A Review on Deterministic Lateral Displacement for Particle Separation and Detection
Corresponding Author: Yong Zhang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 77
Abstract
The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics. In this field, microfluidic deterministic lateral displacement (DLD) holds a promise due to the ability of continuous separation of particles by size, shape, deformability, and electrical properties with high resolution. DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes. DLD techniques have been previously reviewed in 2014. Since then, the field has matured as several physics of DLD have been updated, new phenomena have been discovered, and various designs have been presented to achieve a higher separation performance and throughput. Furthermore, some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection. This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection. Furthermore, current challenges and potential solutions of DLD are also discussed. We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications. In particular, the rapid, low-cost, and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.
Highlights:
1 A well-organized and thorough discussion on the fundamental principles and recent progress in deterministic lateral displacement (DLD) is provided.
2 The most updated designs and applications of DLD techniques for particle separation and detection are reviewed.
3 The current limitations of DLD and its potential solutions for clinical and commercial applications are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Salafi, K.K. Zeming, Y. Zhang, Advancements in microfluidics for nanoparticle separation. Lab Chip 17(1), 11–33 (2017). https://doi.org/10.1039/C6LC01045H
- A. Munaz, M.J. Shiddiky, N.-T. Nguyen, Recent advances and current challenges in magnetophoresis based micro magnetofluidics. Biomicrofluidics 12(3), 031501 (2018). https://doi.org/10.1063/1.5035388
- T.Z. Jubery, S.K. Srivastava, P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis 35(5), 691–713 (2014). https://doi.org/10.1002/elps.201300424
- W. Connacher, N. Zhang, A. Huang, J. Mei, S. Zhang, T. Gopesh, J. Friend, Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab Chip 18(14), 1952–1996 (2018). https://doi.org/10.1039/C8LC00112J
- D. Vigolo, R. Rusconi, H.A. Stone, R. Piazza, Thermophoresis: microfluidics characterization and separation. Soft Matter 6(15), 3489–3493 (2010). https://doi.org/10.1039/c002057e
- N. Debnath, M. Sadrzadeh, Microfluidic mimic for colloid membrane filtration: a review. J. Indian Inst. Sci. (2018). https://doi.org/10.1007/s41745-018-0071-7
- A. Lenshof, T. Laurell, Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39(3), 1203–1217 (2010). https://doi.org/10.1039/b915999c
- J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M.E. Warkiani, W. Li, Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16(1), 10–34 (2016). https://doi.org/10.1039/C5LC01159K
- X. Lu, C. Liu, G. Hu, X. Xuan, Particle manipulations in non-Newtonian microfluidics: a review. J. Colloid Interface Sci. 500, 182–201 (2017). https://doi.org/10.1016/j.jcis.2017.04.019
- J. McGrath, M. Jimenez, H. Bridle, Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21), 4139–4158 (2014). https://doi.org/10.1039/C4LC00939H
- L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Continuous particle separation through deterministic lateral displacement. Science 304(5673), 987–990 (2004). https://doi.org/10.1126/science.1094567
- J.P. Beech, P. Jönsson, J.O. Tegenfeldt, Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9(18), 2698–2706 (2009). https://doi.org/10.1039/b823275j
- H. Okano, T. Konishi, T. Suzuki, T. Suzuki, S. Ariyasu et al., Enrichment of circulating tumor cells in tumor-bearing mouse blood by a deterministic lateral displacement microfluidic device. Biomed. Microdevices 17(3), 59 (2015). https://doi.org/10.1007/s10544-015-9964-7
- C.I. Civin, T. Ward, A.M. Skelley, K. Gandhi, Z. Peilun Lee, C.R. Dosier, J.L. D’Silva, Y. Chen, M. Kim, J. Moynihan, Automated leukocyte processing by microfluidic deterministic lateral displacement. Cytom. Part A 89(12), 1073–1083 (2016). https://doi.org/10.1002/cyto.a.23019
- J.P. Beech, S.H. Holm, K. Adolfsson, J.O. Tegenfeldt, Sorting cells by size, shape and deformability. Lab Chip 12(6), 1048–1051 (2012). https://doi.org/10.1039/c2lc21083e
- M. Xavier, S.H. Holm, J.P. Beech, D. Spencer, J.O. Tegenfeldt, R.O. Oreffo, H. Morgan, Label-free enrichment of primary human skeletal progenitor cells using deterministic lateral displacement. Lab Chip 19(3), 513–523 (2019). https://doi.org/10.1039/C8LC01154K
- S.H. Holm, J.P. Beech, M.P. Barrett, J.O. Tegenfeldt, Simplifying microfluidic separation devices towards field-detection of blood parasites. Anal. Methods 8(16), 3291–3300 (2016). https://doi.org/10.1039/C6AY00443A
- D.W. Inglis, N. Herman, G. Vesey, Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4(2), 024109 (2010). https://doi.org/10.1063/1.3430553
- S. Ranjan, K.K. Zeming, R. Jureen, D. Fisher, Y. Zhang, DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles. Lab Chip 14(21), 4250–4262 (2014). https://doi.org/10.1039/C4LC00578C
- B.H. Wunsch, J.T. Smith, S.M. Gifford, C. Wang, M. Brink et al., Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol. 11(11), 936 (2016). https://doi.org/10.1038/nnano.2016.134
- Y. Chen, E.S. Abrams, T.C. Boles, J.N. Pedersen, H. Flyvbjerg, R.H. Austin, J.C. Sturm, Concentrating genomic length DNA in a microfabricated array. Phys. Rev. Lett. 114(19), 198303 (2015). https://doi.org/10.1103/PhysRevLett.114.198303
- B.H. Wunsch, S.-C. Kim, S.M. Gifford, Y. Astier, C. Wang et al., Gel-on-a-chip: continuous, velocity-dependent DNA separation using nanoscale lateral displacement. Lab Chip (2019). https://doi.org/10.1039/C8LC01408F
