Magneto-Dielectric Synergy and Multiscale Hierarchical Structure Design Enable Flexible Multipurpose Microwave Absorption and Infrared Stealth Compatibility
Corresponding Author: Guangbin Ji
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 40
Abstract
Developing advanced stealth devices to cope with radar-infrared (IR) fusion detection and diverse application scenarios is increasingly demanded, which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations. Here, we propose a multiscale hierarchical structure design, integrating wrinkled MXene IR shielding layer and flexible Fe3O4@C/PDMS microwave absorption layer. The top wrinkled MXene layer induces the intensive diffuse reflection effect, shielding IR radiation signals while allowing microwave to pass through. Meanwhile, the permeable microwaves are assimilated into the bottom Fe3O4@C/PDMS layer via strong magneto-electric synergy. Through theoretical and experimental optimization, the assembled stealth devices realize a near-perfect stealth capability in both X-band (8–12 GHz) and long-wave infrared (8–14 µm) wavelength ranges. Specifically, it delivers a radar cross-section reduction of − 20 dB m2, a large apparent temperature modulation range (ΔT = 70 °C), and a low average IR emissivity of 0.35. Additionally, the optimal device demonstrates exceptional curved surface conformability, self-cleaning capability (contact angle ≈ 129°), and abrasion resistance (recovery time ≈ 5 s). This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.
Highlights:
1 A multiscale hierarchical structure design, integrating wrinkled MXene radar-infrared shielding layer and flexible Fe3O4@C/PDMS microwave absorption layer
2 The assembled stealth devices realize a near-perfect stealth capability in both X-band (8-12 GHz) and long-wave infrared (8-14 µm) wavelength ranges.
3 The optimal device demonstrates exceptional curved surface conformability, self-cleaning capability (contact angle ≈ 129°), and abrasion resistance (recovery time ≈ 5 s).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wu, S. Tan, Y. Zhao, L. Liang, M. Zhou et al., Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 135, 101088 (2023). https://doi.org/10.1016/j.pmatsci.2023.101088
- H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
- L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36, e2313939 (2024). https://doi.org/10.1002/adma.202313939
- B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17, 6875–6885 (2023). https://doi.org/10.1021/acsnano.3c00573
- X. Chen, Y. Li, S. Cheng, K. Wu, Q. Wang et al., Liquid metal-MXene-based hierarchical aerogel with radar-infrared compatible camouflage. Adv. Funct. Mater. 34, 2308274 (2024). https://doi.org/10.1002/adfm.202308274
- X. Chai, D. Zhu, Q. Chen, Y. Qing, K. Cao et al., Tailored composition of low emissivity top layer for lightweight visible light-infrared-radar multiband compatible stealth coating. Adv. Compos. Hybrid Mater. 5, 3094–3103 (2022). https://doi.org/10.1007/s42114-022-00563-7
- C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33, 2214223 (2023). https://doi.org/10.1002/adfm.202214223
- Z. An, Y. Li, X. Luo, Y. Huang, R. Zhang et al., Multilaminate metastructure for high-temperature radar-infrared bi-stealth: topological optimization and near-room-temperature synthesis. Matter 5, 1937–1952 (2022). https://doi.org/10.1016/j.matt.2022.04.011
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022). https://doi.org/10.1002/adma.202106195
- P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34, 2311983 (2024). https://doi.org/10.1002/adfm.202311983
