Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 41, 343–353 (2021). https://doi.org/10.1016/j.ensm.2021.06.019
- N. Li, W. Huang, Q. Shi, Y. Zhang, L. Song, A CTAB-assisted hydrothermal synthesis of VO2(B) nanostructures for lithium-ion battery application. Ceram. Int. 39, 6199–6206 (2013). https://doi.org/10.1016/j.ceramint.2013.01.039
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter. 46(11), 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
- W. Mu, X. Liu, Z. Wen, L. Liu, Numerical simulation of the factors affecting the growth of lithium dendrites. J. Energy Storage 26, 100921 (2019). https://doi.org/10.1016/j.est.2019.100921
- T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo et al., Synthesis of two-dimensional Ti3C2T2 mxene using HCl+LiF etchant: enhanced exfoliation and delamination. J. Alloy. Compd. 695, 818–826 (2017). https://doi.org/10.1016/j.jallcom.2016.10.127
- Q. Pan, C. Duan, H. Liu, M. Li, Z. Zhao et al., Hierarchical vertically aligned titanium carbide (MXene) array for flexible all-solid-state supercapacitor with high volumetric capacitance. ACS Appl. Energy Mater. 2(9), 6834–6840 (2019). https://doi.org/10.1021/acsaem.9b01272
- X. Hui, P. Zhang, J. Li, D. Zhao, Z. Li et al., In situ integrating highly ionic conductive LDH-array@ PVA gel electrolyte and MXene/Zn anode for dendrite-free high-performance flexible Zn–air batteries. Adv. Energy Mater. 12(34), 2201393 (2022). https://doi.org/10.1002/aenm.202201393
- W.A. Dallse, Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272 (1986). https://doi.org/10.1107/S0021889886089458
- J. Xu, T. Peng, Q. Zhang, H. Zheng, H. Yu et al., Intercalation effects on the electrochemical properties of Ti3C2Tx MXene nanosheets for high-performance supercapacitors. ACS Appl. Nano Mater. 5(7), 8794–8803 (2022). https://doi.org/10.1021/acsanm.2c00632
- J. Zou, J. Wu, Y. Wang, F. Deng, J. Jiang et al., Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 51(8), 2909–3316 (2022). https://doi.org/10.1039/D0CS01487G
- H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá et al., Tortuosity effects in lithium-metal host anodes. Joule 4(4), 938–952 (2020). https://doi.org/10.1016/j.joule.2020.03.008
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anode at large current and capacity. Energy Environ. Sci. 69, 1754–5692 (2022). https://doi.org/10.1039/D2EE02931F
- X. Liu, Q. Han, Q. Ma, Y. Wang, C. Liu, Cellulose-acetate coating by integrating ester group with zinc salt for dendrite-free zn metal anodes. Small 18(39), 2203327 (2022). https://doi.org/10.1002/smll.202203327
- Q. Xu, W. Zhou, T. Xin, Z. Zheng, X. Yuan et al., Practical Zn anodes enabled by a Ti-MOF-derived coating for aqueous batteries. J. Mater. Chem. A 10(22), 12247 (2022). https://doi.org/10.1039/D2TA02711A
- X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano 16(1), 813–822 (2022). https://doi.org/10.1021/acsnano.1c08358
- P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
- D.B. Lioi, G. Neher, J.E. Heckler, T. Back, F. Mehmood et al., Electron-withdrawing effect of native terminal groups on the lattice structure of Ti3C2Tx MXenes studied by resonance raman scattering: implications for embedding MXenes in electronic composites. ACS Appl. Nano Mater. 2(10), 6087–6091 (2019). https://doi.org/10.1021/acsanm.9b01194
- T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu et al., Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Phys. Chem. Chem. Phys. 17(15), 9997–10003 (2015). https://doi.org/10.1039/C4CP05666C
- T. Hu, M. Hu, B. Gao, W. Li, X. Wang, Screening surface structure of MXenes by high-throughput computation and vibrational spectroscopic confirmation. J. Phys. Chem. C 122(32), 18501–18509 (2018). https://doi.org/10.1021/acs.jpcc.8b04427
- Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
- Y. Wang, M. Yang, D. Ma, M. Chen, J. Chen et al., In-situ electrochemical etching of V4AlC3 MAX to V2O5/C composite as Zn-ion storage host. Chem. Eng. J. 451(3), 138809 (2023). https://doi.org/10.1016/j.cej.2022.138809
- Y. Zhao, P. Zhang, J. Liang, X. Xia, L. Ren et al., Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 47, 424–433 (2022). https://doi.org/10.1016/j.ensm.2022.02.030
- J. Wu, Q. Kuang, K. Zhang, J. Feng, C. Huang et al., Spinel Zn3V3O8: a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Mater. 41, 297–309 (2021). https://doi.org/10.1016/j.ensm.2021.06.006
- S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 33(12), 2007480 (2021). https://doi.org/10.1002/adma.202007480
- P. He, M. Yan, X. Liao, Y. Luo, L. Mai et al., Reversible V3+/V5+ double redox in lithium vanadium oxide cathode for zinc storage. Energy Storage Mater. 29, 113–120 (2020). https://doi.org/10.1016/j.ensm.2020.04.005
- D.S. Liu, Y. Zhang, S. Liu, L. Wei, S. You et al., Regulating the electrolyte solvation structure enables ultralong lifespan vanadium-based cathodes with excellent low-temperature performance. Adv. Funct. Mater. 32(24), 2111714 (2022). https://doi.org/10.1002/adfm.202111714
- X. Ma, X. Cao, M. Yao, L. Shan, X. Shi et al., Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv. Mater. 34(6), 2105452 (2022). https://doi.org/10.1002/adma.202105452
- S. Li, Y. Liu, X. Zhao, K. Cui, Q. Shen et al., Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage. Angew. Chem. Int. Ed. 60(37), 20286–20293 (2021). https://doi.org/10.1002/anie.202108317
- Z. Cao, L. Wang, H. Zhang, X. Zhang, J. Liao et al., Localized ostwald ripening guided dissolution/regrowth to ancient Chinese coin-shaped VO2 nanoplates with enhanced mass transfer for zinc ion storage. Adv. Funct. Mater. 30(25), 2000472 (2020). https://doi.org/10.1002/adfm.202000472
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen et al., Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- Y. Gao, G. Li, F. Wang, J. Chu, P. Yu et al., A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 40, 31–40 (2021). https://doi.org/10.1016/j.ensm.2021.05.002
References
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
B. Li, K. Yang, J. Ma, P. Shi, L. Chen et al., Multicomponent copper-zinc alloy layer enabling ultra-stable zinc metal anode of aqueous Zn-ion battery. Angew. Chem. Int. Ed. 61(47), e202212587 (2022). https://doi.org/10.1002/anie.202212587
C. Li, X. Xie, H. Liu, Pi. Wang, C. Deng et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2022). https://doi.org/10.1093/nsr/nwab177
X. Chen, P. Ruan, X. Wu, S. Liang, J. Zhou, Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries. Acta Phys.-Chim. Sin. 38(11), 2111003 (2022)
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2022). https://doi.org/10.1007/s40820-021-00764-7
H. Zhang, S. Li, L. Xu, R. Momen, W. Deng et al., High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy Mater. 12(26), 2200665 (2022). https://doi.org/10.1002/aenm.202200665
J. Zheng, Q. Zhao, T. Tang, J. Yin, C. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32(7), 2109749 (2021). https://doi.org/10.1002/adfm.202109749
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 34(1), 2106897 (2022). https://doi.org/10.1002/adma.202106897
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021). https://doi.org/10.1002/adma.202101649
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