- K.K. Zeming, T. Salafi, S. Shikha, Y. Zhang, Fluorescent label-free quantitative detection of nano-sized bioparticles using a pillar array. Nat. Commun. 9(1), 1254 (2018). https://doi.org/10.1038/s41467-018-03596-z
- D.W. Inglis, J.A. Davis, R.H. Austin, J.C. Sturm, Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6(5), 655–658 (2006). https://doi.org/10.1039/B515371A
- J.A. Davis, D.W. Inglis, K.J. Morton, D.A. Lawrence, L.R. Huang, S.Y. Chou, J.C. Sturm, R.H. Austin, Deterministic hydrodynamics: taking blood apart. Proc. Natl. Acad. Sci. U.S.A. 103(40), 14779–14784 (2006). https://doi.org/10.1073/pnas.0605967103
- T. Kulrattanarak, R. Van der Sman, Y. Lubbersen, C. Schroën, H. Pham, P. Sarro, R. Boom, Mixed motion in deterministic ratchets due to anisotropic permeability. J. Colloid Interface Sci. 354(1), 7–14 (2011). https://doi.org/10.1016/j.jcis.2010.10.020
- B.R. Long, M. Heller, J.P. Beech, H. Linke, H. Bruus, J.O. Tegenfeldt, Multidirectional sorting modes in deterministic lateral displacement devices. Phys. Rev. E 78(4), 046304 (2008). https://doi.org/10.1103/PhysRevE.78.046304
- T. Kulrattanarak, R. van der Sman, C. Schroën, R. Boom, Analysis of mixed motion in deterministic ratchets via experiment and particle simulation. Microfluid. Nanofluid. 10(4), 843–853 (2011). https://doi.org/10.1007/s10404-010-0715-z
- R. Vernekar, T. Krüger, K. Loutherback, K. Morton, D.W. Inglis, Anisotropic permeability in deterministic lateral displacement arrays. Lab Chip 17(19), 3318–3330 (2017). https://doi.org/10.1039/C7LC00785J
- S.-C. Kim, B.H. Wunsch, H. Hu, J.T. Smith, R.H. Austin, G. Stolovitzky, Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays. Proc. Natl. Acad. Sci. U.S.A. 114(26), E5034–E5041 (2017). https://doi.org/10.1073/pnas.1706645114
- K.K. Zeming, T. Salafi, C.-H. Chen, Y. Zhang, Asymmetrical deterministic lateral displacement gaps for dual functions of enhanced separation and throughput of red blood cells. Sci. Rep. 6, 22934 (2016). https://doi.org/10.1038/srep22934
- E. Pariset, C. Pudda, F. Boizot, N. Verplanck, J. Berthier, A. Thuaire, V. Agache, Anticipating cutoff diameters in deterministic lateral displacement (dld) microfluidic devices for an optimized particle separation. Small 13(37), 1701901 (2017). https://doi.org/10.1002/smll.201701901
- E. Pariset, J. Berthier, C. Pudda, F. Navarro, B. Icard, V. Agache, Particle separation with deterministic lateral displacement (dld): the anisotropy effect. Multidiscip. Digit. Publ. Inst. Proc. 1(4), 313 (2017). https://doi.org/10.3390/proceedings1040313
- Q. Wei, Y.-Q. Xu, X.-Y. Tang, F.-B. Tian, An IB-LBM study of continuous cell sorting in deterministic lateral displacement arrays. Microfluid. Nanofluid. 32(6), 1023–1030 (2016). https://doi.org/10.1007/s10409-016-0566-2
- MathSciNet
- Article
- MATH
- S. Feng, A.M. Skelley, A.G. Anwer, G. Liu, D.W. Inglis, Maximizing particle concentration in deterministic lateral displacement arrays. Biomicrofluidics 11(2), 024121 (2017). https://doi.org/10.1063/1.4981014
- E. Pariset, C. Parent, Y. Fouillet, B. François, N. Verplanck, F. Revol-Cavalier, A. Thuaire, V. Agache, Separation of biological particles in a modular platform of cascaded deterministic lateral displacement modules. Sci. Rep. 8(1), 17762 (2018). https://doi.org/10.1038/s41598-018-34958-8
- E. Pariset, C. Pudda, F. Boizot, N. Verplanck, F. Revol-Cavalier, J. Berthier, A. Thuaire, V. Agache, Purification of complex samples: implementation of a modular and reconfigurable droplet-based microfluidic platform with cascaded deterministic lateral displacement separation modules. PLoS ONE 13(5), e0197629 (2018). https://doi.org/10.1371/journal.pone.0197629
- M. Al-Fandi, M. Al-Rousan, M.A.K. Jaradat, L. Al-Ebbini, New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robot. CIM-Int. Manuf. 27(2), 237–244 (2011). https://doi.org/10.1016/j.rcim.2010.06.003
- K. Loutherback, K. Chou, J. Newman, J. Puchalla, R. Austin, J. Sturm, Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid. Nanofluid. 9(6), 1143–1149 (2010). https://doi.org/10.1007/s10404-010-0635-y
- K.K. Zeming, S. Ranjan, Y. Zhang, Rotational separation of non-spherical bioparticles using i-shaped pillar arrays in a microfluidic device. Nat. Commun. 4, 1625 (2013). https://doi.org/10.1038/ncomms2653
- S.H. Au, J. Edd, A.E. Stoddard, K.H. Wong, F. Fachin et al., Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci. Rep. 7(1), 2433 (2017). https://doi.org/10.1038/s41598-017-01150-3
- J.-C. Hyun, J. Hyun, S. Wang, S. Yang, Improved pillar shape for deterministic lateral displacement separation method to maintain separation efficiency over a long period of time. Sep. Purif. Technol. 172, 258–267 (2017). https://doi.org/10.1016/j.seppur.2016.08.023
- Z. Zhang, E. Henry, G. Gompper, D.A. Fedosov, Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes. J. Chem. Phys. 143(24), 243145 (2015). https://doi.org/10.1063/1.4937171
- J. Wei, H. Song, Z. Shen, Y. He, X. Xu, Y. Zhang, B.N. Li, Numerical study of pillar shapes in deterministic lateral displacement arrays for spherical particle separation. IEEE Trans. Nanobioscience 14(6), 660–667 (2015). https://doi.org/10.1109/TNB.2015.2431855
- R. Vernekar, T. Krüger, K. Loutherback, K. Morton, D. Inglis, Anisotropic permeability in deterministic lateral displacement arrays (2016). arXiv preprint arXiv:161008427. https://doi.org/10.1039/C7LC00785J
- D.W. Inglis, Efficient microfluidic particle separation arrays. Appl. Phys. Lett. 94(1), 013510 (2009). https://doi.org/10.1063/1.3068750
- MathSciNet
- G. D’Avino, Non-Newtonian deterministic lateral displacement separator: theory and simulations. Rheol. Acta 52(3), 221–236 (2013). https://doi.org/10.1007/s00397-013-0680-z
