Multifunctional Integrated Transparent Film for Efficient Electromagnetic Protection
Corresponding Author: Guangbin Ji
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 65
Abstract
Silver nanowire (Ag NW) has been considered as the promising building block for the fabrication of transparent electromagnetic interference (EMI) shielding films. However, the practical application of Ag NW-based EMI shielding films has been restricted due to the unsatisfactory stability of Ag NW. Herein, we proposed a reduced graphene oxide (rGO) decorated Ag NW film, which realizes a seamless integration of optical transparency, highly efficient EMI shielding, reliable durability and stability. The Ag NW constructs a highly transparent and conductive network, and the rGO provides additional conductive path, showing a superior EMI shielding effectiveness (SE) of 33.62 dB at transmittance of 81.9%. In addition, the top rGO layer enables the hybrid film with reliable durability and chemical stability, which can maintain 96% and 90% EMI SE after 1000 times bending cycles at radius of 2 mm and exposure in air for 80 days. Furthermore, the rGO/Ag NW films also possess fast thermal response and heating stability, making them highly applicable in wearable devices. The synergy of Ag NW and rGO grants the hybrid EMI shielding film multiple desired functions and meanwhile overcomes the shortcomings of Ag NW. This work provides a reference for preparing multifunctional integrated transparent EMI shielding film.
Highlights:
1 The reduced graphene oxide (rGO) decorated silver nanowire (Ag NW) films were prepared by spray-coating method.
2 A highly efficient conductive network was constructed by Ag NW and rGO, achieving superior electromagnetic interference shielding effectiveness of 33.62 dB with a high transmittance of 81.9%.
3 The top rGO layer enables the hybrid film with reliable durability, chemical and thermal stabilities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. (2021). https://doi.org/10.1002/adma.202106195
- L. Su, J. Ma, F. Zhang, Y. Fan, W. Luo et al., Achieving effective broadband microwave absorption with Fe3O4@C supraparticles. J. Materiomics 7(1), 80–88 (2021). https://doi.org/10.1016/j.jmat.2020.07.011
- X. Zhou, Z. Jia, X. Zhang, B. Wang, X. Liu et al., Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 420, 129907 (2021). https://doi.org/10.1016/j.cej.2021.129907
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
- Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- Y. Zhao, L.L. Hao, X.D. Zhang, S.J. Tan, H.H. Li et al., A Novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive fields effect. Small Sci. (2021). https://doi.org/10.1002/smsc.202100077
- L.C. Jia, D.X. Yan, X. Liu, R. Ma, H.Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
- C. Yuan, J. Huang, Y. Dong, X. Huang, Y. Lu et al., Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave fabry-pérot interference and optical antireflection. ACS Appl. Mater. Interfaces 12(23), 26659–26669 (2020). https://doi.org/10.1021/acsami.0c05334
- J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong et al., Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze. J. Mater. Chem. A 3(10), 5375–5384 (2015). https://doi.org/10.1039/c4ta05728g
- Y. Han, H. Zhong, N. Liu, Y. Liu, J. Lin et al., In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding. Adv. Electron. Mater. 4(11), 1800156 (2018). https://doi.org/10.1002/aelm.201800156
- M. Hu, J. Gao, Y. Dong, K. Li, G. Shan et al., Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28(18), 7101–7106 (2012). https://doi.org/10.1021/la300720y
- J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
- Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang et al., Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(2), 2826–2834 (2020). https://doi.org/10.1021/acsami.9b17513
- L. Liu, W. Chen, H. Zhang, Q. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- M. Miller, J. O’Kane, A. Niec, R. Carmichael, T. Carmichael, Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics. ACS Appl. Mater. Interfaces 5(20), 10165–10172 (2013). https://doi.org/10.1021/am402847y
- W. Chen, L. Liu, H. Zhang, Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- J. Liang, L. Li, K. Tong, Z. Ren, W. Hu et al., Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light emitting diodes. ACS Nano 8(2), 1590–1600 (2014). https://doi.org/10.1021/nn405887k
