Swift Assembly of Adaptive Thermocell Arrays for Device-Level Healable and Energy-Autonomous Motion Sensors
Corresponding Author: Zhuoxin Liu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 196
Abstract
The evolution of wearable technology has prompted the need for adaptive, self-healable, and energy-autonomous energy devices. This study innovatively addresses this challenge by introducing an MXene-boosted hydrogel electrolyte, which expedites the assembly process of flexible thermocell (TEC) arrays and thus circumvents the complicated fabrication of typical wearable electronics. Our findings underscore the hydrogel electrolyte's superior thermoelectrochemical performance under substantial deformations and repeated self-healing cycles. The resulting hydrogel-based TEC yields a maximum power output of 1032.1 nW under the ΔT of 20 K when being stretched to 500% for 1000 cycles, corresponding to 80% of its initial state; meanwhile, it sustains 1179.1 nW under the ΔT of 20 K even after 60 cut-healing cycles, approximately 92% of its initial state. The as-assembled TEC array exhibits device-level self-healing capability and high adaptability to human body. It is readily applied for touch-based encrypted communication where distinct voltage signals can be converted into alphabet letters; it is also employed as a self-powered sensor to in-situ monitor a variety of body motions for complex human actions. The swift assembly approach, combined with the versatile functionality of the TEC device, paves the way for future advancements in wearable electronics targeting at fitness monitoring and human–machine interfaces.
Highlights:
1 The MXene-boosted rapid gelling expedites the assembly of flexible thermocell arrays, overcoming the typical constraint of complicated device fabrication processes.
2 The hydrogel electrolyte can sustain stable thermoelectrochemical performance under various challenging conditions, including large, repeated, and sustained deformations, and multiple cut-healing cycles.
3 The as-assembled thermocell array exhibits device-level self-healing capability and high adaptability to human body, efficiently harvesting low-grade heat for wearable applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Jiang, X. Liu, J. Liu, D. Ye, Y. Duan et al., Flexible metamaterial electronics. Adv. Mater. 34(52), 2200070 (2022). https://doi.org/10.1002/adma.202200070
- Y.H. Jung, J.-Y. Yoo, A. Vázquez-Guardado, J.-H. Kim, J.-T. Kim et al., A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5(6), 374–385 (2022). https://doi.org/10.1038/s41928-022-00765-3
- L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35(14), 2205326 (2023). https://doi.org/10.1002/adma.202205326
- L. Jin, Z. Li, Z. Liu, B. Richardson, Y. Zheng et al., Flexible unimodal strain sensors for human motion detection and differentiation. npj Flex. Electron. 6(1), 74 (2022). https://doi.org/10.1038/s41528-022-00205-4
- A. Abramson, C.T. Chan, Y. Khan, A. Mermin-Bunnell, N. Matsuhisa et al., A flexible electronic strain sensor for the real-time monitoring of tumor regression. Sci. Adv. 8(37), eabn6550 (2022). https://doi.org/10.1126/sciadv.abn6550
- D. Karnaushenko, T. Kang, V.K. Bandari, F. Zhu, O.G. Schmidt, 3d self-assembled microelectronic devices: concepts, materials, applications. Adv. Mater. 32(15), 1902994 (2020). https://doi.org/10.1002/adma.201902994
- S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8(13), eqbl5511 (2022). https://doi.org/10.1126/sciadv.abl5511
- H. Song, G. Luo, Z. Ji, R. Bo, Z. Xue et al., Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 8(11), eabm3785 (2022). https://doi.org/10.1126/sciadv.abm3785