- Y. Li, H. Zhang, Y. Li, X. Li, J. Wu, S. Qian, F. Li, Dynamic control of particle separation in deterministic lateral displacement separator with viscoelastic fluids. Sci. Rep. 8(1), 3618 (2018). https://doi.org/10.1038/s41598-018-21827-7
- B.M. Dincau, A. Aghilinejad, T. Hammersley, X. Chen, J.-H. Kim, Deterministic lateral displacement (DLD) in the high reynolds number regime: high-throughput and dynamic separation characteristics. Microfluid. Nanofluid. 22(6), 59 (2018). https://doi.org/10.1007/s10404-018-2078-9
- A. Aghilinejad, M. Aghaamoo, X. Chen, On the transport of particles/cells in high-throughput deterministic lateral displacement devices: implications for circulating tumor cell separation. Biomicrofluidics 13(3), 034112 (2019). https://doi.org/10.1063/1.5092718
- B.M. Dincau, A. Aghilinejad, X. Chen, S.Y. Moon, J.-H. Kim, Vortex-free high-reynolds deterministic lateral displacement (DLD) via airfoil pillars. Microfluid. Nanofluid. 22(12), 137 (2018). https://doi.org/10.1007/s10404-018-2160-3
- R. Vernekar, T. Krüger, Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: a numerical study. Med. Eng. Phys. 37(9), 845–854 (2015). https://doi.org/10.1016/j.medengphy.2015.06.004
- F. Khodaee, S. Movahed, N. Fatouraee, F. Daneshmand, Numerical simulation of separation of circulating tumor cells from blood stream in deterministic lateral displacement (dld) microfluidic channel. J. Mech. 32(4), 463–471 (2016). https://doi.org/10.1017/jmech.2015.91
- S. Du, G. Drazer, Gravity driven deterministic lateral displacement for suspended particles in a 3D obstacle array. Sci. Rep. 6, 31428 (2016). https://doi.org/10.1038/srep31428
- M.A. Murmura, A. Adrover, S. Cerbelli, Space-time resolution of size-dispersed suspensions in deterministic lateral displacement microfluidic devices. Eur. Phys. J. Spec. Top. 228(1), 5–23 (2019). https://doi.org/10.1140/epjst/e2019-800142-1
- T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005). https://doi.org/10.1103/RevModPhys.77.977
- S.M. Santana, M.A. Antonyak, R.A. Cerione, B.J. Kirby, Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations. Biomed. Microdevices 16(6), 869–877 (2014). https://doi.org/10.1007/s10544-014-9891-z
- J. Koplik, G. Drazer, Nanoscale simulations of directional locking. Phys. Fluids 22(5), 052005 (2010). https://doi.org/10.1063/1.3429297
- Article
- MATH
- M. Heller, H. Bruus, A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. J. Micromech. Microeng. 18(7), 075030 (2008). https://doi.org/10.1088/0960-1317/18/7/075030
- J.A. Davis, Microfluidic separation of blood components through deterministic lateral displacement. Dissertations and Theses—Gradworks, 2008
- S. Cerbelli, M. Giona, F. Garofalo, Quantifying dispersion of finite-sized particles in deterministic lateral displacement microflow separators through brenner’s macrotransport paradigm. Microfluid. Nanofluid. 15(4), 431–449 (2013). https://doi.org/10.1007/s10404-013-1150-8
- S. Cerbelli, Separation of polydisperse particle mixtures by deterministic lateral displacement. The impact of particle diffusivity on separation efficiency. Asia-Pac. J. Chem. Eng. 7, S356–S371 (2012). https://doi.org/10.1002/apj.1656
- S. Cerbelli, F. Garofalo, M. Giona, Effective dispersion and separation resolution in continuous particle fractionation. Microfluid. Nanofluid. 19(5), 1035–1046 (2015). https://doi.org/10.1007/s10404-015-1618-9
- S. Cerbelli, Critical dispersion of advecting-diffusing tracers in periodic landscapes of hard-wall symmetric potentials. Phys. Rev. E 87(6), 060102 (2013). https://doi.org/10.1103/PhysRevE.87.060102
- E. Henry, S.H. Holm, Z. Zhang, J.P. Beech, J.O. Tegenfeldt, D.A. Fedosov, G. Gompper, Sorting cells by their dynamical properties. Sci. Rep. 6, 34375 (2016). https://doi.org/10.1038/srep34375
- K.K. Zeming, N.V. Thakor, Y. Zhang, C.-H. Chen, Real-time modulated nanoparticle separation with an ultra-large dynamic range. Lab Chip 16(1), 75–85 (2016). https://doi.org/10.1039/C5LC01051A
- J.N. Israelachvili, in 14—electrostatic forces between surfaces in liquids, ed. by J.N. Israelachvili (Academic Press, Boston, 2011), pp. 291–340. https://doi.org/10.1016/B978-0-12-375182-9.10014-4
- J.P. Beech, J.O. Tegenfeldt, Tuneable separation in elastomeric microfluidics devices. Lab Chip 8(5), 657–659 (2008). https://doi.org/10.1039/b719449h
- T.S. Tran, B.D. Ho, J.P. Beech, J.O. Tegenfeldt, Open channel deterministic lateral displacement for particle and cell sorting. Lab Chip 17(21), 3592–3600 (2017). https://doi.org/10.1039/C7LC00707H
- M. Jiang, A.D. Mazzeo, G. Drazer, Centrifuge-based deterministic lateral displacement separation. Microfluid. Nanofluid. 20(1), 17 (2016). https://doi.org/10.1007/s10404-015-1686-x
- M. Aghaamoo, A. Aghilinejad, X. Chen, J. Xu, On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Electrophoresis 40(10), 1486–1493 (2019). https://doi.org/10.1002/elps.201800459
- V. Calero, P. Garcia-Sanchez, C.M.F. Honrado, A. Ramos, H. Morgan, Ac electrokinetic biased deterministic lateral displacement for tunable particle separation. Lab Chip 19, 1386–1396 (2019). https://doi.org/10.1039/C8LC01416G
- J.P. Beech, K. Keim, B.D. Ho, C. Guiducci, J.O. Tegenfeldt, Active posts in deterministic lateral displacement devices. Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.201900339
- S. Hanasoge, R. Devendra, F.J. Diez, G. Drazer, Electrokinetically driven deterministic lateral displacement for particle separation in microfluidic devices. Microfluid. Nanofluid. 18(5–6), 1195–1200 (2015). https://doi.org/10.1007/s10404-014-1514-8
- N. Tottori, T. Nisisako, J. Park, Y. Yanagida, T. Hatsuzawa, Separation of viable and nonviable mammalian cells using a deterministic lateral displacement microfluidic device. Biomicrofluidics 10(1), 014125 (2016). https://doi.org/10.1063/1.4942948
- N. Tottori, T. Hatsuzawa, T. Nisisako, Separation of main and satellite droplets in a deterministic lateral displacement microfluidic device. RSC Adv. 7(56), 35516–35524 (2017). https://doi.org/10.1039/C7RA05852G
