Molybdenum Nanoscrews: A Novel Non-coinage-Metal Substrate for Surface-Enhanced Raman Scattering
Corresponding Author: Huanjun Chen
Nano-Micro Letters,
Vol. 9 No. 1 (2017), Article Number: 2
Abstract
For the first time, Mo nanoscrew was cultivated as a novel non-coinage-metal substrate for surface-enhanced Raman scattering (SERS). It was found that the nanoscrew is composed of many small screw threads stacking along its length direction with small separations. Under external light excitation, strong electromagnetic coupling was initiated within the gaps, and many hot-spots formed on the surface of the nanoscrew, which was confirmed by high-resolution scanning near-field optical microscope measurements and numerical simulations using finite element method. These hot-spots are responsible for the observed SERS activity of the nanoscrews. Raman mapping characterizations further revealed the excellent reproducibility of the SERS activity. Our findings may pave the way for design of low-cost and stable SERS substrates.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- U. Gala, H. Chauhan, Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert Opin. Drug Discov. 10(2), 187–206 (2015). doi:10.1517/17460441.2015.981522
- C. Krafft, J. Popp, The many facets of Raman spectroscopy for biomedical analysis. Anal. Bioanal. Chem. 407(3), 699–717 (2015). doi:10.1007/s00216-014-8311-9
- J. Surmacki, J. Musial, R. Kordek, H. Abramczyk, Raman imaging at biological interfaces: applications in breast cancer diagnosis. Mol. Cancer 12, 48 (2013). doi:10.1186/1476-4598-12-48
- H. Edwards, T. Munshi, I. Scowen, A. Surtees, G.T. Swindles, Development of oxidative sample preparation for the analysis of forensic soil samples with near-IR Raman spectroscopy. J. Raman Spectrosc. 43(2), 323–325 (2012). doi:10.1002/jrs.3031
- J. Kneipp, H. Kneipp, K. Kneipp, SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37(5), 1052–1060 (2008). doi:10.1039/b708459p
- W. Xie, S. Schlücker, Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Rep. Prog. Phys. 77(11), 116502 (2014). doi:10.1088/00344885/77/11/116502
- G. Sarau, B. Lahiri, P. Banzer, P. Gupta, A. Bhattacharya, F. Vollmer, S. Christiansen, Enhanced Raman scattering of graphene using arrays of split ring resonators. Adv. Opt. Mater. 1(2), 151–157 (2013). doi:10.1002/adom.201200053
- Y.S. Huh, A.J. Chung, D. Erickson, Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluid. Nanofluid. 6(3), 285–297 (2009). doi:10.1007/s10404-008-0392-3
- Y. Fang, N.-H. Seong, D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887), 388–392 (2008). doi:10.1126/science.1159499
- H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83(21), 4357–4360 (1999). doi:10.1103/PhysRevLett.83.4357
- D.-K. Lim, K.-S. Jeon, H.M. Kim, J.-M. Nam, Y.D. Suh, Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9(1), 60–67 (2009). doi:10.1038/nmat2596
- M.J. Banholzer, J.E. Millstone, L.D. Qin, C.A. Mirkin, Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37(5), 885–897 (2008). doi:10.1039/b710915f
- D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y.D. Suh, J.-M. Nam, Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6(7), 452–460 (2011). doi:10.1038/nnano.2011.79
- J.X. Wen, H.B. Zhang, H.J. Chen, W.H. Zhang, J. Chen, Stretchable plasmonic substrate with tunable resonances for surface-enhanced Raman spectroscopy. J. Opt. 17(11), 114015 (2015). doi:10.1088/2040-8978/17/11/114015
- S. Chen, P. Xu, Y. Li, J. Xue, S. Han, W. Ou, Y. Ding, W. Ni, Rapid seedless synthesis of gold nanoplates with microscaled edge length in a high yield and their application in SERS. Nano-Micro Lett. 8(4), 336–346 (2016). doi:10.1007/s40820-016-0092-6