- C. Xu, J. Yu, Z. Huo, Y. Wang, Q. Sun et al., Pursuing the tribovoltaic effect for direct-current triboelectric nanogenerators. Energy Environ. Sci. 16(3), 983–1006 (2023). https://doi.org/10.1039/D2EE04019K
- J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- G. Liang, B. Liang, A. Chen, J. Zhu, Q. Li et al., Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 14(1), 1856 (2023). https://doi.org/10.1038/s41467-023-37565-y
- Y. Jiang, J. Dong, H.L. Zhuang, J. Yu, B. Su et al., Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. Nat. Commun. 13(1), 6087 (2022). https://doi.org/10.1038/s41467-022-33774-z
- Z. Dong, J. Luo, C. Wang, Y. Jiang, S. Tan et al., Half-heusler-like compounds with wide continuous compositions and tunable p- to n-type semiconducting thermoelectrics. Nat. Commun. 13(1), 35 (2022). https://doi.org/10.1038/s41467-021-27795-3
- T. Xing, Q. Song, P. Qiu, Q. Zhang, M. Gu et al., High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 14(2), 995–1003 (2021). https://doi.org/10.1039/D0EE02791J
- M. Massetti, F. Jiao, A.J. Ferguson, D. Zhao, K. Wijeratne et al., Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121(20), 12465–12547 (2021). https://doi.org/10.1021/acs.chemrev.1c00218
- S. Zhan, T. Hong, B. Qin, Y. Zhu, X. Feng et al., Realizing high-ranged thermoelectric performance in pbsns2 crystals. Nat. Commun. 13(1), 5937 (2022). https://doi.org/10.1038/s41467-022-33684-0
- Y. Yu, X. Xu, Y. Wang, B. Jia, S. Huang et al., Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics. Nat. Commun. 13(1), 5612 (2022). https://doi.org/10.1038/s41467-022-33330-9
- X.L. Shi, W.D. Liu, M. Li, Q. Sun, S.D. Xu et al., A solvothermal synthetic environmental design for high-performance snse-based thermoelectric materials. Adv. Energy Mater. 12(20), 2200670 (2022). https://doi.org/10.1002/aenm.202200670
- W. Ren, Y. Sun, D. Zhao, A. Aili, S. Zhang et al., High-performance wearable thermoelectric generator with self-healing, recycling, and lego-like reconfiguring capabilities. Sci. Adv. 7(7), eabe0586 (2021). https://doi.org/10.1126/sciadv.abe0586
- B. Lee, H. Cho, K.T. Park, J.-S. Kim, M. Park et al., High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 11(1), 5948 (2020). https://doi.org/10.1038/s41467-020-19756-z
- Y. Zheng, X. Han, J. Yang, Y. Jing, X. Chen et al., Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ. Sci. 15(6), 2374–2385 (2022). https://doi.org/10.1039/d1ee03633e
- T. Cao, X.-L. Shi, Z.-G. Chen, Advances in the design and assembly of flexible thermoelectric device. Prog. Polym. Sci. 131, 101003 (2023). https://doi.org/10.1016/j.pmatsci.2022.101003
- L. Liu, J. Chen, L. Liang, L. Deng, G. Chen, A pedot: Pss thermoelectric fiber generator. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107678
- B. Yu, J. Duan, H. Cong, W. Xie, R. Liu et al., Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370(6514), 342–346 (2020). https://doi.org/10.1126/science.abd6749
- J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high seebeck coefficient for low-grade heat harvest. Nat. Commun. 9(1), 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
- L. Liang, H. Lv, X.L. Shi, Z. Liu, G. Chen et al., A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater. Horiz. 8(10), 2750–2760 (2021). https://doi.org/10.1039/d1mh00775k
- X. Shi, L. Ma, Y. Li, Z. Shi, Q. Wei et al., Double hydrogen-bonding reinforced high-performance supramolecular hydrogel thermocell for self-powered sensing remote-controlled by light. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202211720
- P. Peng, J. Zhou, L. Liang, X. Huang, H. Lv et al., Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nano-Micro Lett. 14(1), 81 (2022). https://doi.org/10.1007/s40820-022-00824-6