- G. Fang, C. Liu, M. Xu, X. Zhang, Y. Wu, D.H. Kim, G. Ji, The elaborate design of multi-polarization effect by non-edge defect strategy for ultra-broad microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202404532
- L. Liang, C. Li, X. Yang, Z. Chen, B. Zhang et al., Pneumatic structural deformation to enhance resonance behavior for broadband and adaptive radar stealth. Nano Lett. 24, 2652–2660 (2024). https://doi.org/10.1021/acs.nanolett.4c00153
- M. Liu, Z. Wu, L. Yang, X. Lv, R. Zhang et al., Finite-sized atom reconstruction enhanced high-frequency multi-domain magnetic response. Adv. Funct. Mater. 33, 2307943 (2023). https://doi.org/10.1002/adfm.202307943
- Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-In electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. 36, e2311411 (2024). https://doi.org/10.1002/adma.202311411
- L. Wang, X. Yu, M. Huang, W. You, Q. Zeng et al., Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon 172, 516–528 (2021). https://doi.org/10.1016/j.carbon.2020.09.050
- K. Cao, W. Ye, Y. Fang, Y. Zhang, R. Zhao et al., Construction of three-dimensional porous network Fe-rGO aerogels with monocrystal magnetic Fe3O4@C core-shell structure nanospheres for enhanced microwave absorption. Mater. Today Phys. 42, 101383 (2024). https://doi.org/10.1016/j.mtphys.2024.101383
- M. Wu, L. Rao, L. Liu, Y. Li, Y. Zhang et al., Urchin-like Fe3O4@C hollow spheres with core-shell structure: controllable synthesis and microwave absorption. J. Colloid Interface Sci. 649, 313–324 (2023). https://doi.org/10.1016/j.jcis.2023.06.077
- C.-X. Lei, L.-F. Lin, S. Li, Q. Luo, L.-S. Wang et al., Fabrication of porous X-shaped Fe3O4@C core-shell structures for tunable microwave absorption. J. Alloys Compd. 976, 173164 (2024). https://doi.org/10.1016/j.jallcom.2023.173164
- X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic Vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
- Y. Liu, C. Tian, F. Wang, B. Hu, P. Xu et al., Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 461, 141867 (2023). https://doi.org/10.1016/j.cej.2023.141867
- Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao et al., In situ construction of hierarchical core–shell Fe3O4@C nanops–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021). https://doi.org/10.1016/j.carbon.2020.09.036
- X. Zhang, Y. Liu, G. Qin, Break Snoek limit via superparamagnetic coupling in Fe3O4/silica multiple-core/shell nanops. Appl. Phys. Lett. 106, 033105 (2015). https://doi.org/10.1063/1.4906519
- X. Wang, H. Zhu, B. Cao, T. Liu, Hollow Fe3O4/Fe@C nanocubes for broadband microwave absorption spanning low- and high-frequency bands. Chem. Eng. J. 490, 151552 (2024). https://doi.org/10.1016/j.cej.2024.151552
- L. Wang, Z. Chen, X. Wang, L. Zhang, Z. Zhang et al., Fe3O4@C 3D foam for strong low-frequency microwave absorption. J. Materiomics 9, 148–156 (2023). https://doi.org/10.1016/j.jmat.2022.08.006
- H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 9, 60 (2020). https://doi.org/10.1038/s41377-020-0300-5
- M. Pan, Y. Huang, Q. Li, H. Luo, H. Zhu et al., Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 69, 104449 (2020). https://doi.org/10.1016/j.nanoen.2020.104449
- B. Yao, X. Xu, Z. Han, W. Xu, G. Yang et al., Cephalopod-inspired polymer composites with mechanically tunable infrared properties. Sci. Bull. 68, 2962–2972 (2023). https://doi.org/10.1016/j.scib.2023.10.039
- C. Li, L. Liang, Y. Yang, B. Zhang, G. Ji, Interfacial engineering of core–shell structured FeCoNi@SnO2 magnetic composites for tunable radar-infrared compatible stealth. Chem. Eng. J. 481, 148354 (2024). https://doi.org/10.1016/j.cej.2023.148354
