ROS Balance Autoregulating Core–Shell CeO2@ZIF-8/Au Nanoplatform for Wound Repair
Corresponding Author: Xingcai Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 156
Abstract
Reactive oxygen species (ROS) plays important roles in living organisms. While ROS is a double-edged sword, which can eliminate drug-resistant bacteria, but excessive levels can cause oxidative damage to cells. A core–shell nanozyme, CeO2@ZIF-8/Au, has been crafted, spontaneously activating both ROS generating and scavenging functions, achieving the multi-faceted functions of eliminating bacteria, reducing inflammation, and promoting wound healing. The Au Nanoparticles (NPs) on the shell exhibit high-efficiency peroxidase-like activity, producing ROS to kill bacteria. Meanwhile, the encapsulation of CeO2 core within ZIF-8 provides a seal for temporarily limiting the superoxide dismutase and catalase-like activities of CeO2 nanoparticles. Subsequently, as the ZIF-8 structure decomposes in the acidic microenvironment, the CeO2 core is gradually released, exerting its ROS scavenging activity to eliminate excess ROS produced by the Au NPs. These two functions automatically and continuously regulate the balance of ROS levels, ultimately achieving the function of killing bacteria, reducing inflammation, and promoting wound healing. Such innovative ROS spontaneous regulators hold immense potential for revolutionizing the field of antibacterial agents and therapies.
Highlights:
1 The innovation of this work mainly lies in the auto-regulation of reactive oxygen species (ROS) balance effective by combination of ROS antibacterial and ROS scavenging anti-inflammatory functions with a core–shell nanoplatform (CeO2@ZIF-8/Au), which can not only achieve high antibacterial efficiency, but also promote wound healing, and provide a new idea for the nano-catalytic system in the field of wound healing of bacterial infection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Sies, V.V. Belousov, N.S. Chandel, M.J. Davies, D.P. Jones et al., Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022). https://doi.org/10.1038/s41580-022-00456-z
- P. Strzyz, ATP and ROS signal cell extrusion. Nat. Rev. Mol. Cell Biol. 23, 387 (2022). https://doi.org/10.1038/s41580-022-00487-6
- Z. Liu, T.S. Xiao, Partners with a killer: metabolic signaling promotes inflammatory cell death. Cell 184, 4374–4376 (2021). https://doi.org/10.1016/j.cell.2021.07.036
- C. Lennicke, H.M. Cochemé, Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021). https://doi.org/10.1016/j.molcel.2021.08.018
- S.G. Rhee, H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006). https://doi.org/10.1126/science.1130481
- C. Tapeinos, A. Pandit, Physical, chemical, and biological structures based on ros-sensitive moieties that are able to respond to oxidative microenvironments. Adv. Mater. 28, 5553–5585 (2016). https://doi.org/10.1002/adma.201505376
- H. Kawagishi, T. Finkel, Unraveling the truth about antioxidants: ROS and disease: finding the right balance. Nat. Med. 20, 711–713 (2014). https://doi.org/10.1038/nm.3625
- S. Koo, M.G. Lee, A. Sharma, M. Li, X. Zhang et al., Harnessing GLUT1-targeted pro-oxidant ascorbate for synergistic phototherapeutics. Angew. Chem. Int. Ed. 61, e202110832 (2022). https://doi.org/10.1002/anie.202110832
- D. Wei, Y. Yu, Y. Huang, Y. Jiang, Y. Zhao et al., A near-infrared-II polymer with tandem fluorophores demonstrates superior biodegradability for simultaneous drug tracking and treatment efficacy feedback. ACS Nano 15, 5428–5438 (2021). https://doi.org/10.1021/acsnano.1c00076
- B. Steinhorn, A. Sorrentino, S. Badole, Y. Bogdanova, V. Belousov et al., Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat. Commun. 9, 4044 (2018). https://doi.org/10.1038/s41467-018-06533-2
- D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
- W.Y. Kim, M. Won, S. Koo, X. Zhang, J.S. Kim, Mitochondrial H2Sn-mediated anti-inflammatory theranostics. Nano-Micro Lett. 13, 168 (2021). https://doi.org/10.1007/s40820-021-00689-1