- R. Campos-Gonzalez, A.M. Skelley, K. Gandhi, D.W. Inglis, J.C. Sturm, C.I. Civin, T. Ward, Deterministic lateral displacement: the next-generation car t-cell processing? SLAS Technol. 23(4), 338–351 (2018). https://doi.org/10.1177/2472630317751214
- J. D’Silva, R.H. Austin, J.C. Sturm, Inhibition of clot formation in deterministic lateral displacement arrays for processing large volumes of blood for rare cell capture. Lab Chip 15(10), 2240–2247 (2015). https://doi.org/10.1039/C4LC01409J
- J.T. Smith, B.H. Wunsch, N. Dogra, M.E. Ahsen, K. Lee et al., Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples. Lab Chip 18, 3913–3925 (2018). https://doi.org/10.1039/C8LC01017J
- M. Jiang, K. Budzan, G. Drazer, Fractionation by shape in deterministic lateral displacement microfluidic devices. Microfluid. Nanofluid. 19(2), 427–434 (2015). https://doi.org/10.1007/s10404-015-1572-6
- J.P. Beech, B.D. Ho, G. Garriss, V. Oliveira, B. Henriques-Normark, J.O. Tegenfeldt, Separation of pathogenic bacteria by chain length. Anal. Chim. Acta 1000, 223–231 (2018). https://doi.org/10.1016/j.aca.2017.11.050
- D. Holmes, G. Whyte, J. Bailey, N. Vergara-Irigaray, A. Ekpenyong, J. Guck, T. Duke, Separation of blood cells with differing deformability using deterministic lateral displacement. Interface Focus 4(6), 20140011 (2014). https://doi.org/10.1098/rsfs.2014.0011
- Z. Liu, R. Chen, Y. Li, J. Liu, P. Wang, X. Xia, L. Qin, Integrated microfluidic chip for efficient isolation and deformability analysis of circulating tumor cells. Adv. Biosyst. 2(10), 1800200 (2018). https://doi.org/10.1002/adbi.201800200
- C.I. Civin, T. Ward, A.M. Skelley, K. Gandhi, Z. Peilun Lee et al., Automated leukocyte processing by microfluidic deterministic lateral displacement. Cytometry A 89(12), 1073–1083 (2016). https://doi.org/10.1002/cyto.a.23019
- Y. Chen, J. D’Silva, R.H. Austin, J.C. Sturm, Microfluidic chemical processing with on-chip washing by deterministic lateral displacement arrays with separator walls. Biomicrofluidics 9(5), 054105 (2015). https://doi.org/10.1063/1.4930863
- H. Okano, T. Konishi, T. Suzuki, T. Suzuki, S. Ariyasu, S. Aoki, R. Abe, M. Hayase, Enrichment of circulating tumor cells in tumor-bearing mouse blood by a deterministic lateral displacement microfluidic device. Biomed. Microdevices 17(3), 9964 (2015). https://doi.org/10.1007/s10544-015-9964-7
- A.J. Laki, L. Botzheim, K. Iván, V. Tamási, P. Civera, Separation of microvesicles from serological samples using deterministic lateral displacement effect. BioNanoScience 5(1), 48–54 (2015). https://doi.org/10.1007/s12668-014-0153-6
- S. Ye, X. Shao, Z. Yu, W. Yu, Effects of the particle deformability on the critical separation diameter in the deterministic lateral displacement device. J. Fluid Mech. 743, 60–74 (2014). https://doi.org/10.1017/jfm.2014.22
- MathSciNet
- G. Kabacaoglu, G. Biros, Sorting red blood cells in deep deterministic lateral displacement devices (2017). arXiv preprint arXiv:171107616. https://doi.org/10.1017/jfm.2018.829
- G. Kabacaoglu, G. Biros, Optimal design of deterministic lateral displacement device for viscosity contrast based cell sorting (2018). arXiv preprint arXiv:180508849. https://doi.org/10.1103/PhysRevFluids.3.124201
- T. Kruger, D. Holmes, P.V. Coveney, Deformability-based red blood cell separation in deterministic lateral displacement devices-a simulation study. Biomicrofluidics 8(5), 054114 (2014). https://doi.org/10.1063/1.4897913
- Z. Zhang, W. Chien, E. Henry, D.A. Fedosov, G. Gompper, Sharp-edged geometric obstacles in microfluidics promote deformability-based sorting of cells (2019). arXiv preprint arXiv:1901.03863.
- T. Salafi, K.K. Zeming, J.W. Lim, R. Raman, A.W.R. Seah, M.P. Tan, Y. Zhang, Portable smartphone-based platform for real-time particle detection in microfluidics. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201800359
- J. Dijkshoorn, R. Wagterveld, R. Boom, M. Schutyser, Sieve-based lateral displacement technology for suspension separation. Sep. Purif. Technol. 175, 384–390 (2017). https://doi.org/10.1016/j.seppur.2016.11.057
- Y. Lubbersen, F. Fasaei, P. Kroon, R. Boom, M. Schutyser, Particle suspension concentration with sparse obstacle arrays in a flow channel. Chem. Eng. Process. 95, 90–97 (2015). https://doi.org/10.1016/j.cep.2015.05.017
- J. Dijkshoorn, M. Schutyser, M. Sebris, R. Boom, R. Wagterveld, Reducing the critical particle diameter in (highly) asymmetric sieve-based lateral displacement devices. Sci. Rep. 7(1), 14162 (2017). https://doi.org/10.1038/s41598-017-14391-z
- J. Dijkshoorn, J. de Valença, R. Wagterveld, R. Boom, M. Schutyser, Visualizing the hydrodynamics in sieve-based lateral displacement systems. Sci. Rep. 8(1), 12861 (2018). https://doi.org/10.1038/s41598-018-31104-2
- N. Tottori, T. Nisisako, High-throughput production of satellite-free droplets through a parallelized microfluidic deterministic lateral displacement device. Sensors Actuators B 260, 918–926 (2018). https://doi.org/10.1016/j.snb.2018.01.112
- F. Fachin, P. Spuhler, J.M. Martel-Foley, J.F. Edd, T.A. Barber et al., Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells. Sci. Rep. 7(1), 10936 (2017). https://doi.org/10.1038/s41598-017-11119-x
- N.M. Karabacak, P.S. Spuhler, F. Fachin, E.J. Lim, V. Pai et al., Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9(3), 694 (2014). https://doi.org/10.1038/nprot.2014.044
- S. Du, S. Shojaei-Zadeh, G. Drazer, Liquid-based stationary phase for deterministic lateral displacement separation in microfluidics. Soft Matter 13(41), 7649–7656 (2017). https://doi.org/10.1039/C7SM01510K
- S.H. Holm, J.P. Beech, M.P. Barrett, J.O. Tegenfeldt, Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11(7), 1326–1332 (2011). https://doi.org/10.1039/c0lc00560f