- R. Zhao, S. Kang, C. Wu, Z. Cheng, Z. Xie et al., Designable electrical/thermal coordinated dual-regulation based on liquid metal shape memory polymer foam for smart switch. Adv. Sci. 10, e2205428 (2023). https://doi.org/10.1002/advs.202205428
- C. Deng, H. Dong, K. Sun, Y. Kou, H. Liu et al., Synchronous visual/infrared stealth using an intrinsically flexible self-healing phase change film. Adv. Funct. Mater. 33, 2212259 (2023). https://doi.org/10.1002/adfm.202212259
- X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61, e202211030 (2022). https://doi.org/10.1002/anie.202211030
- T. Kim, J.-Y. Bae, N. Lee, H.H. Cho, Metamaterials: hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Adv. Funct. Mater. 29, 1970060 (2019). https://doi.org/10.1002/adfm.201970060
- M. He, J.R. Nolen, J. Nordlander, A. Cleri, N.S. McIlwaine et al., Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control. Nat. Mater. 20, 1663–1669 (2021). https://doi.org/10.1038/s41563-021-01094-0
- Y. Li, C. Xiong, H. Huang, X. Peng, D. Mei et al., 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33, 2103054 (2021). https://doi.org/10.1002/adma.202103054
- S. Wan, X. Li, Y. Chen, N. Liu, S. Wang et al., Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022). https://doi.org/10.1038/s41467-022-35226-0
- H. Lu, J. Hu, K. Zhang, J. Zhao, S. Deng et al., Microfluidic-assisted 3D printing zinc powder anode with 2D conductive MOF/MXene heterostructures for high-stable zinc-organic battery. Adv. Mater. 36, e2309753 (2024). https://doi.org/10.1002/adma.202309753
- G. Zhang, H. Yang, H. Zhou, T. Huang, Y. Yang et al., MXene-mediated interfacial growth of 2D–2D heterostructured nanomaterials as cathodes for Zn-based aqueous batteries. Angew. Chem. Int. Ed. 63, e202401903 (2024). https://doi.org/10.1002/anie.202401903
- J. Jing, H. Liu, X. Wang, Long-term infrared stealth by sandwich-like phase-change composites at elevated temperatures via synergistic emissivity and thermal regulation. Adv. Funct. Mater. 34, 2309269 (2024). https://doi.org/10.1002/adfm.202309269
- B.-F. Guo, Y.-J. Wang, C.-F. Cao, Z.-H. Qu, J. Song et al., Large-scale, mechanically robust, solvent-resistant, and antioxidant MXene-based composites for reliable long-term infrared stealth. Adv. Sci. 11, e2309392 (2024). https://doi.org/10.1002/advs.202309392
- Y. Huang, B. Ma, A. Pattanayak, S. Kaur, M. Qiu et al., Infrared camouflage utilizing ultrathin flexible large-scale high-temperature-tolerant lambertian surfaces. Laser Photonics Rev. 15, 2000391 (2021). https://doi.org/10.1002/lpor.202000391
- Y. Huang, Y. Zhu, B. Qin, Y. Zhou, R. Qin et al., Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage. Nanophotonics 11, 3613–3622 (2022). https://doi.org/10.1515/nanoph-2022-0254
- Q. Yuan, P. Li, J. Liu, Y. Lin, Y. Cai et al., Facet-dependent selective adsorption of Mn-doped α-Fe2O3 nanocrystals toward heavy-metal ions. Chem. Mater. 29, 10198–10205 (2017). https://doi.org/10.1021/acs.chemmater.7b04114
- W. Ma, X. Liu, T. Yang, J. Wang, Z. Qiu, Z. Cai, P. Bai, X. Ji, Y. Huang, Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra‐broadband absorption with low‐frequency compatibility. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202314046
- W. Wei, F. Guo, C. Wang, L. Wang, Z. Sheng et al., Strain effects in Ru-Au bimetallic aerogels boost electrocatalytic hydrogen evolution. Small 20, 2310603 (2024). https://doi.org/10.1002/smll.202310603