- R. Li, T. Chen, X. Pan, Metal–organic-framework-based materials for antimicrobial applications. ACS Nano 15, 3808–3848 (2021). https://doi.org/10.1021/acsnano.0c09617
- Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
- J. Li, S. Song, J. Meng, L. Tan, X. Liu et al., 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 143, 15427–15439 (2021). https://doi.org/10.1021/jacs.1c07875
- X. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao et al., Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12, 1124 (2021). https://doi.org/10.1038/s41467-021-21436-5
- Z. Yang, D. Gao, J. Zhao, G. Yang, M. Guo et al., Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. 20, 116–134 (2023). https://doi.org/10.1038/s41571-022-00717-y
- M. Zandieh, J. Liu, Nanozymes: definition, activity, and mechanisms. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211041
- X. Liu, Q. Liu, X. He, G. Yang, X. Chen et al., NIR-II-enhanced single-atom-nanozyme for sustainable accelerating bacteria-infected wound healing. Appl. Surf. Sci. 612, 155866 (2023). https://doi.org/10.1016/j.apsusc.2022.155866
- E.C. Cheung, K.H. Vousden, The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022). https://doi.org/10.1038/s41568-021-00435-0
- S. Wang, R. Tian, X. Zhang, G. Cheng, P. Yu et al., Beyond photo: xdynamic therapies in fighting cancer. Adv. Mater. 33, e2007488 (2021). https://doi.org/10.1002/adma.202007488
- X.-L. Xu, N.-N. Zhang, G.-F. Shu, D. Liu, J. Qi et al., A luminol-based self-illuminating nanocage as a reactive oxygen species amplifier to enhance deep tumor penetration and synergistic therapy. ACS Nano 15, 19394–19408 (2021). https://doi.org/10.1021/acsnano.1c05891
- Z. Chen, Y. Sun, J. Wang, X. Zhou, X. Kong et al., Dual-responsive triple-synergistic Fe-MOF for tumor theranostics. ACS Nano 17, 9003–9013 (2023). https://doi.org/10.1021/acsnano.2c10310
- X. Zan, D. Yang, Y. Xiao, Y. Zhu, H. Chen et al., Facile general injectable gelatin/metal/tea polyphenol double nanonetworks remodel wound microenvironment and accelerate healing. Adv. Sci. (2023). https://doi.org/10.1002/advs.202305405
- L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang et al., Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13, 19352–19366 (2021). https://doi.org/10.1039/d1nr06195j
- M. Cao, N. Diao, X. Cai, X. Chen, Y. Xiao et al., Plant exosome nanovesicles (PENs): green delivery platforms. Mater. Horiz. 10, 3879–3894 (2023). https://doi.org/10.1039/d3mh01030a
- N. Kong, H. Zhang, C. Feng, C. Liu, Y. Xiao et al., Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nat. Commun. 12, 4777 (2021). https://doi.org/10.1038/s41467-021-24961-5
- D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13, 99 (2021). https://doi.org/10.1007/s40820-021-00616-4
- Y. Zhu, P. Xu, X. Zhang, D. Wu, Emerging porous organic polymers for biomedical applications. Chem. Soc. Rev. 51, 1377–1414 (2022). https://doi.org/10.1039/d1cs00871d
- D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13, 1413 (2022). https://doi.org/10.1038/s41467-022-28744-4
- J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
- P. Jangili, N. Kong, J.H. Kim, J. Zhou, H. Liu et al., DNA-damage-response-targeting mitochondria-activated multifunctional prodrug strategy for self-defensive tumor therapy. Angew. Chem. Int. Ed. 61, e202117075 (2022). https://doi.org/10.1002/anie.202117075
- Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng et al., Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 14, 17442–17457 (2020). https://doi.org/10.1021/acsnano.0c07721
- M. Deng, M. Zhang, R. Huang, H. Li, W. Lv et al., Diabetes immunity-modulated multifunctional hydrogel with cascade enzyme catalytic activity for bacterial wound treatment. Biomaterials 289, 121790 (2022). https://doi.org/10.1016/j.biomaterials.2022.121790
- J. Ouyang, C. Feng, X. Zhang, N. Kong, W. Tao, Black phosphorus in biological applications: evolutionary journey from monoelemental materials to composite materials. Acc. Mater. Res. 2, 489–500 (2021). https://doi.org/10.1021/accountsmr.1c00039