- S. Hong, K. Kim, T. Kim, J. Kim, S. Park et al., Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 23, 455704 (2012). https://doi.org/10.1088/0957-4484/23/45/455704
- T.L. Chen, D.S. Ghosh, V. Mkhitaryan, V. Pruneri, Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh. ACS Appl. Mater. Interfaces 5(22), 11756–11761 (2013). https://doi.org/10.1021/am403440n
- P. Meenakshi, R. Karthick, M. Selvaraj, S. Ramu, Investigations on reduced graphene oxide film embedded with silver nanowire as a transparent conducting electrode. Sol. Energy Mater. Sol. Cells 128, 264–269 (2014). https://doi.org/10.1016/j.solmat.2014.05.013
- H. Lu, J. Sun, H. Zhang, S. Lu, W.C. Choy, Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale 8(11), 5946–5953 (2016). https://doi.org/10.1039/C6NR00011H
- B. Zhou, M. Su, D. Yang, G. Han, Y. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12(36), 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
- Z. Zhang, G. Wang, W. Gu, Y. Zhao, S. Tang et al., A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J. Colloid Interface Sci. 605, 193–203 (2022). https://doi.org/10.1016/j.jcis.2021.07.085
- Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2021). https://doi.org/10.1007/s40820-021-00750-z
- Y. Song, F. Yin, C. Zhang, W. Guo, L. Han et al., Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 13, 76 (2021). https://doi.org/10.1007/s40820-021-00601-x
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- J. Li, F. Zhang, H. Lu, W. Guo, X. He et al., Heterogeneous rod-like Ni@C composites toward strong and stable microwave absorption performance. Carbon 181, 358–369 (2021). https://doi.org/10.1016/j.carbon.2021.05.031
- J. Liu, L. Liu, X. Wu, X. Zhang, T. Li, Environmentally friendly synthesis of graphene-silver composites with surface-enhanced Raman scattering and antibacterial activity via reduction with L-ascorbic acid/water vapor. New J. Chem. 39, 5272–5281 (2015). https://doi.org/10.1039/c5nj00414d
- J. Ma, W. Li, Y. Fan, J. Yang, Q. Yang et al., Ultrathin and light-weight graphene aerogel with precisely tunable density for highly efficient microwave absorbing. ACS Appl. Mater. Interfaces 11(49), 46386–46396 (2019). https://doi.org/10.1021/acsami.9b17849
- R. Guo, Q. Zheng, L. Wang, Y. Fan, W. Jiang, Porous N-doped Ni@SiO2/graphene network: three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption. J. Mater. Sci. Technol. 106, 108–117 (2022). https://doi.org/10.1016/j.jmst.2021.07.046
- Y. Song, F. Yin, C. Zhang, H. Yu, W. Jing et al., Inverse-opal-based carbon composite monoliths for microwave absorption applications. Carbon 166, 328–338 (2020). https://doi.org/10.1016/j.carbon.2020.05.020
- T. Hou, Z. Jia, B. Wang, H. Li, X. Liu et al., Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 422, 130079 (2021). https://doi.org/10.1016/j.cej.2021.130079
- J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang et al., Environment-friendly method to produce graphene that employs vitamin C and amino Acid. Chem. Mater. 22(7), 2213–2218 (2010). https://doi.org/10.1021/cm902635j
- G. Wang, L. Hao, X. Zhang, S. Tan, M. Zhou et al., Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding. J. Colloid Interface Sci. 607, 89–99 (2021). https://doi.org/10.1016/j.jcis.2021.08.190
- M. Jing, C. Han, M. Li, X. Shen, High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique. Nanoscale Res. Lett. 9, 588 (2014). https://doi.org/10.1186/1556-276X-9-588
- J. Goak, T. Kim, D. Kim, K. Chang, C. Lee et al., Stable heating performance of carbon nanotube/silver nanowire transparent heaters. Appl. Surf. Sci. 510, 145445 (2020). https://doi.org/10.1016/j.apsusc.2020.145445
- S. Lee, J. Kim, J. Park, Y. Porte, J. Kim et al., SWCNT-Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability. J. Mater. Sci. 53, 12284–12294 (2018). https://doi.org/10.1007/s10853-018-2526-7
- Y. Zhang, S. Bai, T. Chen, H. Yang, X. Guo, Facile preparation of flexible and highly stable graphene oxide-silver nanowire hybrid transparent conductive electrode. Mater. Res. Express 7, 016413 (2020). https://doi.org/10.1088/2053-1591/ab6262