- S.M. Wells, I.A. Merkulov, I.I. Kravchenko, N.V. Lavrik, M.J. Sepaniak, Silicon nanopillars for field-enhanced surface spectroscopy. ACS Nano 6(4), 2948–2959 (2012). doi:10.1021/nn204110z
- Q. Liu, L. Jiang, L. Guo, Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate. Small 10(1), 48–51 (2014). doi:10.1002/smll.201300440
- L. Li, T. Hutter, A.S. Finnemore, F.M. Huang, J.J. Baumberg, S.R. Elliott, U. Steiner, S. Mahajan, Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions. Nano Lett. 12(8), 4242–4246 (2012). doi:10.1021/nl302029p
- Z.Q. Tian, B. Ren, D.-Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106(37), 9463–9483 (2002). doi:10.1021/jp0257449
- B. Ren, Q.J. Huang, W.B. Cai, B.W. Mao, F.M. Liu, Z.Q. Tian, Surface Raman spectra of pyridine and hydrogen on bare platinum and nickel electrodes. J. Electroanal. Chem. 415(1–2), 175–178 (1996). doi:10.1016/S0022-0728(96)01004-2
- P.G. Cao, J.L. Yao, B. Ren, B.W. Mao, R.A. Gu, Z.Q. Tian, Surface-enhanced Raman scattering from bare Fe electrode surfaces. Chem. Phys. Lett. 316(1–2), 1–5 (2000). doi:10.1016/S0009-2614(99)01207-5
- D.Y. Wu, Y. Xie, B. Ren, J.W. Yan, B.W. Mao, Z.Q. Tian, Surface enhanced Raman scattering from bare cobalt electrode surfaces. Phys. Chem. Comm. 4(18), 89–91 (2001). doi:10.1039/b105667k
- P.G. Cao, R.A. Gu, B. Ren, Z.Q. Tian, Surface-enhanced Raman scattering of pyridine on platinum and nickel electrodes in nonaqueous solutions. Chem. Phys. Lett. 366(3–4), 440–446 (2002). doi:10.1016/S0009-2614(02)01663-9
- J.S. Gao, Z.Q. Tian, Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates. Spectrochim. Acta A 53(10), 1595–1600 (1997). doi:10.1016/S1386-1425(96)01855-0
- J.-L. Yao, J. Tang, D.-Y. Wu, D.-M. Sun, K.-H. Xue, B. Ren, B.-W. Mao, Z.-Q. Tian, Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration. Surf. Sci. 514(1–3), 108–116 (2002). doi:10.1016/S0039-6028(02)01615-1
- G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert et al., Surface-enhanced Raman spectroscopy employing monodisperse nickel nanowire arrays. Appl. Phys. Lett. 88(2), 023106 (2006). doi:10.1063/1.2162682
- J. Wu, Y.J. Xu, P.Y. Xu, Z.H. Pan, S. Chen, Q.S. Shen, L. Zhan, Y.G. Zhang, W.H. Ni, Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures. Nanoscale 7(41), 17529–17537 (2015). doi:10.1039/C5NR04500B
- Y. Shen, N.S. Xu, S.Z. Deng, Y. Zhang, F. Liu, J. Chen, A Mo nanoscrew formed by crystalline Mo grains with high conductivity and excellent field emission properties. Nanoscale 6(9), 4659–4668 (2014). doi:10.1039/c3nr06811k
- H. Wang, P. Liu, Y.L. Ke, Y.K. Su, L. Zhang, N.S. Xu, S.Z. Deng, H.J. Chen, Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement. ACS Nano 9(1), 436–448 (2015). doi:10.1021/nn505606x
- H.J. Chen, Z.H. Sun, W.H. Ni, K.C. Woo, H.-Q. Lin, L.D. Sun, C.H. Yan, J.F. Wang, Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes. Small 5(18), 2111–2119 (2009). doi:10.1002/smll.200900256
- E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985)
- J. Konopka, Options for Quantitative Analysis of Light Elements by SEM/EDS, Technical Note 52523 (Thermo Fisher Scientific, Madison, 2013)
- S.H.D.A. Nicolai, P.R.P. Rodrigues, S.M.L. Agostinho, J.C. Rubim, Electrochemical and spectroelectrochemical (SERS) studies of the reduction of methylene blue on a silver electrode. J. Electroanal. Chem. 527(1–2), 103–111 (2002). doi:10.1016/S0022-0728(02)00832-X
- G. Herzberg, Molecular Spectra and Molecular Structure II Infrars and Raman Spectra of Polyayomic Molecules (Van Nostrand Reinhold, New York, 1945)
- R.S. Drago, Physical Methods in Chemistry (Saunders, Philadelphia, 1977)