- W. Zhu, J. Mei, X. Zhang, J. Zhou, D. Xu et al., Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated Janus ion therapy. Adv. Mater. 34, e2207961 (2022). https://doi.org/10.1002/adma.202207961
- G.W.K. Moore, S.E.L. Howell, M. Brady, X. Xu, K. McNeil, Anomalous collapses of Nares Strait ice Arches leads to enhanced export of Arctic Sea ice. Nat. Commun. 12, 1 (2021). https://doi.org/10.1038/s41467-020-20314-w
- M. Wang, X. Zhou, Y. Li, Y. Dong, J. Meng et al., Triple-synergistic MOF-nanozyme for efficient antibacterial treatment. Bioact. Mater. 17, 289–299 (2022). https://doi.org/10.1016/j.bioactmat.2022.01.036
- X. Zhou, S. Zhang, Y. Liu, J. Meng, M. Wang et al., Antibacterial cascade catalytic glutathione-depleting MOF nanoreactors. ACS Appl. Mater. Interfaces 14, 11104–11115 (2022). https://doi.org/10.1021/acsami.1c24231
- Y. Sun, S. Mu, Z. Xing, J. Guo, Z. Wu et al., Catalase-mimetic artificial biocatalysts with Ru catalytic centers for ROS elimination and stem-cell protection. Adv. Mater. 34, e2206208 (2022). https://doi.org/10.1002/adma.202206208
- Y. Ma, Z. Lu, B. Jia, Y. Shi, J. Dong et al., DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging. ACS Nano 16, 12520–12531 (2022). https://doi.org/10.1021/acsnano.2c03991
- Y. Zhao, S. Song, D. Wang, H. Liu, J. Zhang et al., Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun. 13, 6758 (2022). https://doi.org/10.1038/s41467-022-34481-5
- R. Hou, T. Lu, W. Gao, J. Shen, Z. Yu et al., Prussian blue nanozyme promotes the survival rate of skin flaps by maintaining a normal microenvironment. ACS Nano 16, 9559–9571 (2022). https://doi.org/10.1021/acsnano.2c02832
- Z. Li, Y. Zhao, H. Huang, C. Zhang, H. Liu et al., A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv. Healthc. Mater. 11, e2201524 (2022). https://doi.org/10.1002/adhm.202201524
- D.Y. Zhang, M.R. Younis, H. Liu, S. Lei, Y. Wan et al., Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management. Biomaterials 271, 120706 (2021). https://doi.org/10.1016/j.biomaterials.2021.120706
- C. Zhou, L. Zhang, Z. Xu, T. Sun, M. Gong et al., Self-propelled ultrasmall AuNPs-tannic acid hybrid nanozyme with ROS-scavenging and anti-inflammatory activity for drug-induced liver injury alleviation. Small 19, e2206408 (2023). https://doi.org/10.1002/smll.202206408
- M. Li, L. Huo, J. Zeng, G. Zhu, X. Liu et al., Switchable ROS scavenger/generator for MRI-guided anti-inflammation and anti-tumor therapy with enhanced therapeutic efficacy and reduced side effects. Adv. Healthc. Mater. 12, e2202043 (2023). https://doi.org/10.1002/adhm.202202043
- Y. Sun, X. Sun, X. Li, W. Li, C. Li et al., A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials 268, 120614 (2021). https://doi.org/10.1016/j.biomaterials.2020.120614
- T. Ma, X. Zhai, Y. Huang, M. Zhang, X. Zhao et al., A smart nanoplatform with photothermal antibacterial capability and antioxidant activity for chronic wound healing. Adv. Healthc. Mater. 10, e2100033 (2021). https://doi.org/10.1002/adhm.202100033
- C. Feng, Z. Xiong, X. Sun, H. Zhou, T. Wang et al., Beyond antioxidation: harnessing the CeO2 nanops as a renoprotective contrast agent for in vivo spectral CT angiography. Biomaterials 299, 122164 (2023). https://doi.org/10.1016/j.biomaterials.2023.122164
- T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J. Zha et al., Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51, 6126–6176 (2022). https://doi.org/10.1039/d2cs00236a
- G. Parekh, Y. Shi, J. Zheng, X. Zhang, S. Leporatti, Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther. Deliv. 9, 451–468 (2018). https://doi.org/10.4155/tde-2018-0013
- C. Zhang, Y. Yu, S. Shi, M. Liang, D. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22, 8592–8600 (2022). https://doi.org/10.1021/acs.nanolett.2c03119
- X. Zhang, Tea and cancer prevention. J. Can. Res. Updates 4, 65–73 (2015). https://doi.org/10.6000/1929-2279.2015.04.02.4