- Z. Lei, W. Gao, W. Zhu, P. Wu, Anti-fatigue and highly conductive thermocells for continuous electricity generation. Adv. Funct. Mater. 32(25), 2201021 (2022). https://doi.org/10.1002/adfm.202201021
- W. Gao, Z. Lei, C. Zhang, X. Liu, Y. Chen, Stretchable and freeze-tolerant organohydrogel thermocells with enhanced thermoelectric performance continually working at subzero temperatures. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202104071
- S. Pu, Y. Liao, K. Chen, J. Fu, S. Zhang et al., Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett. 20(5), 3791–3797 (2020). https://doi.org/10.1021/acs.nanolett.0c00800
- Z. Lei, W. Gao, P. Wu, Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting. Joule 5(8), 2211–2222 (2021). https://doi.org/10.1016/j.joule.2021.06.003
- W. Gao, Z. Lei, W. Chen, Y. Chen, Hierarchically anisotropic networks to decouple mechanical and ionic properties for high-performance quasi-solid thermocells. ACS Nano 16(5), 8347–8357 (2022). https://doi.org/10.1021/acsnano.2c02606
- Y.Q. Liu, S. Zhang, Y.T. Zhou, M.A. Buckingham, L. Aldous et al., Advanced wearable thermocells for body heat harvesting. Adv. Energy Mater. 10(48), 2002539 (2020). https://doi.org/10.1002/aenm.202002539
- P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou et al., Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew. Chem. Int. Ed. 55(39), 12050–12053 (2016). https://doi.org/10.1002/anie.201606314
- Y. Zong, H. Li, X. Li, J. Lou, Q. Ding et al., Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.134550
- D. Zhang, Y. Mao, F. Ye, Q. Li, P. Bai et al., Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization. Energy Environ. Sci. 15(7), 2974–2982 (2022). https://doi.org/10.1039/d2ee00738j
- C. Xu, Y. Sun, J. Zhang, W. Xu, H. Tian, Adaptable and wearable thermocell based on stretchable hydrogel for body heat harvesting. Adv. Energy Mater. 12(42), 2201542 (2022). https://doi.org/10.1002/aenm.202201542
- Z. Liu, X. Wang, S. Wei, H. Lv, J. Zhou et al., A wavy-structured highly stretchable thermoelectric generator with stable energy output and self-rescuing capability. CCS Chem. 3(10), 2404–2414 (2021). https://doi.org/10.31635/ccschem.021.202101077
- Y. Li, J. Yan, Y. Liu, X.M. Xie, Super tough and intelligent multibond network physical hydrogels facilitated by Ti(3)C(2)T(x) mxene nanosheets. ACS Nano 16(1), 1567–1577 (2022). https://doi.org/10.1021/acsnano.1c10151
- Z. Pei, L. Ding, C. Wang, Q. Meng, Z. Yuan et al., Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries. Energy Environ. Sci. 14(9), 4926–4935 (2021). https://doi.org/10.1039/d1ee01244d
- P. Zhang, X.-J. Yang, P. Li, Y. Zhao, Q.J. Niu, Fabrication of novel mxene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft Matter 16(1), 162–169 (2020). https://doi.org/10.1039/C9SM01985E
- N. Tao, D. Zhang, X. Li, D. Lou, X. Sun et al., Near-infrared light-responsive hydrogels via peroxide-decorated mxene-initiated polymerization. Chem. Sci. 10(46), 10765–10771 (2019). https://doi.org/10.1039/C9SC03917A
- G. Ge, Y.Z. Zhang, W. Zhang, W. Yuan, J.K. El-Demellawi et al., Ti(3)C(2)T(x) mxene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano 15(2), 2698–2706 (2021). https://doi.org/10.1021/acsnano.0c07998
- W. Zhang, J. Peng, W. Hua, Y. Liu, J. Wang et al., Architecting amorphous vanadium oxide/mxene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv. Energy Mater. 11(22), 2100757 (2021). https://doi.org/10.1002/aenm.202100757
- S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by mxene/swcnts/pani ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33(13), 2209806 (2023). https://doi.org/10.1002/adfm.202209806