- J. Miao, H. Liu, W. Li, X. Zhang, Mussel-inspired polydopamine-functionalized graphene as a conductive adhesion promoter and protective layer for silver nanowire transparent electrodes. Langmuir 32(21), 5365–5372 (2016). https://doi.org/10.1021/acs.langmuir.6b00796
- J. Li, S. Qi, J. Liang, L. Li, Y. Xiong et al., Synthesizing a healable stretchable transparent conductor. ACS Appl. Mater. Interfaces 7(25), 14140–14149 (2015). https://doi.org/10.1021/acsami.5b03482
- S. Sung, T.W. Kim, Flexible nonvolatile memory devices based on Au/PMMA nanocomposites deposited on PEDOT: PSS/Ag nanowire hybrid electrodes. Appl. Surf. Sci. 411, 67–72 (2017). https://doi.org/10.1016/j.apsusc.2017.03.112
- T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
- G. Wang, S.J.H. Ong, Y. Zhao, Z.J. Xu, G. Ji, Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 8(46), 24368–24387 (2020). https://doi.org/10.1039/D0TA08515D
- J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
- X. Liang, G. Wang, W. Gu, G. Ji, Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon 177, 97–106 (2021). https://doi.org/10.1016/j.carbon.2021.02.063
- Y. Choi, S. Gong, D. Johnson, S. Golledge, G. Yeom et al., Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition. Appl. Surf. Sci. 269, 92–97 (2013). https://doi.org/10.1016/j.apsusc.2012.09.159
- T. Yamada, T. Morizane, T. Arimitsu, A. Miyake, H. Makino et al., Application of low resistivity Ga-doped ZnO films to transparent electromagnetic interference shielding material. Thin Solid Films 517(3), 1027–1031 (2008). https://doi.org/10.1016/j.tsf.2008.06.047
- Z. Lu, L. Ma, J. Tan, H. Wang, X. Ding, Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Nanoscale 8(37), 16684–16693 (2016). https://doi.org/10.1039/C6NR02619B
- S. Kim, J. Oh, M. Kim, W. Jang, M. Wang et al., Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014). https://doi.org/10.1021/am503893v
- T. Yun, H. Kim, A. Iqbal, Y. Cho, G. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
- N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen et al., Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64(8), 540–546 (2019). https://doi.org/10.1016/j.scib.2019.03.028
- F. Qin, Z. Yan, J. Fan, J. Cai, X. Zhu et al., Highly uniform and stable transparent electromagnetic interference shielding film based on silver nanowire-PEDOT: PSS composite for high power microwave shielding. Macromol. Mater. Eng. 306(2), 2000607 (2020). https://doi.org/10.1002/mame.202000607
- K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168–175 (2005). https://doi.org/10.1007/s11664-005-0229-8
- M. Singh, T.R. Rana, S. Kim, K. Kim, J.H. Yun et al., Silver nanowires binding with sputtered ZnO to fabricate highly conductive and thermally stable transparent electrode for solar cell applications. ACS Appl. Mater. Interfaces 8(20), 12764–12771 (2016). https://doi.org/10.1021/acsami.6b01506
- D. Chen, F. Zhao, K. Tong, G. Saldanha, C. Liu et al., Mitigation of electrical failure of silver nanowires under current flow and the application for long lifetime organic light-emitting diodes. Adv. Electron. Mater. 2(8), 1600167 (2016). https://doi.org/10.1002/aelm.201600167
References
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. (2021). https://doi.org/10.1002/adma.202106195
L. Su, J. Ma, F. Zhang, Y. Fan, W. Luo et al., Achieving effective broadband microwave absorption with Fe3O4@C supraparticles. J. Materiomics 7(1), 80–88 (2021). https://doi.org/10.1016/j.jmat.2020.07.011
X. Zhou, Z. Jia, X. Zhang, B. Wang, X. Liu et al., Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 420, 129907 (2021). https://doi.org/10.1016/j.cej.2021.129907
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
Y. Zhao, L.L. Hao, X.D. Zhang, S.J. Tan, H.H. Li et al., A Novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive fields effect. Small Sci. (2021). https://doi.org/10.1002/smsc.202100077
L.C. Jia, D.X. Yan, X. Liu, R. Ma, H.Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10(14), 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
C. Yuan, J. Huang, Y. Dong, X. Huang, Y. Lu et al., Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave fabry-pérot interference and optical antireflection. ACS Appl. Mater. Interfaces 12(23), 26659–26669 (2020). https://doi.org/10.1021/acsami.0c05334