- P. Juskova, A. Ollitrault, M. Serra, J.-L. Viovy, L. Malaquin, Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: application to microfluidic deterministic lateral displacement device. Anal. Chim. Acta 1000, 239–247 (2018). https://doi.org/10.1016/j.aca.2017.11.062
- J.T. Smith, B.H. Wunsch, N. Dogra, M.E. Ahsen, K. Lee et al., Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples. Lab Chip 18(24), 3913–3925 (2018). https://doi.org/10.1039/C8LC01017J
- K. Morton, O.K. Tsui, C.-K. Tung, J.C. Sturm, S.Y. Chou, R. Austin, The anti-lotus leaf effect in nanohydrodynamic bump arrays. New J. Phys. 12(8), 085008 (2010). https://doi.org/10.1088/1367-2630/12/8/085008
- N. Tottori, T. Nisisako, Degas-driven deterministic lateral displacement in polydimethylsiloxane microfluidic devices. Anal. Chem. 91(4), 3093–3100 (2019). https://doi.org/10.1021/acs.analchem.8b05587
References
T. Salafi, K.K. Zeming, Y. Zhang, Advancements in microfluidics for nanoparticle separation. Lab Chip 17(1), 11–33 (2017). https://doi.org/10.1039/C6LC01045H
A. Munaz, M.J. Shiddiky, N.-T. Nguyen, Recent advances and current challenges in magnetophoresis based micro magnetofluidics. Biomicrofluidics 12(3), 031501 (2018). https://doi.org/10.1063/1.5035388
T.Z. Jubery, S.K. Srivastava, P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis 35(5), 691–713 (2014). https://doi.org/10.1002/elps.201300424
W. Connacher, N. Zhang, A. Huang, J. Mei, S. Zhang, T. Gopesh, J. Friend, Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab Chip 18(14), 1952–1996 (2018). https://doi.org/10.1039/C8LC00112J
D. Vigolo, R. Rusconi, H.A. Stone, R. Piazza, Thermophoresis: microfluidics characterization and separation. Soft Matter 6(15), 3489–3493 (2010). https://doi.org/10.1039/c002057e
N. Debnath, M. Sadrzadeh, Microfluidic mimic for colloid membrane filtration: a review. J. Indian Inst. Sci. (2018). https://doi.org/10.1007/s41745-018-0071-7
A. Lenshof, T. Laurell, Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39(3), 1203–1217 (2010). https://doi.org/10.1039/b915999c
J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M.E. Warkiani, W. Li, Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16(1), 10–34 (2016). https://doi.org/10.1039/C5LC01159K
X. Lu, C. Liu, G. Hu, X. Xuan, Particle manipulations in non-Newtonian microfluidics: a review. J. Colloid Interface Sci. 500, 182–201 (2017). https://doi.org/10.1016/j.jcis.2017.04.019
J. McGrath, M. Jimenez, H. Bridle, Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21), 4139–4158 (2014). https://doi.org/10.1039/C4LC00939H
L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Continuous particle separation through deterministic lateral displacement. Science 304(5673), 987–990 (2004). https://doi.org/10.1126/science.1094567
J.P. Beech, P. Jönsson, J.O. Tegenfeldt, Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9(18), 2698–2706 (2009). https://doi.org/10.1039/b823275j
H. Okano, T. Konishi, T. Suzuki, T. Suzuki, S. Ariyasu et al., Enrichment of circulating tumor cells in tumor-bearing mouse blood by a deterministic lateral displacement microfluidic device. Biomed. Microdevices 17(3), 59 (2015). https://doi.org/10.1007/s10544-015-9964-7
C.I. Civin, T. Ward, A.M. Skelley, K. Gandhi, Z. Peilun Lee, C.R. Dosier, J.L. D’Silva, Y. Chen, M. Kim, J. Moynihan, Automated leukocyte processing by microfluidic deterministic lateral displacement. Cytom. Part A 89(12), 1073–1083 (2016). https://doi.org/10.1002/cyto.a.23019
J.P. Beech, S.H. Holm, K. Adolfsson, J.O. Tegenfeldt, Sorting cells by size, shape and deformability. Lab Chip 12(6), 1048–1051 (2012). https://doi.org/10.1039/c2lc21083e
M. Xavier, S.H. Holm, J.P. Beech, D. Spencer, J.O. Tegenfeldt, R.O. Oreffo, H. Morgan, Label-free enrichment of primary human skeletal progenitor cells using deterministic lateral displacement. Lab Chip 19(3), 513–523 (2019). https://doi.org/10.1039/C8LC01154K
S.H. Holm, J.P. Beech, M.P. Barrett, J.O. Tegenfeldt, Simplifying microfluidic separation devices towards field-detection of blood parasites. Anal. Methods 8(16), 3291–3300 (2016). https://doi.org/10.1039/C6AY00443A
D.W. Inglis, N. Herman, G. Vesey, Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4(2), 024109 (2010). https://doi.org/10.1063/1.3430553
S. Ranjan, K.K. Zeming, R. Jureen, D. Fisher, Y. Zhang, DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles. Lab Chip 14(21), 4250–4262 (2014). https://doi.org/10.1039/C4LC00578C
B.H. Wunsch, J.T. Smith, S.M. Gifford, C. Wang, M. Brink et al., Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol. 11(11), 936 (2016). https://doi.org/10.1038/nnano.2016.134
Y. Chen, E.S. Abrams, T.C. Boles, J.N. Pedersen, H. Flyvbjerg, R.H. Austin, J.C. Sturm, Concentrating genomic length DNA in a microfabricated array. Phys. Rev. Lett. 114(19), 198303 (2015). https://doi.org/10.1103/PhysRevLett.114.198303
B.H. Wunsch, S.-C. Kim, S.M. Gifford, Y. Astier, C. Wang et al., Gel-on-a-chip: continuous, velocity-dependent DNA separation using nanoscale lateral displacement. Lab Chip (2019). https://doi.org/10.1039/C8LC01408F
K.K. Zeming, T. Salafi, S. Shikha, Y. Zhang, Fluorescent label-free quantitative detection of nano-sized bioparticles using a pillar array. Nat. Commun. 9(1), 1254 (2018). https://doi.org/10.1038/s41467-018-03596-z
D.W. Inglis, J.A. Davis, R.H. Austin, J.C. Sturm, Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6(5), 655–658 (2006). https://doi.org/10.1039/B515371A
J.A. Davis, D.W. Inglis, K.J. Morton, D.A. Lawrence, L.R. Huang, S.Y. Chou, J.C. Sturm, R.H. Austin, Deterministic hydrodynamics: taking blood apart. Proc. Natl. Acad. Sci. U.S.A. 103(40), 14779–14784 (2006). https://doi.org/10.1073/pnas.0605967103