- Z. Hou, C. Cui, Y. Li, Y. Gao, D. Zhu et al., Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction. Adv. Mater. 35, e2209876 (2023). https://doi.org/10.1002/adma.202209876
- C.T. Campbell, S.C. Parker, D.E. Starr, The effect of size-dependent nanop energetics on catalyst sintering. Science 298, 811–814 (2002). https://doi.org/10.1126/science.1075094
- M. Yu, S. Li, X. Ren, N. Liu, W. Guo et al., Magnetic bimetallic heterointerface nanomissiles with enhanced microwave absorption for microwave thermal/dynamics therapy of breast cancer. ACS Nano 18, 3636–3650 (2024). https://doi.org/10.1021/acsnano.3c11433
- X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3250170
- M. He, Hu. Jinwen, H. Yan, X. Zhong, Y. Zhang, P. Liu, J. Kong, Gu. Junwei, Shape anisotropic chain‐like CoNi/polydimethylsiloxane composite films with excellent low‐frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- Y. Zhang, L. Zhang, L. Tang, R. Du, B. Zhang, S-NiSe/HG nanocomposites with balanced dielectric loss encapsulated in room-temperature self-healing polyurethane for microwave absorption and corrosion protection. ACS Nano 18, 8411–8422 (2024). https://doi.org/10.1021/acsnano.3c13057
- Y. Zhang, H. Dong, C. Yu, Z. Wang, Y. Huang, Metastructure based broadband structural stealth with material-structure-function integration. Compos. Sci. Technol. 253, 110661 (2024). https://doi.org/10.1016/j.compscitech.2024.110661
- H. Dong, Y. Zhang, C. Yu, Z. Wang, Y. Huang, Eco-friendly microwave absorption metastructure: design, optimization, and performance of CPVM based on PLA@CF. Chem. Eng. J. 493, 152477 (2024). https://doi.org/10.1016/j.cej.2024.152477
- C. Liu, L. Xu, X. Xiang, Y. Zhang, L. Zhou et al., Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 16, 176 (2024). https://doi.org/10.1007/s40820-024-01395-4
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- K. Li, Z. Li, Z. Xiong, Y. Wang, H. Yang et al., Thermal camouflaging MXene robotic skin with bio-inspired stimulus sensation and wireless communication. Adv. Funct. Mater. 32, 2110534 (2022). https://doi.org/10.1002/adfm.202110534
- J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
- R.C. Che, L.-M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- Y. Zhang, P. Zhao, Q. Lu, Y. Zhang, H. Lei et al., Functional additive manufacturing of large-size metastructure with efficient electromagnetic absorption and mechanical adaptation. Compos. Part A Appl. Sci. Manuf. 173, 107652 (2023). https://doi.org/10.1016/j.compositesa.2023.107652
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- W. Wang, Z. Li, X. Gao, Y. Huang, R. He, Material extrusion 3D printing of large-scale SiC honeycomb metastructure for ultra-broadband and high temperature electromagnetic wave absorption. Addit. Manuf. 85, 104158 (2024). https://doi.org/10.1016/j.addma.2024.104158
- Z. Ma, K. Yang, D. Li, H. Liu, S. Hui et al., The electron migration polarization boosting electromagnetic wave absorption based on Ce atoms modulated yolk@shell FexN@NGC. Adv. Mater. 36, e2314233 (2024). https://doi.org/10.1002/adma.202314233
References
Y. Wu, S. Tan, Y. Zhao, L. Liang, M. Zhou et al., Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 135, 101088 (2023). https://doi.org/10.1016/j.pmatsci.2023.101088
H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36, e2313939 (2024). https://doi.org/10.1002/adma.202313939
B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17, 6875–6885 (2023). https://doi.org/10.1021/acsnano.3c00573
X. Chen, Y. Li, S. Cheng, K. Wu, Q. Wang et al., Liquid metal-MXene-based hierarchical aerogel with radar-infrared compatible camouflage. Adv. Funct. Mater. 34, 2308274 (2024). https://doi.org/10.1002/adfm.202308274
