Triboelectric–Electromagnetic Hybrid Generator for Harvesting Blue Energy
Corresponding Author: Xuhui Sun
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 54
Abstract
Progress has been developed in harvesting low-frequency and irregular blue energy using a triboelectric–electromagnetic hybrid generator in recent years. However, the design of the high-efficiency, mechanically durable hybrid structure is still challenging. In this study, we report a fully packaged triboelectric–electromagnetic hybrid generator (TEHG), in which magnets were utilized as the trigger to drive contact–separation-mode triboelectric nanogenerators (CS-TENGs) and coupled with copper coils to operate rotary freestanding-mode electromagnetic generators (RF-EMGs). The magnet pairs that produce attraction were used to transfer the external mechanical energy to the CS-TENGs, and packaging of the CS-TENG part was achieved to protect it from the ambient environment. Under a rotatory speed of 100 rpm, the CS-TENGs enabled the TEHG to deliver an output voltage, current, and average power of 315.8 V, 44.6 μA, and ~ 90.7 μW, and the output of the RF-EMGs was 0.59 V, 1.78 mA, and 79.6 μW, respectively. The cylinder-like structure made the TEHG more easily driven by water flow and demonstrated to work as a practical power source to charge commercial capacitors. It can charge a 33 μF capacitor from 0 to 2.1 V in 84 s, and the stored energy in the capacitor can drive an electronic thermometer and form a self-powered water-temperature sensing system.
Highlights:
1 A hybrid generator including contact–separation-mode triboelectric nanogenerators (CS-TENGs) and rotary freestanding-mode electromagnetic generators (RF-EMGs) with the potential to harvest water flow-based blue energy from the environment was designed.
2 The magnet pairs that produce attraction were used to achieve packaging of the CS-TENGs part, protecting it from being affected by the ambient environment.
3 In addition to powering light-emitting diodes, the generator can charge commercial capacitors and use the stored energy to power an electronic water thermometer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Zhou, Y. Yang, N. Sun, Z. Wen, P. Cheng et al., Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. (2018). https://doi.org/10.1007/s12274-018-2018-8
- A. Ahmed, Z. Saadatnia, I. Hassan, Y. Zi, Y. Xi, X. He, J. Zu, Z.L. Wang, Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy. Adv. Energy Mater. 7(7), 1601705 (2016). https://doi.org/10.1002/aenm.201601705
- U. Khan, S.-W. Kim, Triboelectric nanogenerators for blue energy harvesting. ACS Nano 10(7), 6429–6432 (2016). https://doi.org/10.1021/acsnano.6b04213
- Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun, S.-T. Lee, B. Sun, Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12(3), 2893–2899 (2018). https://doi.org/10.1021/acsnano.8b00416
- Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
- J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi et al., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9(3), 3324–3331 (2015). https://doi.org/10.1021/acsnano.5b00534
- Y. Yao, T. Jiang, L. Zhang, X. Chen, Z. Gao, Z.L. Wang, Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl. Mater. Interfaces 8(33), 21398–21406 (2016). https://doi.org/10.1021/acsami.6b07697
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- Z.L. Wang, On maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
- Q. Shen, X. Xie, M. Peng, N. Sun, H. Shao, H. Zheng, Z. Wen, X. Sun, Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects. Adv. Funct. Mater. 28(10), 1703420 (2017). https://doi.org/10.1002/adfm.201703420
- Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017). https://doi.org/10.1007/s40820-017-0146-4
- X. Xie, Z. Wen, Q. Shen, C. Chen, M. Peng et al., Impedance matching effect between triboelectric nanogenerator and piezoresistive pressure sensor induced self-powered weighing. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201800054