- G. Huang, J. Zang, L. He, H. Zhu, J. Huang et al., Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke. ACS Nano 16, 431–452 (2022). https://doi.org/10.1021/acsnano.1c07205
- X. Zhang, G. Parekh, B. Guo, X. Huang, Y. Dong et al., Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discov. 1, 0001 (2019). https://doi.org/10.4155/fdd-2019-0001
- L. He, G. Huang, H. Liu, C. Sang, X. Liu et al., Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci. Adv. 6, eaay9751 (2020). https://doi.org/10.1126/sciadv.aay9751
- H.J. Forman, H. Zhang, Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021). https://doi.org/10.1038/s41573-021-00233-1
- Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang et al., Insights from nanotechnology in COVID-19 treatment. Nano Today 36, 101019 (2021). https://doi.org/10.1016/j.nantod.2020.101019
- X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
- Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5, 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
References
H. Sies, V.V. Belousov, N.S. Chandel, M.J. Davies, D.P. Jones et al., Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022). https://doi.org/10.1038/s41580-022-00456-z
P. Strzyz, ATP and ROS signal cell extrusion. Nat. Rev. Mol. Cell Biol. 23, 387 (2022). https://doi.org/10.1038/s41580-022-00487-6
Z. Liu, T.S. Xiao, Partners with a killer: metabolic signaling promotes inflammatory cell death. Cell 184, 4374–4376 (2021). https://doi.org/10.1016/j.cell.2021.07.036
C. Lennicke, H.M. Cochemé, Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021). https://doi.org/10.1016/j.molcel.2021.08.018
S.G. Rhee, H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006). https://doi.org/10.1126/science.1130481
C. Tapeinos, A. Pandit, Physical, chemical, and biological structures based on ros-sensitive moieties that are able to respond to oxidative microenvironments. Adv. Mater. 28, 5553–5585 (2016). https://doi.org/10.1002/adma.201505376
H. Kawagishi, T. Finkel, Unraveling the truth about antioxidants: ROS and disease: finding the right balance. Nat. Med. 20, 711–713 (2014). https://doi.org/10.1038/nm.3625
S. Koo, M.G. Lee, A. Sharma, M. Li, X. Zhang et al., Harnessing GLUT1-targeted pro-oxidant ascorbate for synergistic phototherapeutics. Angew. Chem. Int. Ed. 61, e202110832 (2022). https://doi.org/10.1002/anie.202110832
D. Wei, Y. Yu, Y. Huang, Y. Jiang, Y. Zhao et al., A near-infrared-II polymer with tandem fluorophores demonstrates superior biodegradability for simultaneous drug tracking and treatment efficacy feedback. ACS Nano 15, 5428–5438 (2021). https://doi.org/10.1021/acsnano.1c00076
B. Steinhorn, A. Sorrentino, S. Badole, Y. Bogdanova, V. Belousov et al., Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat. Commun. 9, 4044 (2018). https://doi.org/10.1038/s41467-018-06533-2
D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
W.Y. Kim, M. Won, S. Koo, X. Zhang, J.S. Kim, Mitochondrial H2Sn-mediated anti-inflammatory theranostics. Nano-Micro Lett. 13, 168 (2021). https://doi.org/10.1007/s40820-021-00689-1
R. Li, T. Chen, X. Pan, Metal–organic-framework-based materials for antimicrobial applications. ACS Nano 15, 3808–3848 (2021). https://doi.org/10.1021/acsnano.0c09617
Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
J. Li, S. Song, J. Meng, L. Tan, X. Liu et al., 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 143, 15427–15439 (2021). https://doi.org/10.1021/jacs.1c07875
X. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao et al., Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nat. Commun. 12, 1124 (2021). https://doi.org/10.1038/s41467-021-21436-5
Z. Yang, D. Gao, J. Zhao, G. Yang, M. Guo et al., Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. 20, 116–134 (2023). https://doi.org/10.1038/s41571-022-00717-y
M. Zandieh, J. Liu, Nanozymes: definition, activity, and mechanisms. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211041