X. Chai, D. Zhu, Q. Chen, Y. Qing, K. Cao et al., Tailored composition of low emissivity top layer for lightweight visible light-infrared-radar multiband compatible stealth coating. Adv. Compos. Hybrid Mater. 5, 3094–3103 (2022). https://doi.org/10.1007/s42114-022-00563-7
C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33, 2214223 (2023). https://doi.org/10.1002/adfm.202214223
Z. An, Y. Li, X. Luo, Y. Huang, R. Zhang et al., Multilaminate metastructure for high-temperature radar-infrared bi-stealth: topological optimization and near-room-temperature synthesis. Matter 5, 1937–1952 (2022). https://doi.org/10.1016/j.matt.2022.04.011
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022). https://doi.org/10.1002/adma.202106195
P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34, 2311983 (2024). https://doi.org/10.1002/adfm.202311983
G. Fang, C. Liu, M. Xu, X. Zhang, Y. Wu, D.H. Kim, G. Ji, The elaborate design of multi-polarization effect by non-edge defect strategy for ultra-broad microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202404532
L. Liang, C. Li, X. Yang, Z. Chen, B. Zhang et al., Pneumatic structural deformation to enhance resonance behavior for broadband and adaptive radar stealth. Nano Lett. 24, 2652–2660 (2024). https://doi.org/10.1021/acs.nanolett.4c00153
M. Liu, Z. Wu, L. Yang, X. Lv, R. Zhang et al., Finite-sized atom reconstruction enhanced high-frequency multi-domain magnetic response. Adv. Funct. Mater. 33, 2307943 (2023). https://doi.org/10.1002/adfm.202307943
Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-In electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. 36, e2311411 (2024). https://doi.org/10.1002/adma.202311411
L. Wang, X. Yu, M. Huang, W. You, Q. Zeng et al., Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon 172, 516–528 (2021). https://doi.org/10.1016/j.carbon.2020.09.050
K. Cao, W. Ye, Y. Fang, Y. Zhang, R. Zhao et al., Construction of three-dimensional porous network Fe-rGO aerogels with monocrystal magnetic Fe3O4@C core-shell structure nanospheres for enhanced microwave absorption. Mater. Today Phys. 42, 101383 (2024). https://doi.org/10.1016/j.mtphys.2024.101383
M. Wu, L. Rao, L. Liu, Y. Li, Y. Zhang et al., Urchin-like Fe3O4@C hollow spheres with core-shell structure: controllable synthesis and microwave absorption. J. Colloid Interface Sci. 649, 313–324 (2023). https://doi.org/10.1016/j.jcis.2023.06.077
C.-X. Lei, L.-F. Lin, S. Li, Q. Luo, L.-S. Wang et al., Fabrication of porous X-shaped Fe3O4@C core-shell structures for tunable microwave absorption. J. Alloys Compd. 976, 173164 (2024). https://doi.org/10.1016/j.jallcom.2023.173164
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic Vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
Y. Liu, C. Tian, F. Wang, B. Hu, P. Xu et al., Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 461, 141867 (2023). https://doi.org/10.1016/j.cej.2023.141867
Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao et al., In situ construction of hierarchical core–shell Fe3O4@C nanops–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021). https://doi.org/10.1016/j.carbon.2020.09.036
X. Zhang, Y. Liu, G. Qin, Break Snoek limit via superparamagnetic coupling in Fe3O4/silica multiple-core/shell nanops. Appl. Phys. Lett. 106, 033105 (2015). https://doi.org/10.1063/1.4906519
X. Wang, H. Zhu, B. Cao, T. Liu, Hollow Fe3O4/Fe@C nanocubes for broadband microwave absorption spanning low- and high-frequency bands. Chem. Eng. J. 490, 151552 (2024). https://doi.org/10.1016/j.cej.2024.151552