- X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z.L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3(7), e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
- J. Chen, X. Pu, H. Guo, Q. Tang, L. Feng, X. Wang, C. Hu, A self-powered 2d barcode recognition system based on sliding mode triboelectric nanogenerator for personal identification. Nano Energy 43, 253–258 (2018). https://doi.org/10.1016/j.nanoen.2017.11.028
- Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, Z.L. Wang, Harvesting low-frequency (< 5 hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797–4805 (2016). https://doi.org/10.1021/acsnano.6b01569
- C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
- Z.-H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water–solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Edit. 125(48), 12777–12781 (2013). https://doi.org/10.1002/ange.201307249
- G. Zhu, Y. Su, P. Bai, J. Chen, Q. Jing, W. Yang, Z.L. Wang, Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6), 6031–6037 (2014). https://doi.org/10.1021/nn5012732
- X.J. Zhao, J.J. Tian, S.Y. Kuang, H. Ouyang, L. Yan, Z.L. Wang, Z. Li, G. Zhu, Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation. Adv. Mater. Interfaces 3(17), 1600187 (2016). https://doi.org/10.1002/admi.201600187
- F.H.J. van der Heyden, D.J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 6(10), 2232–2237 (2006). https://doi.org/10.1021/nl061524l
- K. Liu, T. Ding, X. Mo, Q. Chen, P. Yang, J. Li, W. Xie, Y. Zhou, J. Zhou, Flexible microfluidics nanogenerator based on the electrokinetic conversion. Nano Energy 30, 684–690 (2016). https://doi.org/10.1016/j.nanoen.2016.10.058
- Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2), 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
- Q. Shi, H. Wang, H. Wu, C. Lee, Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy 40, 203–213 (2017). https://doi.org/10.1016/j.nanoen.2017.08.018
- X. Wang, S. Niu, Y. Yin, F. Yi, Z. You, Z.L. Wang, Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5(24), 1501467 (2015). https://doi.org/10.1002/aenm.201501467
- Y. Yang, H. Zhang, R. Liu, X. Wen, T.-C. Hou, Z.L. Wang, Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 3(12), 1563–1568 (2013). https://doi.org/10.1002/aenm.201300376
- Y. Xi, J. Wang, Y. Zi, X. Li, C. Han, X. Cao, C. Hu, Z. Wang, High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy 38, 101–108 (2017). https://doi.org/10.1016/j.nanoen.2017.04.053
- H. Guo, Z. Wen, Y. Zi, M.-H. Yeh, J. Wang, L. Zhu, C. Hu, Z.L. Wang, A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
- X. Wang, Z. Wen, H. Guo, C. Wu, X. He, L. Lin, X. Cao, Z.L. Wang, Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). https://doi.org/10.1021/acsnano.6b06622
- Z. Wen, H. Guo, Y. Zi, M.-H. Yeh, X. Wang et al., Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 10(7), 6526–6534 (2016). https://doi.org/10.1021/acsnano.6b03293
- H. Shao, Z. Wen, P. Cheng, N. Sun, Q. Shen et al., Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608–615 (2017). https://doi.org/10.1016/j.nanoen.2017.07.045
- S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
- G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014). https://doi.org/10.1038/ncomms4426
- N. Sun, Z. Wen, F. Zhao, Y. Yang, H. Shao et al., All flexible electrospun papers based self-charging power system. Nano Energy 38, 210–217 (2017). https://doi.org/10.1016/j.nanoen.2017.05.048
- Z. Wen, M.-H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
- Z. Wen, J. Chen, M.-H. Yeh, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu, Z.L. Wang, Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 16, 38–46 (2015). https://doi.org/10.1016/j.nanoen.2015.06.006
- M.-L. Seol, S.-B. Jeon, J.-W. Han, Y.-K. Choi, Ferrofluid-based triboelectric–electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017). https://doi.org/10.1016/j.nanoen.2016.11.038