- N. Priyadharsini, P. RupaKasturi, A. Shanmugavani, S. Surendran, S. Shanmugapriya et al., Effect of chelating agent on the sol–gel thermolysis synthesis of linipo4 and its electrochemical properties for hybrid capacitors. J. Phys. Chem. Solids 119, 183–192 (2018). https://doi.org/10.1016/j.jpcs.2018.03.004
- G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28(32), 1802576 (2018). https://doi.org/10.1002/adfm.201802576
- M. Qin, W. Yuan, X. Zhang, Y. Cheng, M. Xu et al., Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf. B Biointerfaces 214, 112482 (2022). https://doi.org/10.1016/j.colsurfb.2022.112482
- C. Li, S. Yang, Y. Guo, H. Lv, P. Li et al., Hydrogel electrolyte with high tolerance to a wide spectrum of phs and compressive energy storage devices based on it. Small Methods 7(3), 2201448 (2023). https://doi.org/10.1002/smtd.202201448
- P. Peng, Z. Li, D. Xie, K. Zhu, C. Du et al., Aqueous eutectic hydrogel electrolytes enable flexible thermocells with a wide operating temperature range. J. Mater. Chem. A 11(13), 6986–6996 (2023). https://doi.org/10.1039/d2ta09385e
- Z. Pei, H. Tan, J. Gu, L. Lu, X. Zeng et al., A polymeric hydrogel electrocatalyst for direct water oxidation. Nat. Commun. 14(1), 818 (2023). https://doi.org/10.1038/s41467-023-36532-x
- H. Ding, D. Nie, N. Cui, K. Li, X. Zhang et al., Catalytic reduction of organic dyes by multilayered graphene platelets and silver nanops in polyacrylic acid hydrogel. Materials 14(9), 2274 (2021). https://doi.org/10.3390/ma14092274
- W.P. Griffith, G.T. Turner, Raman spectra and vibrational assignments of hexacyano-complexes. J. Chem. Soc. A Inorgan. Phys. Theor. (1970). https://doi.org/10.1039/J19700000858
- J. Dong, Z. Sheng, G. Xue, Fourier transform surface enhanced Raman scattering study of ferricyanide on silver. Spectrosc. Lett. 28(2), 139–151 (1995). https://doi.org/10.1080/00387019508010067
- H. Okamoto, T. Nakabayashi, M. Tasumi, Incoherent time-resolved pump-probe Raman spectroscopy. J. Phys. Chem. 97(39), 9871–9873 (1993). https://doi.org/10.1021/j100141a001
- M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
- T.I. Quickenden, C.F. Vernon, Thermogalvanic conversion of heat to electricity. Sol. Energy 36(1), 63–72 (1986). https://doi.org/10.1016/0038-092X(86)90061-7
- R. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee et al., Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010). https://doi.org/10.1021/nl903267n
- S.A. Basith, A. Chandrasekhar, Covid-19 clinical waste reuse: a triboelectric touch sensor for iot-cloud supported smart hand sanitizer dispenser. Nano Energy 108, 108183 (2023). https://doi.org/10.1016/j.nanoen.2023.108183
- C. Sukumaran, P. Viswanathan, P. Munirathinam, A. Chandrasekhar, A flexible and wearable joint motion sensor using triboelectric nanogenerators for hand gesture monitoring. Int. J. Nanotechnol. 18(5–8), 697–704 (2021). https://doi.org/10.1504/IJNT.2021.116183
References
S. Jiang, X. Liu, J. Liu, D. Ye, Y. Duan et al., Flexible metamaterial electronics. Adv. Mater. 34(52), 2200070 (2022). https://doi.org/10.1002/adma.202200070
Y.H. Jung, J.-Y. Yoo, A. Vázquez-Guardado, J.-H. Kim, J.-T. Kim et al., A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5(6), 374–385 (2022). https://doi.org/10.1038/s41928-022-00765-3
L. Hu, P.L. Chee, S. Sugiarto, Y. Yu, C. Shi et al., Hydrogel-based flexible electronics. Adv. Mater. 35(14), 2205326 (2023). https://doi.org/10.1002/adma.202205326
L. Jin, Z. Li, Z. Liu, B. Richardson, Y. Zheng et al., Flexible unimodal strain sensors for human motion detection and differentiation. npj Flex. Electron. 6(1), 74 (2022). https://doi.org/10.1038/s41528-022-00205-4