L. Wang, Z. Chen, X. Wang, L. Zhang, Z. Zhang et al., Fe3O4@C 3D foam for strong low-frequency microwave absorption. J. Materiomics 9, 148–156 (2023). https://doi.org/10.1016/j.jmat.2022.08.006
H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 9, 60 (2020). https://doi.org/10.1038/s41377-020-0300-5
M. Pan, Y. Huang, Q. Li, H. Luo, H. Zhu et al., Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 69, 104449 (2020). https://doi.org/10.1016/j.nanoen.2020.104449
B. Yao, X. Xu, Z. Han, W. Xu, G. Yang et al., Cephalopod-inspired polymer composites with mechanically tunable infrared properties. Sci. Bull. 68, 2962–2972 (2023). https://doi.org/10.1016/j.scib.2023.10.039
C. Li, L. Liang, Y. Yang, B. Zhang, G. Ji, Interfacial engineering of core–shell structured FeCoNi@SnO2 magnetic composites for tunable radar-infrared compatible stealth. Chem. Eng. J. 481, 148354 (2024). https://doi.org/10.1016/j.cej.2023.148354
R. Zhao, S. Kang, C. Wu, Z. Cheng, Z. Xie et al., Designable electrical/thermal coordinated dual-regulation based on liquid metal shape memory polymer foam for smart switch. Adv. Sci. 10, e2205428 (2023). https://doi.org/10.1002/advs.202205428
C. Deng, H. Dong, K. Sun, Y. Kou, H. Liu et al., Synchronous visual/infrared stealth using an intrinsically flexible self-healing phase change film. Adv. Funct. Mater. 33, 2212259 (2023). https://doi.org/10.1002/adfm.202212259
X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61, e202211030 (2022). https://doi.org/10.1002/anie.202211030
T. Kim, J.-Y. Bae, N. Lee, H.H. Cho, Metamaterials: hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Adv. Funct. Mater. 29, 1970060 (2019). https://doi.org/10.1002/adfm.201970060
M. He, J.R. Nolen, J. Nordlander, A. Cleri, N.S. McIlwaine et al., Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control. Nat. Mater. 20, 1663–1669 (2021). https://doi.org/10.1038/s41563-021-01094-0
Y. Li, C. Xiong, H. Huang, X. Peng, D. Mei et al., 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33, 2103054 (2021). https://doi.org/10.1002/adma.202103054
S. Wan, X. Li, Y. Chen, N. Liu, S. Wang et al., Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022). https://doi.org/10.1038/s41467-022-35226-0
H. Lu, J. Hu, K. Zhang, J. Zhao, S. Deng et al., Microfluidic-assisted 3D printing zinc powder anode with 2D conductive MOF/MXene heterostructures for high-stable zinc-organic battery. Adv. Mater. 36, e2309753 (2024). https://doi.org/10.1002/adma.202309753
G. Zhang, H. Yang, H. Zhou, T. Huang, Y. Yang et al., MXene-mediated interfacial growth of 2D–2D heterostructured nanomaterials as cathodes for Zn-based aqueous batteries. Angew. Chem. Int. Ed. 63, e202401903 (2024). https://doi.org/10.1002/anie.202401903
J. Jing, H. Liu, X. Wang, Long-term infrared stealth by sandwich-like phase-change composites at elevated temperatures via synergistic emissivity and thermal regulation. Adv. Funct. Mater. 34, 2309269 (2024). https://doi.org/10.1002/adfm.202309269
B.-F. Guo, Y.-J. Wang, C.-F. Cao, Z.-H. Qu, J. Song et al., Large-scale, mechanically robust, solvent-resistant, and antioxidant MXene-based composites for reliable long-term infrared stealth. Adv. Sci. 11, e2309392 (2024). https://doi.org/10.1002/advs.202309392
Y. Huang, B. Ma, A. Pattanayak, S. Kaur, M. Qiu et al., Infrared camouflage utilizing ultrathin flexible large-scale high-temperature-tolerant lambertian surfaces. Laser Photonics Rev. 15, 2000391 (2021). https://doi.org/10.1002/lpor.202000391