T. Kulrattanarak, R. Van der Sman, Y. Lubbersen, C. Schroën, H. Pham, P. Sarro, R. Boom, Mixed motion in deterministic ratchets due to anisotropic permeability. J. Colloid Interface Sci. 354(1), 7–14 (2011). https://doi.org/10.1016/j.jcis.2010.10.020
B.R. Long, M. Heller, J.P. Beech, H. Linke, H. Bruus, J.O. Tegenfeldt, Multidirectional sorting modes in deterministic lateral displacement devices. Phys. Rev. E 78(4), 046304 (2008). https://doi.org/10.1103/PhysRevE.78.046304
T. Kulrattanarak, R. van der Sman, C. Schroën, R. Boom, Analysis of mixed motion in deterministic ratchets via experiment and particle simulation. Microfluid. Nanofluid. 10(4), 843–853 (2011). https://doi.org/10.1007/s10404-010-0715-z
R. Vernekar, T. Krüger, K. Loutherback, K. Morton, D.W. Inglis, Anisotropic permeability in deterministic lateral displacement arrays. Lab Chip 17(19), 3318–3330 (2017). https://doi.org/10.1039/C7LC00785J
S.-C. Kim, B.H. Wunsch, H. Hu, J.T. Smith, R.H. Austin, G. Stolovitzky, Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays. Proc. Natl. Acad. Sci. U.S.A. 114(26), E5034–E5041 (2017). https://doi.org/10.1073/pnas.1706645114
K.K. Zeming, T. Salafi, C.-H. Chen, Y. Zhang, Asymmetrical deterministic lateral displacement gaps for dual functions of enhanced separation and throughput of red blood cells. Sci. Rep. 6, 22934 (2016). https://doi.org/10.1038/srep22934
E. Pariset, C. Pudda, F. Boizot, N. Verplanck, J. Berthier, A. Thuaire, V. Agache, Anticipating cutoff diameters in deterministic lateral displacement (dld) microfluidic devices for an optimized particle separation. Small 13(37), 1701901 (2017). https://doi.org/10.1002/smll.201701901
E. Pariset, J. Berthier, C. Pudda, F. Navarro, B. Icard, V. Agache, Particle separation with deterministic lateral displacement (dld): the anisotropy effect. Multidiscip. Digit. Publ. Inst. Proc. 1(4), 313 (2017). https://doi.org/10.3390/proceedings1040313
Q. Wei, Y.-Q. Xu, X.-Y. Tang, F.-B. Tian, An IB-LBM study of continuous cell sorting in deterministic lateral displacement arrays. Microfluid. Nanofluid. 32(6), 1023–1030 (2016). https://doi.org/10.1007/s10409-016-0566-2
MathSciNet
Article
MATH
S. Feng, A.M. Skelley, A.G. Anwer, G. Liu, D.W. Inglis, Maximizing particle concentration in deterministic lateral displacement arrays. Biomicrofluidics 11(2), 024121 (2017). https://doi.org/10.1063/1.4981014
E. Pariset, C. Parent, Y. Fouillet, B. François, N. Verplanck, F. Revol-Cavalier, A. Thuaire, V. Agache, Separation of biological particles in a modular platform of cascaded deterministic lateral displacement modules. Sci. Rep. 8(1), 17762 (2018). https://doi.org/10.1038/s41598-018-34958-8
E. Pariset, C. Pudda, F. Boizot, N. Verplanck, F. Revol-Cavalier, J. Berthier, A. Thuaire, V. Agache, Purification of complex samples: implementation of a modular and reconfigurable droplet-based microfluidic platform with cascaded deterministic lateral displacement separation modules. PLoS ONE 13(5), e0197629 (2018). https://doi.org/10.1371/journal.pone.0197629
M. Al-Fandi, M. Al-Rousan, M.A.K. Jaradat, L. Al-Ebbini, New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robot. CIM-Int. Manuf. 27(2), 237–244 (2011). https://doi.org/10.1016/j.rcim.2010.06.003
K. Loutherback, K. Chou, J. Newman, J. Puchalla, R. Austin, J. Sturm, Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid. Nanofluid. 9(6), 1143–1149 (2010). https://doi.org/10.1007/s10404-010-0635-y
K.K. Zeming, S. Ranjan, Y. Zhang, Rotational separation of non-spherical bioparticles using i-shaped pillar arrays in a microfluidic device. Nat. Commun. 4, 1625 (2013). https://doi.org/10.1038/ncomms2653
S.H. Au, J. Edd, A.E. Stoddard, K.H. Wong, F. Fachin et al., Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci. Rep. 7(1), 2433 (2017). https://doi.org/10.1038/s41598-017-01150-3
J.-C. Hyun, J. Hyun, S. Wang, S. Yang, Improved pillar shape for deterministic lateral displacement separation method to maintain separation efficiency over a long period of time. Sep. Purif. Technol. 172, 258–267 (2017). https://doi.org/10.1016/j.seppur.2016.08.023
Z. Zhang, E. Henry, G. Gompper, D.A. Fedosov, Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes. J. Chem. Phys. 143(24), 243145 (2015). https://doi.org/10.1063/1.4937171
J. Wei, H. Song, Z. Shen, Y. He, X. Xu, Y. Zhang, B.N. Li, Numerical study of pillar shapes in deterministic lateral displacement arrays for spherical particle separation. IEEE Trans. Nanobioscience 14(6), 660–667 (2015). https://doi.org/10.1109/TNB.2015.2431855
R. Vernekar, T. Krüger, K. Loutherback, K. Morton, D. Inglis, Anisotropic permeability in deterministic lateral displacement arrays (2016). arXiv preprint arXiv:161008427. https://doi.org/10.1039/C7LC00785J
D.W. Inglis, Efficient microfluidic particle separation arrays. Appl. Phys. Lett. 94(1), 013510 (2009). https://doi.org/10.1063/1.3068750
MathSciNet
G. D’Avino, Non-Newtonian deterministic lateral displacement separator: theory and simulations. Rheol. Acta 52(3), 221–236 (2013). https://doi.org/10.1007/s00397-013-0680-z
Y. Li, H. Zhang, Y. Li, X. Li, J. Wu, S. Qian, F. Li, Dynamic control of particle separation in deterministic lateral displacement separator with viscoelastic fluids. Sci. Rep. 8(1), 3618 (2018). https://doi.org/10.1038/s41598-018-21827-7
B.M. Dincau, A. Aghilinejad, T. Hammersley, X. Chen, J.-H. Kim, Deterministic lateral displacement (DLD) in the high reynolds number regime: high-throughput and dynamic separation characteristics. Microfluid. Nanofluid. 22(6), 59 (2018). https://doi.org/10.1007/s10404-018-2078-9
A. Aghilinejad, M. Aghaamoo, X. Chen, On the transport of particles/cells in high-throughput deterministic lateral displacement devices: implications for circulating tumor cell separation. Biomicrofluidics 13(3), 034112 (2019). https://doi.org/10.1063/1.5092718