A. Abramson, C.T. Chan, Y. Khan, A. Mermin-Bunnell, N. Matsuhisa et al., A flexible electronic strain sensor for the real-time monitoring of tumor regression. Sci. Adv. 8(37), eabn6550 (2022). https://doi.org/10.1126/sciadv.abn6550
D. Karnaushenko, T. Kang, V.K. Bandari, F. Zhu, O.G. Schmidt, 3d self-assembled microelectronic devices: concepts, materials, applications. Adv. Mater. 32(15), 1902994 (2020). https://doi.org/10.1002/adma.201902994
S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao et al., Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8(13), eqbl5511 (2022). https://doi.org/10.1126/sciadv.abl5511
H. Song, G. Luo, Z. Ji, R. Bo, Z. Xue et al., Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 8(11), eabm3785 (2022). https://doi.org/10.1126/sciadv.abm3785
C. Xu, J. Yu, Z. Huo, Y. Wang, Q. Sun et al., Pursuing the tribovoltaic effect for direct-current triboelectric nanogenerators. Energy Environ. Sci. 16(3), 983–1006 (2023). https://doi.org/10.1039/D2EE04019K
J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
G. Liang, B. Liang, A. Chen, J. Zhu, Q. Li et al., Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat. Commun. 14(1), 1856 (2023). https://doi.org/10.1038/s41467-023-37565-y
Y. Jiang, J. Dong, H.L. Zhuang, J. Yu, B. Su et al., Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. Nat. Commun. 13(1), 6087 (2022). https://doi.org/10.1038/s41467-022-33774-z
Z. Dong, J. Luo, C. Wang, Y. Jiang, S. Tan et al., Half-heusler-like compounds with wide continuous compositions and tunable p- to n-type semiconducting thermoelectrics. Nat. Commun. 13(1), 35 (2022). https://doi.org/10.1038/s41467-021-27795-3
T. Xing, Q. Song, P. Qiu, Q. Zhang, M. Gu et al., High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 14(2), 995–1003 (2021). https://doi.org/10.1039/D0EE02791J
M. Massetti, F. Jiao, A.J. Ferguson, D. Zhao, K. Wijeratne et al., Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 121(20), 12465–12547 (2021). https://doi.org/10.1021/acs.chemrev.1c00218
S. Zhan, T. Hong, B. Qin, Y. Zhu, X. Feng et al., Realizing high-ranged thermoelectric performance in pbsns2 crystals. Nat. Commun. 13(1), 5937 (2022). https://doi.org/10.1038/s41467-022-33684-0
Y. Yu, X. Xu, Y. Wang, B. Jia, S. Huang et al., Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics. Nat. Commun. 13(1), 5612 (2022). https://doi.org/10.1038/s41467-022-33330-9
X.L. Shi, W.D. Liu, M. Li, Q. Sun, S.D. Xu et al., A solvothermal synthetic environmental design for high-performance snse-based thermoelectric materials. Adv. Energy Mater. 12(20), 2200670 (2022). https://doi.org/10.1002/aenm.202200670
W. Ren, Y. Sun, D. Zhao, A. Aili, S. Zhang et al., High-performance wearable thermoelectric generator with self-healing, recycling, and lego-like reconfiguring capabilities. Sci. Adv. 7(7), eabe0586 (2021). https://doi.org/10.1126/sciadv.abe0586
B. Lee, H. Cho, K.T. Park, J.-S. Kim, M. Park et al., High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 11(1), 5948 (2020). https://doi.org/10.1038/s41467-020-19756-z
Y. Zheng, X. Han, J. Yang, Y. Jing, X. Chen et al., Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ. Sci. 15(6), 2374–2385 (2022). https://doi.org/10.1039/d1ee03633e
T. Cao, X.-L. Shi, Z.-G. Chen, Advances in the design and assembly of flexible thermoelectric device. Prog. Polym. Sci. 131, 101003 (2023). https://doi.org/10.1016/j.pmatsci.2022.101003
L. Liu, J. Chen, L. Liang, L. Deng, G. Chen, A pedot: Pss thermoelectric fiber generator. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107678
B. Yu, J. Duan, H. Cong, W. Xie, R. Liu et al., Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370(6514), 342–346 (2020). https://doi.org/10.1126/science.abd6749