J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong et al., Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze. J. Mater. Chem. A 3(10), 5375–5384 (2015). https://doi.org/10.1039/c4ta05728g
Y. Han, H. Zhong, N. Liu, Y. Liu, J. Lin et al., In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding. Adv. Electron. Mater. 4(11), 1800156 (2018). https://doi.org/10.1002/aelm.201800156
M. Hu, J. Gao, Y. Dong, K. Li, G. Shan et al., Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28(18), 7101–7106 (2012). https://doi.org/10.1021/la300720y
J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang et al., Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(2), 2826–2834 (2020). https://doi.org/10.1021/acsami.9b17513
L. Liu, W. Chen, H. Zhang, Q. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
M. Miller, J. O’Kane, A. Niec, R. Carmichael, T. Carmichael, Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics. ACS Appl. Mater. Interfaces 5(20), 10165–10172 (2013). https://doi.org/10.1021/am402847y
W. Chen, L. Liu, H. Zhang, Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
J. Liang, L. Li, K. Tong, Z. Ren, W. Hu et al., Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light emitting diodes. ACS Nano 8(2), 1590–1600 (2014). https://doi.org/10.1021/nn405887k
S. Hong, K. Kim, T. Kim, J. Kim, S. Park et al., Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 23, 455704 (2012). https://doi.org/10.1088/0957-4484/23/45/455704
T.L. Chen, D.S. Ghosh, V. Mkhitaryan, V. Pruneri, Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh. ACS Appl. Mater. Interfaces 5(22), 11756–11761 (2013). https://doi.org/10.1021/am403440n
P. Meenakshi, R. Karthick, M. Selvaraj, S. Ramu, Investigations on reduced graphene oxide film embedded with silver nanowire as a transparent conducting electrode. Sol. Energy Mater. Sol. Cells 128, 264–269 (2014). https://doi.org/10.1016/j.solmat.2014.05.013
H. Lu, J. Sun, H. Zhang, S. Lu, W.C. Choy, Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale 8(11), 5946–5953 (2016). https://doi.org/10.1039/C6NR00011H
B. Zhou, M. Su, D. Yang, G. Han, Y. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12(36), 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
Z. Zhang, G. Wang, W. Gu, Y. Zhao, S. Tang et al., A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J. Colloid Interface Sci. 605, 193–203 (2022). https://doi.org/10.1016/j.jcis.2021.07.085
Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2021). https://doi.org/10.1007/s40820-021-00750-z
Y. Song, F. Yin, C. Zhang, W. Guo, L. Han et al., Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 13, 76 (2021). https://doi.org/10.1007/s40820-021-00601-x
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
J. Li, F. Zhang, H. Lu, W. Guo, X. He et al., Heterogeneous rod-like Ni@C composites toward strong and stable microwave absorption performance. Carbon 181, 358–369 (2021). https://doi.org/10.1016/j.carbon.2021.05.031
J. Liu, L. Liu, X. Wu, X. Zhang, T. Li, Environmentally friendly synthesis of graphene-silver composites with surface-enhanced Raman scattering and antibacterial activity via reduction with L-ascorbic acid/water vapor. New J. Chem. 39, 5272–5281 (2015). https://doi.org/10.1039/c5nj00414d
J. Ma, W. Li, Y. Fan, J. Yang, Q. Yang et al., Ultrathin and light-weight graphene aerogel with precisely tunable density for highly efficient microwave absorbing. ACS Appl. Mater. Interfaces 11(49), 46386–46396 (2019). https://doi.org/10.1021/acsami.9b17849
R. Guo, Q. Zheng, L. Wang, Y. Fan, W. Jiang, Porous N-doped Ni@SiO2/graphene network: three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption. J. Mater. Sci. Technol. 106, 108–117 (2022). https://doi.org/10.1016/j.jmst.2021.07.046
Y. Song, F. Yin, C. Zhang, H. Yu, W. Jing et al., Inverse-opal-based carbon composite monoliths for microwave absorption applications. Carbon 166, 328–338 (2020). https://doi.org/10.1016/j.carbon.2020.05.020
T. Hou, Z. Jia, B. Wang, H. Li, X. Liu et al., Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 422, 130079 (2021). https://doi.org/10.1016/j.cej.2021.130079
J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang et al., Environment-friendly method to produce graphene that employs vitamin C and amino Acid. Chem. Mater. 22(7), 2213–2218 (2010). https://doi.org/10.1021/cm902635j