- W. Li, P.H.C. Camargo, X. Lu, Y.N. Xia, Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9(1), 485–490 (2009). doi:10.1021/nl803621x
- P.H.C. Camargo, L. Au, M. Rycenga, W. Li, Y.N. Xia, Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes. Chem. Phys. Lett. 484(4–6), 304–308 (2010). doi:10.1016/j.cplett.2009.12.002
- F. Keilmann, R. Hillenbrand, Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. Lond. Ser. A 362(1817), 787–805 (2004). doi:10.1098/rsta.2003.1347
- N. Ocelic, A. Huber, R. Hillenbrand, Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89(10), 101124 (2006). doi:10.1063/1.2348781
References
U. Gala, H. Chauhan, Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert Opin. Drug Discov. 10(2), 187–206 (2015). doi:10.1517/17460441.2015.981522
C. Krafft, J. Popp, The many facets of Raman spectroscopy for biomedical analysis. Anal. Bioanal. Chem. 407(3), 699–717 (2015). doi:10.1007/s00216-014-8311-9
J. Surmacki, J. Musial, R. Kordek, H. Abramczyk, Raman imaging at biological interfaces: applications in breast cancer diagnosis. Mol. Cancer 12, 48 (2013). doi:10.1186/1476-4598-12-48
H. Edwards, T. Munshi, I. Scowen, A. Surtees, G.T. Swindles, Development of oxidative sample preparation for the analysis of forensic soil samples with near-IR Raman spectroscopy. J. Raman Spectrosc. 43(2), 323–325 (2012). doi:10.1002/jrs.3031
J. Kneipp, H. Kneipp, K. Kneipp, SERS—a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37(5), 1052–1060 (2008). doi:10.1039/b708459p
W. Xie, S. Schlücker, Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Rep. Prog. Phys. 77(11), 116502 (2014). doi:10.1088/00344885/77/11/116502
G. Sarau, B. Lahiri, P. Banzer, P. Gupta, A. Bhattacharya, F. Vollmer, S. Christiansen, Enhanced Raman scattering of graphene using arrays of split ring resonators. Adv. Opt. Mater. 1(2), 151–157 (2013). doi:10.1002/adom.201200053
Y.S. Huh, A.J. Chung, D. Erickson, Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluid. Nanofluid. 6(3), 285–297 (2009). doi:10.1007/s10404-008-0392-3
Y. Fang, N.-H. Seong, D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887), 388–392 (2008). doi:10.1126/science.1159499
H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83(21), 4357–4360 (1999). doi:10.1103/PhysRevLett.83.4357
D.-K. Lim, K.-S. Jeon, H.M. Kim, J.-M. Nam, Y.D. Suh, Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9(1), 60–67 (2009). doi:10.1038/nmat2596
M.J. Banholzer, J.E. Millstone, L.D. Qin, C.A. Mirkin, Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37(5), 885–897 (2008). doi:10.1039/b710915f
D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y.D. Suh, J.-M. Nam, Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6(7), 452–460 (2011). doi:10.1038/nnano.2011.79
J.X. Wen, H.B. Zhang, H.J. Chen, W.H. Zhang, J. Chen, Stretchable plasmonic substrate with tunable resonances for surface-enhanced Raman spectroscopy. J. Opt. 17(11), 114015 (2015). doi:10.1088/2040-8978/17/11/114015
S. Chen, P. Xu, Y. Li, J. Xue, S. Han, W. Ou, Y. Ding, W. Ni, Rapid seedless synthesis of gold nanoplates with microscaled edge length in a high yield and their application in SERS. Nano-Micro Lett. 8(4), 336–346 (2016). doi:10.1007/s40820-016-0092-6
S.M. Wells, I.A. Merkulov, I.I. Kravchenko, N.V. Lavrik, M.J. Sepaniak, Silicon nanopillars for field-enhanced surface spectroscopy. ACS Nano 6(4), 2948–2959 (2012). doi:10.1021/nn204110z
Q. Liu, L. Jiang, L. Guo, Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate. Small 10(1), 48–51 (2014). doi:10.1002/smll.201300440
L. Li, T. Hutter, A.S. Finnemore, F.M. Huang, J.J. Baumberg, S.R. Elliott, U. Steiner, S. Mahajan, Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions. Nano Lett. 12(8), 4242–4246 (2012). doi:10.1021/nl302029p