X. Liu, Q. Liu, X. He, G. Yang, X. Chen et al., NIR-II-enhanced single-atom-nanozyme for sustainable accelerating bacteria-infected wound healing. Appl. Surf. Sci. 612, 155866 (2023). https://doi.org/10.1016/j.apsusc.2022.155866
E.C. Cheung, K.H. Vousden, The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022). https://doi.org/10.1038/s41568-021-00435-0
S. Wang, R. Tian, X. Zhang, G. Cheng, P. Yu et al., Beyond photo: xdynamic therapies in fighting cancer. Adv. Mater. 33, e2007488 (2021). https://doi.org/10.1002/adma.202007488
X.-L. Xu, N.-N. Zhang, G.-F. Shu, D. Liu, J. Qi et al., A luminol-based self-illuminating nanocage as a reactive oxygen species amplifier to enhance deep tumor penetration and synergistic therapy. ACS Nano 15, 19394–19408 (2021). https://doi.org/10.1021/acsnano.1c05891
Z. Chen, Y. Sun, J. Wang, X. Zhou, X. Kong et al., Dual-responsive triple-synergistic Fe-MOF for tumor theranostics. ACS Nano 17, 9003–9013 (2023). https://doi.org/10.1021/acsnano.2c10310
X. Zan, D. Yang, Y. Xiao, Y. Zhu, H. Chen et al., Facile general injectable gelatin/metal/tea polyphenol double nanonetworks remodel wound microenvironment and accelerate healing. Adv. Sci. (2023). https://doi.org/10.1002/advs.202305405
L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang et al., Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13, 19352–19366 (2021). https://doi.org/10.1039/d1nr06195j
M. Cao, N. Diao, X. Cai, X. Chen, Y. Xiao et al., Plant exosome nanovesicles (PENs): green delivery platforms. Mater. Horiz. 10, 3879–3894 (2023). https://doi.org/10.1039/d3mh01030a
N. Kong, H. Zhang, C. Feng, C. Liu, Y. Xiao et al., Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nat. Commun. 12, 4777 (2021). https://doi.org/10.1038/s41467-021-24961-5
D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13, 99 (2021). https://doi.org/10.1007/s40820-021-00616-4
Y. Zhu, P. Xu, X. Zhang, D. Wu, Emerging porous organic polymers for biomedical applications. Chem. Soc. Rev. 51, 1377–1414 (2022). https://doi.org/10.1039/d1cs00871d
D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13, 1413 (2022). https://doi.org/10.1038/s41467-022-28744-4
J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
P. Jangili, N. Kong, J.H. Kim, J. Zhou, H. Liu et al., DNA-damage-response-targeting mitochondria-activated multifunctional prodrug strategy for self-defensive tumor therapy. Angew. Chem. Int. Ed. 61, e202117075 (2022). https://doi.org/10.1002/anie.202117075
Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng et al., Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 14, 17442–17457 (2020). https://doi.org/10.1021/acsnano.0c07721
M. Deng, M. Zhang, R. Huang, H. Li, W. Lv et al., Diabetes immunity-modulated multifunctional hydrogel with cascade enzyme catalytic activity for bacterial wound treatment. Biomaterials 289, 121790 (2022). https://doi.org/10.1016/j.biomaterials.2022.121790
J. Ouyang, C. Feng, X. Zhang, N. Kong, W. Tao, Black phosphorus in biological applications: evolutionary journey from monoelemental materials to composite materials. Acc. Mater. Res. 2, 489–500 (2021). https://doi.org/10.1021/accountsmr.1c00039
W. Zhu, J. Mei, X. Zhang, J. Zhou, D. Xu et al., Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated Janus ion therapy. Adv. Mater. 34, e2207961 (2022). https://doi.org/10.1002/adma.202207961
G.W.K. Moore, S.E.L. Howell, M. Brady, X. Xu, K. McNeil, Anomalous collapses of Nares Strait ice Arches leads to enhanced export of Arctic Sea ice. Nat. Commun. 12, 1 (2021). https://doi.org/10.1038/s41467-020-20314-w
M. Wang, X. Zhou, Y. Li, Y. Dong, J. Meng et al., Triple-synergistic MOF-nanozyme for efficient antibacterial treatment. Bioact. Mater. 17, 289–299 (2022). https://doi.org/10.1016/j.bioactmat.2022.01.036
X. Zhou, S. Zhang, Y. Liu, J. Meng, M. Wang et al., Antibacterial cascade catalytic glutathione-depleting MOF nanoreactors. ACS Appl. Mater. Interfaces 14, 11104–11115 (2022). https://doi.org/10.1021/acsami.1c24231