G.-L. Song, Z. Xu, Crystal orientation and electrochemical corrosion of polycrystalline Mg. Corros. Sci. 63, 100–112 (2012). https://doi.org/10.1016/j.corsci.2012.05.019
X. Chen, W. Li, S. Hu, N.G. Akhmedov, D. Reed et al., Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy 98, 107269 (2022). https://doi.org/10.1016/j.nanoen.2022.107269
M. Qiu, P. Sun, A. Qin, G. Cui, W. Mai, Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode. Energy Storage Mater. 49, 463–470 (2022). https://doi.org/10.1016/j.ensm.2022.04.018
X. Li, Q. Li, Y. Hou, Q. Yang, Z. Chen et al., Toward a practical Zn powder anode: Ti3C2T2 MXene as a lattice-match electrons/ions redistributor. ACS Nano 15(9), 14631–14642 (2021). https://doi.org/10.1021/acsnano.1c04354
Y. An, Y. Tian, C. Liu, S. Xiong, J. Feng et al., Rational design of sulfur-doped three-dimensional Ti3C2T2 MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 15(9), 15259–15273 (2021). https://doi.org/10.1021/acsnano.1c05934
C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
J. Feng, D. Ma, K. Ouyang, M. Yang, Y. Wang et al., Multifunctional MXene-bonded transport network embedded in polymer electrolyte enables high-rate and stable solid-state zinc metal batteries. Adv. Funct. Mater. 32(45), 2207909 (2022). https://doi.org/10.1002/adfm.202207909
Y. Tian, Y. An, C. Liu, S. Xiong, J. Feng et al., Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 41, 343–353 (2021). https://doi.org/10.1016/j.ensm.2021.06.019
N. Li, W. Huang, Q. Shi, Y. Zhang, L. Song, A CTAB-assisted hydrothermal synthesis of VO2(B) nanostructures for lithium-ion battery application. Ceram. Int. 39, 6199–6206 (2013). https://doi.org/10.1016/j.ceramint.2013.01.039
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson et al., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B Condens. Matter. 46(11), 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671
W. Mu, X. Liu, Z. Wen, L. Liu, Numerical simulation of the factors affecting the growth of lithium dendrites. J. Energy Storage 26, 100921 (2019). https://doi.org/10.1016/j.est.2019.100921
T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo et al., Synthesis of two-dimensional Ti3C2T2 mxene using HCl+LiF etchant: enhanced exfoliation and delamination. J. Alloy. Compd. 695, 818–826 (2017). https://doi.org/10.1016/j.jallcom.2016.10.127
Q. Pan, C. Duan, H. Liu, M. Li, Z. Zhao et al., Hierarchical vertically aligned titanium carbide (MXene) array for flexible all-solid-state supercapacitor with high volumetric capacitance. ACS Appl. Energy Mater. 2(9), 6834–6840 (2019). https://doi.org/10.1021/acsaem.9b01272
X. Hui, P. Zhang, J. Li, D. Zhao, Z. Li et al., In situ integrating highly ionic conductive LDH-array@ PVA gel electrolyte and MXene/Zn anode for dendrite-free high-performance flexible Zn–air batteries. Adv. Energy Mater. 12(34), 2201393 (2022). https://doi.org/10.1002/aenm.202201393
W.A. Dallse, Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 19, 267–272 (1986). https://doi.org/10.1107/S0021889886089458
J. Xu, T. Peng, Q. Zhang, H. Zheng, H. Yu et al., Intercalation effects on the electrochemical properties of Ti3C2Tx MXene nanosheets for high-performance supercapacitors. ACS Appl. Nano Mater. 5(7), 8794–8803 (2022). https://doi.org/10.1021/acsanm.2c00632
J. Zou, J. Wu, Y. Wang, F. Deng, J. Jiang et al., Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 51(8), 2909–3316 (2022). https://doi.org/10.1039/D0CS01487G
H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá et al., Tortuosity effects in lithium-metal host anodes. Joule 4(4), 938–952 (2020). https://doi.org/10.1016/j.joule.2020.03.008
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anode at large current and capacity. Energy Environ. Sci. 69, 1754–5692 (2022). https://doi.org/10.1039/D2EE02931F