J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high seebeck coefficient for low-grade heat harvest. Nat. Commun. 9(1), 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
L. Liang, H. Lv, X.L. Shi, Z. Liu, G. Chen et al., A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater. Horiz. 8(10), 2750–2760 (2021). https://doi.org/10.1039/d1mh00775k
X. Shi, L. Ma, Y. Li, Z. Shi, Q. Wei et al., Double hydrogen-bonding reinforced high-performance supramolecular hydrogel thermocell for self-powered sensing remote-controlled by light. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202211720
P. Peng, J. Zhou, L. Liang, X. Huang, H. Lv et al., Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-state thermocells. Nano-Micro Lett. 14(1), 81 (2022). https://doi.org/10.1007/s40820-022-00824-6
Z. Lei, W. Gao, W. Zhu, P. Wu, Anti-fatigue and highly conductive thermocells for continuous electricity generation. Adv. Funct. Mater. 32(25), 2201021 (2022). https://doi.org/10.1002/adfm.202201021
W. Gao, Z. Lei, C. Zhang, X. Liu, Y. Chen, Stretchable and freeze-tolerant organohydrogel thermocells with enhanced thermoelectric performance continually working at subzero temperatures. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202104071
S. Pu, Y. Liao, K. Chen, J. Fu, S. Zhang et al., Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett. 20(5), 3791–3797 (2020). https://doi.org/10.1021/acs.nanolett.0c00800
Z. Lei, W. Gao, P. Wu, Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting. Joule 5(8), 2211–2222 (2021). https://doi.org/10.1016/j.joule.2021.06.003
W. Gao, Z. Lei, W. Chen, Y. Chen, Hierarchically anisotropic networks to decouple mechanical and ionic properties for high-performance quasi-solid thermocells. ACS Nano 16(5), 8347–8357 (2022). https://doi.org/10.1021/acsnano.2c02606
Y.Q. Liu, S. Zhang, Y.T. Zhou, M.A. Buckingham, L. Aldous et al., Advanced wearable thermocells for body heat harvesting. Adv. Energy Mater. 10(48), 2002539 (2020). https://doi.org/10.1002/aenm.202002539
P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou et al., Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew. Chem. Int. Ed. 55(39), 12050–12053 (2016). https://doi.org/10.1002/anie.201606314
Y. Zong, H. Li, X. Li, J. Lou, Q. Ding et al., Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.134550
D. Zhang, Y. Mao, F. Ye, Q. Li, P. Bai et al., Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization. Energy Environ. Sci. 15(7), 2974–2982 (2022). https://doi.org/10.1039/d2ee00738j
C. Xu, Y. Sun, J. Zhang, W. Xu, H. Tian, Adaptable and wearable thermocell based on stretchable hydrogel for body heat harvesting. Adv. Energy Mater. 12(42), 2201542 (2022). https://doi.org/10.1002/aenm.202201542
Z. Liu, X. Wang, S. Wei, H. Lv, J. Zhou et al., A wavy-structured highly stretchable thermoelectric generator with stable energy output and self-rescuing capability. CCS Chem. 3(10), 2404–2414 (2021). https://doi.org/10.31635/ccschem.021.202101077
Y. Li, J. Yan, Y. Liu, X.M. Xie, Super tough and intelligent multibond network physical hydrogels facilitated by Ti(3)C(2)T(x) mxene nanosheets. ACS Nano 16(1), 1567–1577 (2022). https://doi.org/10.1021/acsnano.1c10151
Z. Pei, L. Ding, C. Wang, Q. Meng, Z. Yuan et al., Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries. Energy Environ. Sci. 14(9), 4926–4935 (2021). https://doi.org/10.1039/d1ee01244d
P. Zhang, X.-J. Yang, P. Li, Y. Zhao, Q.J. Niu, Fabrication of novel mxene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft Matter 16(1), 162–169 (2020). https://doi.org/10.1039/C9SM01985E
N. Tao, D. Zhang, X. Li, D. Lou, X. Sun et al., Near-infrared light-responsive hydrogels via peroxide-decorated mxene-initiated polymerization. Chem. Sci. 10(46), 10765–10771 (2019). https://doi.org/10.1039/C9SC03917A