- J. Chen, H. Guo, G. Liu, X. Wang, Y. Xi, M.S. Javed, C. Hu, A fully-packaged and robust hybridized generator for harvesting vertical rotation energy in broad frequency band and building up self-powered wireless systems. Nano Energy 33, 508–514 (2017). https://doi.org/10.1016/j.nanoen.2017.01.052
- T. Quan, Y. Yang, Fully enclosed hybrid electromagnetic–triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 9(8), 2226–2233 (2016). https://doi.org/10.1007/s12274-016-1109-7
- T. Quan, Z.L. Wang, Y. Yang, A shared-electrode-based hybridized electromagnetic–triboelectric nanogenerator. ACS Appl. Mater. Interfaces 8(30), 19573–19578 (2016). https://doi.org/10.1021/acsami.6b07162
- Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen, H. Guo, Z.L. Wang, Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016). https://doi.org/10.1038/ncomms10987
- S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015). https://doi.org/10.1038/ncomms9975
References
C. Zhou, Y. Yang, N. Sun, Z. Wen, P. Cheng et al., Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. (2018). https://doi.org/10.1007/s12274-018-2018-8
A. Ahmed, Z. Saadatnia, I. Hassan, Y. Zi, Y. Xi, X. He, J. Zu, Z.L. Wang, Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy. Adv. Energy Mater. 7(7), 1601705 (2016). https://doi.org/10.1002/aenm.201601705
U. Khan, S.-W. Kim, Triboelectric nanogenerators for blue energy harvesting. ACS Nano 10(7), 6429–6432 (2016). https://doi.org/10.1021/acsnano.6b04213
Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun, S.-T. Lee, B. Sun, Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12(3), 2893–2899 (2018). https://doi.org/10.1021/acsnano.8b00416
Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi et al., Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9(3), 3324–3331 (2015). https://doi.org/10.1021/acsnano.5b00534
Y. Yao, T. Jiang, L. Zhang, X. Chen, Z. Gao, Z.L. Wang, Charging system optimization of triboelectric nanogenerator for water wave energy harvesting and storage. ACS Appl. Mater. Interfaces 8(33), 21398–21406 (2016). https://doi.org/10.1021/acsami.6b07697
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
Z.L. Wang, On maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015). https://doi.org/10.1039/C5EE01532D
Q. Shen, X. Xie, M. Peng, N. Sun, H. Shao, H. Zheng, Z. Wen, X. Sun, Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects. Adv. Funct. Mater. 28(10), 1703420 (2017). https://doi.org/10.1002/adfm.201703420
Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017). https://doi.org/10.1007/s40820-017-0146-4
X. Xie, Z. Wen, Q. Shen, C. Chen, M. Peng et al., Impedance matching effect between triboelectric nanogenerator and piezoresistive pressure sensor induced self-powered weighing. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201800054
X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z.L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 3(7), e1700694 (2017). https://doi.org/10.1126/sciadv.1700694
J. Chen, X. Pu, H. Guo, Q. Tang, L. Feng, X. Wang, C. Hu, A self-powered 2d barcode recognition system based on sliding mode triboelectric nanogenerator for personal identification. Nano Energy 43, 253–258 (2018). https://doi.org/10.1016/j.nanoen.2017.11.028
Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, Z.L. Wang, Harvesting low-frequency (< 5 hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797–4805 (2016). https://doi.org/10.1021/acsnano.6b01569
C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
Z.-H. Lin, G. Cheng, L. Lin, S. Lee, Z.L. Wang, Water–solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Edit. 125(48), 12777–12781 (2013). https://doi.org/10.1002/ange.201307249
G. Zhu, Y. Su, P. Bai, J. Chen, Q. Jing, W. Yang, Z.L. Wang, Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6), 6031–6037 (2014). https://doi.org/10.1021/nn5012732