Z.Q. Tian, B. Ren, D.-Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106(37), 9463–9483 (2002). doi:10.1021/jp0257449
B. Ren, Q.J. Huang, W.B. Cai, B.W. Mao, F.M. Liu, Z.Q. Tian, Surface Raman spectra of pyridine and hydrogen on bare platinum and nickel electrodes. J. Electroanal. Chem. 415(1–2), 175–178 (1996). doi:10.1016/S0022-0728(96)01004-2
P.G. Cao, J.L. Yao, B. Ren, B.W. Mao, R.A. Gu, Z.Q. Tian, Surface-enhanced Raman scattering from bare Fe electrode surfaces. Chem. Phys. Lett. 316(1–2), 1–5 (2000). doi:10.1016/S0009-2614(99)01207-5
D.Y. Wu, Y. Xie, B. Ren, J.W. Yan, B.W. Mao, Z.Q. Tian, Surface enhanced Raman scattering from bare cobalt electrode surfaces. Phys. Chem. Comm. 4(18), 89–91 (2001). doi:10.1039/b105667k
P.G. Cao, R.A. Gu, B. Ren, Z.Q. Tian, Surface-enhanced Raman scattering of pyridine on platinum and nickel electrodes in nonaqueous solutions. Chem. Phys. Lett. 366(3–4), 440–446 (2002). doi:10.1016/S0009-2614(02)01663-9
J.S. Gao, Z.Q. Tian, Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates. Spectrochim. Acta A 53(10), 1595–1600 (1997). doi:10.1016/S1386-1425(96)01855-0
J.-L. Yao, J. Tang, D.-Y. Wu, D.-M. Sun, K.-H. Xue, B. Ren, B.-W. Mao, Z.-Q. Tian, Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration. Surf. Sci. 514(1–3), 108–116 (2002). doi:10.1016/S0039-6028(02)01615-1
G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert et al., Surface-enhanced Raman spectroscopy employing monodisperse nickel nanowire arrays. Appl. Phys. Lett. 88(2), 023106 (2006). doi:10.1063/1.2162682
J. Wu, Y.J. Xu, P.Y. Xu, Z.H. Pan, S. Chen, Q.S. Shen, L. Zhan, Y.G. Zhang, W.H. Ni, Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures. Nanoscale 7(41), 17529–17537 (2015). doi:10.1039/C5NR04500B
Y. Shen, N.S. Xu, S.Z. Deng, Y. Zhang, F. Liu, J. Chen, A Mo nanoscrew formed by crystalline Mo grains with high conductivity and excellent field emission properties. Nanoscale 6(9), 4659–4668 (2014). doi:10.1039/c3nr06811k
H. Wang, P. Liu, Y.L. Ke, Y.K. Su, L. Zhang, N.S. Xu, S.Z. Deng, H.J. Chen, Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement. ACS Nano 9(1), 436–448 (2015). doi:10.1021/nn505606x
H.J. Chen, Z.H. Sun, W.H. Ni, K.C. Woo, H.-Q. Lin, L.D. Sun, C.H. Yan, J.F. Wang, Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes. Small 5(18), 2111–2119 (2009). doi:10.1002/smll.200900256
E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985)
J. Konopka, Options for Quantitative Analysis of Light Elements by SEM/EDS, Technical Note 52523 (Thermo Fisher Scientific, Madison, 2013)
S.H.D.A. Nicolai, P.R.P. Rodrigues, S.M.L. Agostinho, J.C. Rubim, Electrochemical and spectroelectrochemical (SERS) studies of the reduction of methylene blue on a silver electrode. J. Electroanal. Chem. 527(1–2), 103–111 (2002). doi:10.1016/S0022-0728(02)00832-X
G. Herzberg, Molecular Spectra and Molecular Structure II Infrars and Raman Spectra of Polyayomic Molecules (Van Nostrand Reinhold, New York, 1945)
R.S. Drago, Physical Methods in Chemistry (Saunders, Philadelphia, 1977)
W. Li, P.H.C. Camargo, X. Lu, Y.N. Xia, Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9(1), 485–490 (2009). doi:10.1021/nl803621x
P.H.C. Camargo, L. Au, M. Rycenga, W. Li, Y.N. Xia, Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes. Chem. Phys. Lett. 484(4–6), 304–308 (2010). doi:10.1016/j.cplett.2009.12.002
F. Keilmann, R. Hillenbrand, Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. Lond. Ser. A 362(1817), 787–805 (2004). doi:10.1098/rsta.2003.1347
N. Ocelic, A. Huber, R. Hillenbrand, Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89(10), 101124 (2006). doi:10.1063/1.2348781