G. Wang, L. Hao, X. Zhang, S. Tan, M. Zhou et al., Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding. J. Colloid Interface Sci. 607, 89–99 (2021). https://doi.org/10.1016/j.jcis.2021.08.190
M. Jing, C. Han, M. Li, X. Shen, High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique. Nanoscale Res. Lett. 9, 588 (2014). https://doi.org/10.1186/1556-276X-9-588
J. Goak, T. Kim, D. Kim, K. Chang, C. Lee et al., Stable heating performance of carbon nanotube/silver nanowire transparent heaters. Appl. Surf. Sci. 510, 145445 (2020). https://doi.org/10.1016/j.apsusc.2020.145445
S. Lee, J. Kim, J. Park, Y. Porte, J. Kim et al., SWCNT-Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability. J. Mater. Sci. 53, 12284–12294 (2018). https://doi.org/10.1007/s10853-018-2526-7
Y. Zhang, S. Bai, T. Chen, H. Yang, X. Guo, Facile preparation of flexible and highly stable graphene oxide-silver nanowire hybrid transparent conductive electrode. Mater. Res. Express 7, 016413 (2020). https://doi.org/10.1088/2053-1591/ab6262
J. Miao, H. Liu, W. Li, X. Zhang, Mussel-inspired polydopamine-functionalized graphene as a conductive adhesion promoter and protective layer for silver nanowire transparent electrodes. Langmuir 32(21), 5365–5372 (2016). https://doi.org/10.1021/acs.langmuir.6b00796
J. Li, S. Qi, J. Liang, L. Li, Y. Xiong et al., Synthesizing a healable stretchable transparent conductor. ACS Appl. Mater. Interfaces 7(25), 14140–14149 (2015). https://doi.org/10.1021/acsami.5b03482
S. Sung, T.W. Kim, Flexible nonvolatile memory devices based on Au/PMMA nanocomposites deposited on PEDOT: PSS/Ag nanowire hybrid electrodes. Appl. Surf. Sci. 411, 67–72 (2017). https://doi.org/10.1016/j.apsusc.2017.03.112
T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
G. Wang, S.J.H. Ong, Y. Zhao, Z.J. Xu, G. Ji, Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 8(46), 24368–24387 (2020). https://doi.org/10.1039/D0TA08515D
J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5
X. Liang, G. Wang, W. Gu, G. Ji, Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon 177, 97–106 (2021). https://doi.org/10.1016/j.carbon.2021.02.063
Y. Choi, S. Gong, D. Johnson, S. Golledge, G. Yeom et al., Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition. Appl. Surf. Sci. 269, 92–97 (2013). https://doi.org/10.1016/j.apsusc.2012.09.159
T. Yamada, T. Morizane, T. Arimitsu, A. Miyake, H. Makino et al., Application of low resistivity Ga-doped ZnO films to transparent electromagnetic interference shielding material. Thin Solid Films 517(3), 1027–1031 (2008). https://doi.org/10.1016/j.tsf.2008.06.047
Z. Lu, L. Ma, J. Tan, H. Wang, X. Ding, Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Nanoscale 8(37), 16684–16693 (2016). https://doi.org/10.1039/C6NR02619B
S. Kim, J. Oh, M. Kim, W. Jang, M. Wang et al., Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. ACS Appl. Mater. Interfaces 6(20), 17647–17653 (2014). https://doi.org/10.1021/am503893v
T. Yun, H. Kim, A. Iqbal, Y. Cho, G. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32(9), 1906769 (2020). https://doi.org/10.1002/adma.201906769
N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen et al., Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64(8), 540–546 (2019). https://doi.org/10.1016/j.scib.2019.03.028
F. Qin, Z. Yan, J. Fan, J. Cai, X. Zhu et al., Highly uniform and stable transparent electromagnetic interference shielding film based on silver nanowire-PEDOT: PSS composite for high power microwave shielding. Macromol. Mater. Eng. 306(2), 2000607 (2020). https://doi.org/10.1002/mame.202000607
K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168–175 (2005). https://doi.org/10.1007/s11664-005-0229-8
M. Singh, T.R. Rana, S. Kim, K. Kim, J.H. Yun et al., Silver nanowires binding with sputtered ZnO to fabricate highly conductive and thermally stable transparent electrode for solar cell applications. ACS Appl. Mater. Interfaces 8(20), 12764–12771 (2016). https://doi.org/10.1021/acsami.6b01506
D. Chen, F. Zhao, K. Tong, G. Saldanha, C. Liu et al., Mitigation of electrical failure of silver nanowires under current flow and the application for long lifetime organic light-emitting diodes. Adv. Electron. Mater. 2(8), 1600167 (2016). https://doi.org/10.1002/aelm.201600167