X.J. Zhao, J.J. Tian, S.Y. Kuang, H. Ouyang, L. Yan, Z.L. Wang, Z. Li, G. Zhu, Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation. Adv. Mater. Interfaces 3(17), 1600187 (2016). https://doi.org/10.1002/admi.201600187
F.H.J. van der Heyden, D.J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 6(10), 2232–2237 (2006). https://doi.org/10.1021/nl061524l
K. Liu, T. Ding, X. Mo, Q. Chen, P. Yang, J. Li, W. Xie, Y. Zhou, J. Zhou, Flexible microfluidics nanogenerator based on the electrokinetic conversion. Nano Energy 30, 684–690 (2016). https://doi.org/10.1016/j.nanoen.2016.10.058
Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng et al., Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12(2), 2027–2034 (2018). https://doi.org/10.1021/acsnano.8b00147
Q. Shi, H. Wang, H. Wu, C. Lee, Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy 40, 203–213 (2017). https://doi.org/10.1016/j.nanoen.2017.08.018
X. Wang, S. Niu, Y. Yin, F. Yi, Z. You, Z.L. Wang, Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 5(24), 1501467 (2015). https://doi.org/10.1002/aenm.201501467
Y. Yang, H. Zhang, R. Liu, X. Wen, T.-C. Hou, Z.L. Wang, Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 3(12), 1563–1568 (2013). https://doi.org/10.1002/aenm.201300376
Y. Xi, J. Wang, Y. Zi, X. Li, C. Han, X. Cao, C. Hu, Z. Wang, High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy 38, 101–108 (2017). https://doi.org/10.1016/j.nanoen.2017.04.053
H. Guo, Z. Wen, Y. Zi, M.-H. Yeh, J. Wang, L. Zhu, C. Hu, Z.L. Wang, A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 6(6), 1501593 (2016). https://doi.org/10.1002/aenm.201501593
X. Wang, Z. Wen, H. Guo, C. Wu, X. He, L. Lin, X. Cao, Z.L. Wang, Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 10(12), 11369–11376 (2016). https://doi.org/10.1021/acsnano.6b06622
Z. Wen, H. Guo, Y. Zi, M.-H. Yeh, X. Wang et al., Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 10(7), 6526–6534 (2016). https://doi.org/10.1021/acsnano.6b03293
H. Shao, Z. Wen, P. Cheng, N. Sun, Q. Shen et al., Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608–615 (2017). https://doi.org/10.1016/j.nanoen.2017.07.045
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014). https://doi.org/10.1038/ncomms4426
N. Sun, Z. Wen, F. Zhao, Y. Yang, H. Shao et al., All flexible electrospun papers based self-charging power system. Nano Energy 38, 210–217 (2017). https://doi.org/10.1016/j.nanoen.2017.05.048
Z. Wen, M.-H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
Z. Wen, J. Chen, M.-H. Yeh, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu, Z.L. Wang, Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 16, 38–46 (2015). https://doi.org/10.1016/j.nanoen.2015.06.006
M.-L. Seol, S.-B. Jeon, J.-W. Han, Y.-K. Choi, Ferrofluid-based triboelectric–electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 31, 233–238 (2017). https://doi.org/10.1016/j.nanoen.2016.11.038
J. Chen, H. Guo, G. Liu, X. Wang, Y. Xi, M.S. Javed, C. Hu, A fully-packaged and robust hybridized generator for harvesting vertical rotation energy in broad frequency band and building up self-powered wireless systems. Nano Energy 33, 508–514 (2017). https://doi.org/10.1016/j.nanoen.2017.01.052
T. Quan, Y. Yang, Fully enclosed hybrid electromagnetic–triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 9(8), 2226–2233 (2016). https://doi.org/10.1007/s12274-016-1109-7
T. Quan, Z.L. Wang, Y. Yang, A shared-electrode-based hybridized electromagnetic–triboelectric nanogenerator. ACS Appl. Mater. Interfaces 8(30), 19573–19578 (2016). https://doi.org/10.1021/acsami.6b07162
Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen, H. Guo, Z.L. Wang, Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016). https://doi.org/10.1038/ncomms10987
S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015). https://doi.org/10.1038/ncomms9975