B.M. Dincau, A. Aghilinejad, X. Chen, S.Y. Moon, J.-H. Kim, Vortex-free high-reynolds deterministic lateral displacement (DLD) via airfoil pillars. Microfluid. Nanofluid. 22(12), 137 (2018). https://doi.org/10.1007/s10404-018-2160-3
R. Vernekar, T. Krüger, Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: a numerical study. Med. Eng. Phys. 37(9), 845–854 (2015). https://doi.org/10.1016/j.medengphy.2015.06.004
F. Khodaee, S. Movahed, N. Fatouraee, F. Daneshmand, Numerical simulation of separation of circulating tumor cells from blood stream in deterministic lateral displacement (dld) microfluidic channel. J. Mech. 32(4), 463–471 (2016). https://doi.org/10.1017/jmech.2015.91
S. Du, G. Drazer, Gravity driven deterministic lateral displacement for suspended particles in a 3D obstacle array. Sci. Rep. 6, 31428 (2016). https://doi.org/10.1038/srep31428
M.A. Murmura, A. Adrover, S. Cerbelli, Space-time resolution of size-dispersed suspensions in deterministic lateral displacement microfluidic devices. Eur. Phys. J. Spec. Top. 228(1), 5–23 (2019). https://doi.org/10.1140/epjst/e2019-800142-1
T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005). https://doi.org/10.1103/RevModPhys.77.977
S.M. Santana, M.A. Antonyak, R.A. Cerione, B.J. Kirby, Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations. Biomed. Microdevices 16(6), 869–877 (2014). https://doi.org/10.1007/s10544-014-9891-z
J. Koplik, G. Drazer, Nanoscale simulations of directional locking. Phys. Fluids 22(5), 052005 (2010). https://doi.org/10.1063/1.3429297
Article
MATH
M. Heller, H. Bruus, A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. J. Micromech. Microeng. 18(7), 075030 (2008). https://doi.org/10.1088/0960-1317/18/7/075030
J.A. Davis, Microfluidic separation of blood components through deterministic lateral displacement. Dissertations and Theses—Gradworks, 2008
S. Cerbelli, M. Giona, F. Garofalo, Quantifying dispersion of finite-sized particles in deterministic lateral displacement microflow separators through brenner’s macrotransport paradigm. Microfluid. Nanofluid. 15(4), 431–449 (2013). https://doi.org/10.1007/s10404-013-1150-8
S. Cerbelli, Separation of polydisperse particle mixtures by deterministic lateral displacement. The impact of particle diffusivity on separation efficiency. Asia-Pac. J. Chem. Eng. 7, S356–S371 (2012). https://doi.org/10.1002/apj.1656
S. Cerbelli, F. Garofalo, M. Giona, Effective dispersion and separation resolution in continuous particle fractionation. Microfluid. Nanofluid. 19(5), 1035–1046 (2015). https://doi.org/10.1007/s10404-015-1618-9
S. Cerbelli, Critical dispersion of advecting-diffusing tracers in periodic landscapes of hard-wall symmetric potentials. Phys. Rev. E 87(6), 060102 (2013). https://doi.org/10.1103/PhysRevE.87.060102
E. Henry, S.H. Holm, Z. Zhang, J.P. Beech, J.O. Tegenfeldt, D.A. Fedosov, G. Gompper, Sorting cells by their dynamical properties. Sci. Rep. 6, 34375 (2016). https://doi.org/10.1038/srep34375
K.K. Zeming, N.V. Thakor, Y. Zhang, C.-H. Chen, Real-time modulated nanoparticle separation with an ultra-large dynamic range. Lab Chip 16(1), 75–85 (2016). https://doi.org/10.1039/C5LC01051A
J.N. Israelachvili, in 14—electrostatic forces between surfaces in liquids, ed. by J.N. Israelachvili (Academic Press, Boston, 2011), pp. 291–340. https://doi.org/10.1016/B978-0-12-375182-9.10014-4
J.P. Beech, J.O. Tegenfeldt, Tuneable separation in elastomeric microfluidics devices. Lab Chip 8(5), 657–659 (2008). https://doi.org/10.1039/b719449h
T.S. Tran, B.D. Ho, J.P. Beech, J.O. Tegenfeldt, Open channel deterministic lateral displacement for particle and cell sorting. Lab Chip 17(21), 3592–3600 (2017). https://doi.org/10.1039/C7LC00707H
M. Jiang, A.D. Mazzeo, G. Drazer, Centrifuge-based deterministic lateral displacement separation. Microfluid. Nanofluid. 20(1), 17 (2016). https://doi.org/10.1007/s10404-015-1686-x
M. Aghaamoo, A. Aghilinejad, X. Chen, J. Xu, On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Electrophoresis 40(10), 1486–1493 (2019). https://doi.org/10.1002/elps.201800459
V. Calero, P. Garcia-Sanchez, C.M.F. Honrado, A. Ramos, H. Morgan, Ac electrokinetic biased deterministic lateral displacement for tunable particle separation. Lab Chip 19, 1386–1396 (2019). https://doi.org/10.1039/C8LC01416G
J.P. Beech, K. Keim, B.D. Ho, C. Guiducci, J.O. Tegenfeldt, Active posts in deterministic lateral displacement devices. Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.201900339
S. Hanasoge, R. Devendra, F.J. Diez, G. Drazer, Electrokinetically driven deterministic lateral displacement for particle separation in microfluidic devices. Microfluid. Nanofluid. 18(5–6), 1195–1200 (2015). https://doi.org/10.1007/s10404-014-1514-8
N. Tottori, T. Nisisako, J. Park, Y. Yanagida, T. Hatsuzawa, Separation of viable and nonviable mammalian cells using a deterministic lateral displacement microfluidic device. Biomicrofluidics 10(1), 014125 (2016). https://doi.org/10.1063/1.4942948
N. Tottori, T. Hatsuzawa, T. Nisisako, Separation of main and satellite droplets in a deterministic lateral displacement microfluidic device. RSC Adv. 7(56), 35516–35524 (2017). https://doi.org/10.1039/C7RA05852G
R. Campos-Gonzalez, A.M. Skelley, K. Gandhi, D.W. Inglis, J.C. Sturm, C.I. Civin, T. Ward, Deterministic lateral displacement: the next-generation car t-cell processing? SLAS Technol. 23(4), 338–351 (2018). https://doi.org/10.1177/2472630317751214
J. D’Silva, R.H. Austin, J.C. Sturm, Inhibition of clot formation in deterministic lateral displacement arrays for processing large volumes of blood for rare cell capture. Lab Chip 15(10), 2240–2247 (2015). https://doi.org/10.1039/C4LC01409J
J.T. Smith, B.H. Wunsch, N. Dogra, M.E. Ahsen, K. Lee et al., Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples. Lab Chip 18, 3913–3925 (2018). https://doi.org/10.1039/C8LC01017J