X. Liu, Q. Han, Q. Ma, Y. Wang, C. Liu, Cellulose-acetate coating by integrating ester group with zinc salt for dendrite-free zn metal anodes. Small 18(39), 2203327 (2022). https://doi.org/10.1002/smll.202203327
Q. Xu, W. Zhou, T. Xin, Z. Zheng, X. Yuan et al., Practical Zn anodes enabled by a Ti-MOF-derived coating for aqueous batteries. J. Mater. Chem. A 10(22), 12247 (2022). https://doi.org/10.1039/D2TA02711A
X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano 16(1), 813–822 (2022). https://doi.org/10.1021/acsnano.1c08358
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089
D.B. Lioi, G. Neher, J.E. Heckler, T. Back, F. Mehmood et al., Electron-withdrawing effect of native terminal groups on the lattice structure of Ti3C2Tx MXenes studied by resonance raman scattering: implications for embedding MXenes in electronic composites. ACS Appl. Nano Mater. 2(10), 6087–6091 (2019). https://doi.org/10.1021/acsanm.9b01194
T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu et al., Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study. Phys. Chem. Chem. Phys. 17(15), 9997–10003 (2015). https://doi.org/10.1039/C4CP05666C
T. Hu, M. Hu, B. Gao, W. Li, X. Wang, Screening surface structure of MXenes by high-throughput computation and vibrational spectroscopic confirmation. J. Phys. Chem. C 122(32), 18501–18509 (2018). https://doi.org/10.1021/acs.jpcc.8b04427
Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
Y. Wang, M. Yang, D. Ma, M. Chen, J. Chen et al., In-situ electrochemical etching of V4AlC3 MAX to V2O5/C composite as Zn-ion storage host. Chem. Eng. J. 451(3), 138809 (2023). https://doi.org/10.1016/j.cej.2022.138809
Y. Zhao, P. Zhang, J. Liang, X. Xia, L. Ren et al., Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 47, 424–433 (2022). https://doi.org/10.1016/j.ensm.2022.02.030
J. Wu, Q. Kuang, K. Zhang, J. Feng, C. Huang et al., Spinel Zn3V3O8: a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Mater. 41, 297–309 (2021). https://doi.org/10.1016/j.ensm.2021.06.006
S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao et al., Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 33(12), 2007480 (2021). https://doi.org/10.1002/adma.202007480
P. He, M. Yan, X. Liao, Y. Luo, L. Mai et al., Reversible V3+/V5+ double redox in lithium vanadium oxide cathode for zinc storage. Energy Storage Mater. 29, 113–120 (2020). https://doi.org/10.1016/j.ensm.2020.04.005
D.S. Liu, Y. Zhang, S. Liu, L. Wei, S. You et al., Regulating the electrolyte solvation structure enables ultralong lifespan vanadium-based cathodes with excellent low-temperature performance. Adv. Funct. Mater. 32(24), 2111714 (2022). https://doi.org/10.1002/adfm.202111714
X. Ma, X. Cao, M. Yao, L. Shan, X. Shi et al., Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv. Mater. 34(6), 2105452 (2022). https://doi.org/10.1002/adma.202105452
S. Li, Y. Liu, X. Zhao, K. Cui, Q. Shen et al., Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage. Angew. Chem. Int. Ed. 60(37), 20286–20293 (2021). https://doi.org/10.1002/anie.202108317
Z. Cao, L. Wang, H. Zhang, X. Zhang, J. Liao et al., Localized ostwald ripening guided dissolution/regrowth to ancient Chinese coin-shaped VO2 nanoplates with enhanced mass transfer for zinc ion storage. Adv. Funct. Mater. 30(25), 2000472 (2020). https://doi.org/10.1002/adfm.202000472
P. He, M. Yan, G. Zhang, R. Sun, L. Chen et al., Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
Y. Gao, G. Li, F. Wang, J. Chu, P. Yu et al., A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 40, 31–40 (2021). https://doi.org/10.1016/j.ensm.2021.05.002