G. Ge, Y.Z. Zhang, W. Zhang, W. Yuan, J.K. El-Demellawi et al., Ti(3)C(2)T(x) mxene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano 15(2), 2698–2706 (2021). https://doi.org/10.1021/acsnano.0c07998
W. Zhang, J. Peng, W. Hua, Y. Liu, J. Wang et al., Architecting amorphous vanadium oxide/mxene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv. Energy Mater. 11(22), 2100757 (2021). https://doi.org/10.1002/aenm.202100757
S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by mxene/swcnts/pani ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33(13), 2209806 (2023). https://doi.org/10.1002/adfm.202209806
N. Priyadharsini, P. RupaKasturi, A. Shanmugavani, S. Surendran, S. Shanmugapriya et al., Effect of chelating agent on the sol–gel thermolysis synthesis of linipo4 and its electrochemical properties for hybrid capacitors. J. Phys. Chem. Solids 119, 183–192 (2018). https://doi.org/10.1016/j.jpcs.2018.03.004
G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28(32), 1802576 (2018). https://doi.org/10.1002/adfm.201802576
M. Qin, W. Yuan, X. Zhang, Y. Cheng, M. Xu et al., Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf. B Biointerfaces 214, 112482 (2022). https://doi.org/10.1016/j.colsurfb.2022.112482
C. Li, S. Yang, Y. Guo, H. Lv, P. Li et al., Hydrogel electrolyte with high tolerance to a wide spectrum of phs and compressive energy storage devices based on it. Small Methods 7(3), 2201448 (2023). https://doi.org/10.1002/smtd.202201448
P. Peng, Z. Li, D. Xie, K. Zhu, C. Du et al., Aqueous eutectic hydrogel electrolytes enable flexible thermocells with a wide operating temperature range. J. Mater. Chem. A 11(13), 6986–6996 (2023). https://doi.org/10.1039/d2ta09385e
Z. Pei, H. Tan, J. Gu, L. Lu, X. Zeng et al., A polymeric hydrogel electrocatalyst for direct water oxidation. Nat. Commun. 14(1), 818 (2023). https://doi.org/10.1038/s41467-023-36532-x
H. Ding, D. Nie, N. Cui, K. Li, X. Zhang et al., Catalytic reduction of organic dyes by multilayered graphene platelets and silver nanops in polyacrylic acid hydrogel. Materials 14(9), 2274 (2021). https://doi.org/10.3390/ma14092274
W.P. Griffith, G.T. Turner, Raman spectra and vibrational assignments of hexacyano-complexes. J. Chem. Soc. A Inorgan. Phys. Theor. (1970). https://doi.org/10.1039/J19700000858
J. Dong, Z. Sheng, G. Xue, Fourier transform surface enhanced Raman scattering study of ferricyanide on silver. Spectrosc. Lett. 28(2), 139–151 (1995). https://doi.org/10.1080/00387019508010067
H. Okamoto, T. Nakabayashi, M. Tasumi, Incoherent time-resolved pump-probe Raman spectroscopy. J. Phys. Chem. 97(39), 9871–9873 (1993). https://doi.org/10.1021/j100141a001
M. Liao, P. Wan, J. Wen, M. Gong, X. Wu et al., Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27(48), 1703852 (2017). https://doi.org/10.1002/adfm.201703852
T.I. Quickenden, C.F. Vernon, Thermogalvanic conversion of heat to electricity. Sol. Energy 36(1), 63–72 (1986). https://doi.org/10.1016/0038-092X(86)90061-7
R. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee et al., Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010). https://doi.org/10.1021/nl903267n
S.A. Basith, A. Chandrasekhar, Covid-19 clinical waste reuse: a triboelectric touch sensor for iot-cloud supported smart hand sanitizer dispenser. Nano Energy 108, 108183 (2023). https://doi.org/10.1016/j.nanoen.2023.108183
C. Sukumaran, P. Viswanathan, P. Munirathinam, A. Chandrasekhar, A flexible and wearable joint motion sensor using triboelectric nanogenerators for hand gesture monitoring. Int. J. Nanotechnol. 18(5–8), 697–704 (2021). https://doi.org/10.1504/IJNT.2021.116183