Y. Sun, S. Mu, Z. Xing, J. Guo, Z. Wu et al., Catalase-mimetic artificial biocatalysts with Ru catalytic centers for ROS elimination and stem-cell protection. Adv. Mater. 34, e2206208 (2022). https://doi.org/10.1002/adma.202206208
Y. Ma, Z. Lu, B. Jia, Y. Shi, J. Dong et al., DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging. ACS Nano 16, 12520–12531 (2022). https://doi.org/10.1021/acsnano.2c03991
Y. Zhao, S. Song, D. Wang, H. Liu, J. Zhang et al., Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun. 13, 6758 (2022). https://doi.org/10.1038/s41467-022-34481-5
R. Hou, T. Lu, W. Gao, J. Shen, Z. Yu et al., Prussian blue nanozyme promotes the survival rate of skin flaps by maintaining a normal microenvironment. ACS Nano 16, 9559–9571 (2022). https://doi.org/10.1021/acsnano.2c02832
Z. Li, Y. Zhao, H. Huang, C. Zhang, H. Liu et al., A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv. Healthc. Mater. 11, e2201524 (2022). https://doi.org/10.1002/adhm.202201524
D.Y. Zhang, M.R. Younis, H. Liu, S. Lei, Y. Wan et al., Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management. Biomaterials 271, 120706 (2021). https://doi.org/10.1016/j.biomaterials.2021.120706
C. Zhou, L. Zhang, Z. Xu, T. Sun, M. Gong et al., Self-propelled ultrasmall AuNPs-tannic acid hybrid nanozyme with ROS-scavenging and anti-inflammatory activity for drug-induced liver injury alleviation. Small 19, e2206408 (2023). https://doi.org/10.1002/smll.202206408
M. Li, L. Huo, J. Zeng, G. Zhu, X. Liu et al., Switchable ROS scavenger/generator for MRI-guided anti-inflammation and anti-tumor therapy with enhanced therapeutic efficacy and reduced side effects. Adv. Healthc. Mater. 12, e2202043 (2023). https://doi.org/10.1002/adhm.202202043
Y. Sun, X. Sun, X. Li, W. Li, C. Li et al., A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials 268, 120614 (2021). https://doi.org/10.1016/j.biomaterials.2020.120614
T. Ma, X. Zhai, Y. Huang, M. Zhang, X. Zhao et al., A smart nanoplatform with photothermal antibacterial capability and antioxidant activity for chronic wound healing. Adv. Healthc. Mater. 10, e2100033 (2021). https://doi.org/10.1002/adhm.202100033
C. Feng, Z. Xiong, X. Sun, H. Zhou, T. Wang et al., Beyond antioxidation: harnessing the CeO2 nanops as a renoprotective contrast agent for in vivo spectral CT angiography. Biomaterials 299, 122164 (2023). https://doi.org/10.1016/j.biomaterials.2023.122164
T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J. Zha et al., Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51, 6126–6176 (2022). https://doi.org/10.1039/d2cs00236a
G. Parekh, Y. Shi, J. Zheng, X. Zhang, S. Leporatti, Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther. Deliv. 9, 451–468 (2018). https://doi.org/10.4155/tde-2018-0013
C. Zhang, Y. Yu, S. Shi, M. Liang, D. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22, 8592–8600 (2022). https://doi.org/10.1021/acs.nanolett.2c03119
X. Zhang, Tea and cancer prevention. J. Can. Res. Updates 4, 65–73 (2015). https://doi.org/10.6000/1929-2279.2015.04.02.4
G. Huang, J. Zang, L. He, H. Zhu, J. Huang et al., Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke. ACS Nano 16, 431–452 (2022). https://doi.org/10.1021/acsnano.1c07205
X. Zhang, G. Parekh, B. Guo, X. Huang, Y. Dong et al., Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discov. 1, 0001 (2019). https://doi.org/10.4155/fdd-2019-0001
L. He, G. Huang, H. Liu, C. Sang, X. Liu et al., Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci. Adv. 6, eaay9751 (2020). https://doi.org/10.1126/sciadv.aay9751
H.J. Forman, H. Zhang, Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021). https://doi.org/10.1038/s41573-021-00233-1
Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang et al., Insights from nanotechnology in COVID-19 treatment. Nano Today 36, 101019 (2021). https://doi.org/10.1016/j.nantod.2020.101019
X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5, 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y