M. Jiang, K. Budzan, G. Drazer, Fractionation by shape in deterministic lateral displacement microfluidic devices. Microfluid. Nanofluid. 19(2), 427–434 (2015). https://doi.org/10.1007/s10404-015-1572-6
J.P. Beech, B.D. Ho, G. Garriss, V. Oliveira, B. Henriques-Normark, J.O. Tegenfeldt, Separation of pathogenic bacteria by chain length. Anal. Chim. Acta 1000, 223–231 (2018). https://doi.org/10.1016/j.aca.2017.11.050
D. Holmes, G. Whyte, J. Bailey, N. Vergara-Irigaray, A. Ekpenyong, J. Guck, T. Duke, Separation of blood cells with differing deformability using deterministic lateral displacement. Interface Focus 4(6), 20140011 (2014). https://doi.org/10.1098/rsfs.2014.0011
Z. Liu, R. Chen, Y. Li, J. Liu, P. Wang, X. Xia, L. Qin, Integrated microfluidic chip for efficient isolation and deformability analysis of circulating tumor cells. Adv. Biosyst. 2(10), 1800200 (2018). https://doi.org/10.1002/adbi.201800200
C.I. Civin, T. Ward, A.M. Skelley, K. Gandhi, Z. Peilun Lee et al., Automated leukocyte processing by microfluidic deterministic lateral displacement. Cytometry A 89(12), 1073–1083 (2016). https://doi.org/10.1002/cyto.a.23019
Y. Chen, J. D’Silva, R.H. Austin, J.C. Sturm, Microfluidic chemical processing with on-chip washing by deterministic lateral displacement arrays with separator walls. Biomicrofluidics 9(5), 054105 (2015). https://doi.org/10.1063/1.4930863
H. Okano, T. Konishi, T. Suzuki, T. Suzuki, S. Ariyasu, S. Aoki, R. Abe, M. Hayase, Enrichment of circulating tumor cells in tumor-bearing mouse blood by a deterministic lateral displacement microfluidic device. Biomed. Microdevices 17(3), 9964 (2015). https://doi.org/10.1007/s10544-015-9964-7
A.J. Laki, L. Botzheim, K. Iván, V. Tamási, P. Civera, Separation of microvesicles from serological samples using deterministic lateral displacement effect. BioNanoScience 5(1), 48–54 (2015). https://doi.org/10.1007/s12668-014-0153-6
S. Ye, X. Shao, Z. Yu, W. Yu, Effects of the particle deformability on the critical separation diameter in the deterministic lateral displacement device. J. Fluid Mech. 743, 60–74 (2014). https://doi.org/10.1017/jfm.2014.22
MathSciNet
G. Kabacaoglu, G. Biros, Sorting red blood cells in deep deterministic lateral displacement devices (2017). arXiv preprint arXiv:171107616. https://doi.org/10.1017/jfm.2018.829
G. Kabacaoglu, G. Biros, Optimal design of deterministic lateral displacement device for viscosity contrast based cell sorting (2018). arXiv preprint arXiv:180508849. https://doi.org/10.1103/PhysRevFluids.3.124201
T. Kruger, D. Holmes, P.V. Coveney, Deformability-based red blood cell separation in deterministic lateral displacement devices-a simulation study. Biomicrofluidics 8(5), 054114 (2014). https://doi.org/10.1063/1.4897913
Z. Zhang, W. Chien, E. Henry, D.A. Fedosov, G. Gompper, Sharp-edged geometric obstacles in microfluidics promote deformability-based sorting of cells (2019). arXiv preprint arXiv:1901.03863.
T. Salafi, K.K. Zeming, J.W. Lim, R. Raman, A.W.R. Seah, M.P. Tan, Y. Zhang, Portable smartphone-based platform for real-time particle detection in microfluidics. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201800359
J. Dijkshoorn, R. Wagterveld, R. Boom, M. Schutyser, Sieve-based lateral displacement technology for suspension separation. Sep. Purif. Technol. 175, 384–390 (2017). https://doi.org/10.1016/j.seppur.2016.11.057
Y. Lubbersen, F. Fasaei, P. Kroon, R. Boom, M. Schutyser, Particle suspension concentration with sparse obstacle arrays in a flow channel. Chem. Eng. Process. 95, 90–97 (2015). https://doi.org/10.1016/j.cep.2015.05.017
J. Dijkshoorn, M. Schutyser, M. Sebris, R. Boom, R. Wagterveld, Reducing the critical particle diameter in (highly) asymmetric sieve-based lateral displacement devices. Sci. Rep. 7(1), 14162 (2017). https://doi.org/10.1038/s41598-017-14391-z
J. Dijkshoorn, J. de Valença, R. Wagterveld, R. Boom, M. Schutyser, Visualizing the hydrodynamics in sieve-based lateral displacement systems. Sci. Rep. 8(1), 12861 (2018). https://doi.org/10.1038/s41598-018-31104-2
N. Tottori, T. Nisisako, High-throughput production of satellite-free droplets through a parallelized microfluidic deterministic lateral displacement device. Sensors Actuators B 260, 918–926 (2018). https://doi.org/10.1016/j.snb.2018.01.112
F. Fachin, P. Spuhler, J.M. Martel-Foley, J.F. Edd, T.A. Barber et al., Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells. Sci. Rep. 7(1), 10936 (2017). https://doi.org/10.1038/s41598-017-11119-x
N.M. Karabacak, P.S. Spuhler, F. Fachin, E.J. Lim, V. Pai et al., Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9(3), 694 (2014). https://doi.org/10.1038/nprot.2014.044
S. Du, S. Shojaei-Zadeh, G. Drazer, Liquid-based stationary phase for deterministic lateral displacement separation in microfluidics. Soft Matter 13(41), 7649–7656 (2017). https://doi.org/10.1039/C7SM01510K
S.H. Holm, J.P. Beech, M.P. Barrett, J.O. Tegenfeldt, Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11(7), 1326–1332 (2011). https://doi.org/10.1039/c0lc00560f
P. Juskova, A. Ollitrault, M. Serra, J.-L. Viovy, L. Malaquin, Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: application to microfluidic deterministic lateral displacement device. Anal. Chim. Acta 1000, 239–247 (2018). https://doi.org/10.1016/j.aca.2017.11.062
J.T. Smith, B.H. Wunsch, N. Dogra, M.E. Ahsen, K. Lee et al., Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples. Lab Chip 18(24), 3913–3925 (2018). https://doi.org/10.1039/C8LC01017J
K. Morton, O.K. Tsui, C.-K. Tung, J.C. Sturm, S.Y. Chou, R. Austin, The anti-lotus leaf effect in nanohydrodynamic bump arrays. New J. Phys. 12(8), 085008 (2010). https://doi.org/10.1088/1367-2630/12/8/085008
N. Tottori, T. Nisisako, Degas-driven deterministic lateral displacement in polydimethylsiloxane microfluidic devices. Anal. Chem. 91(4), 3093–3100 (2019). https://doi.org/10.1021/acs.analchem.8b05587