Y. Huang, Y. Zhu, B. Qin, Y. Zhou, R. Qin et al., Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage. Nanophotonics 11, 3613–3622 (2022). https://doi.org/10.1515/nanoph-2022-0254
Q. Yuan, P. Li, J. Liu, Y. Lin, Y. Cai et al., Facet-dependent selective adsorption of Mn-doped α-Fe2O3 nanocrystals toward heavy-metal ions. Chem. Mater. 29, 10198–10205 (2017). https://doi.org/10.1021/acs.chemmater.7b04114
W. Ma, X. Liu, T. Yang, J. Wang, Z. Qiu, Z. Cai, P. Bai, X. Ji, Y. Huang, Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra‐broadband absorption with low‐frequency compatibility. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202314046
W. Wei, F. Guo, C. Wang, L. Wang, Z. Sheng et al., Strain effects in Ru-Au bimetallic aerogels boost electrocatalytic hydrogen evolution. Small 20, 2310603 (2024). https://doi.org/10.1002/smll.202310603
Z. Hou, C. Cui, Y. Li, Y. Gao, D. Zhu et al., Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction. Adv. Mater. 35, e2209876 (2023). https://doi.org/10.1002/adma.202209876
C.T. Campbell, S.C. Parker, D.E. Starr, The effect of size-dependent nanop energetics on catalyst sintering. Science 298, 811–814 (2002). https://doi.org/10.1126/science.1075094
M. Yu, S. Li, X. Ren, N. Liu, W. Guo et al., Magnetic bimetallic heterointerface nanomissiles with enhanced microwave absorption for microwave thermal/dynamics therapy of breast cancer. ACS Nano 18, 3636–3650 (2024). https://doi.org/10.1021/acsnano.3c11433
X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3250170
M. He, Hu. Jinwen, H. Yan, X. Zhong, Y. Zhang, P. Liu, J. Kong, Gu. Junwei, Shape anisotropic chain‐like CoNi/polydimethylsiloxane composite films with excellent low‐frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
Y. Zhang, L. Zhang, L. Tang, R. Du, B. Zhang, S-NiSe/HG nanocomposites with balanced dielectric loss encapsulated in room-temperature self-healing polyurethane for microwave absorption and corrosion protection. ACS Nano 18, 8411–8422 (2024). https://doi.org/10.1021/acsnano.3c13057
Y. Zhang, H. Dong, C. Yu, Z. Wang, Y. Huang, Metastructure based broadband structural stealth with material-structure-function integration. Compos. Sci. Technol. 253, 110661 (2024). https://doi.org/10.1016/j.compscitech.2024.110661
H. Dong, Y. Zhang, C. Yu, Z. Wang, Y. Huang, Eco-friendly microwave absorption metastructure: design, optimization, and performance of CPVM based on PLA@CF. Chem. Eng. J. 493, 152477 (2024). https://doi.org/10.1016/j.cej.2024.152477
C. Liu, L. Xu, X. Xiang, Y. Zhang, L. Zhou et al., Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 16, 176 (2024). https://doi.org/10.1007/s40820-024-01395-4
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
K. Li, Z. Li, Z. Xiong, Y. Wang, H. Yang et al., Thermal camouflaging MXene robotic skin with bio-inspired stimulus sensation and wireless communication. Adv. Funct. Mater. 32, 2110534 (2022). https://doi.org/10.1002/adfm.202110534
J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
R.C. Che, L.-M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
Y. Zhang, P. Zhao, Q. Lu, Y. Zhang, H. Lei et al., Functional additive manufacturing of large-size metastructure with efficient electromagnetic absorption and mechanical adaptation. Compos. Part A Appl. Sci. Manuf. 173, 107652 (2023). https://doi.org/10.1016/j.compositesa.2023.107652
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
W. Wang, Z. Li, X. Gao, Y. Huang, R. He, Material extrusion 3D printing of large-scale SiC honeycomb metastructure for ultra-broadband and high temperature electromagnetic wave absorption. Addit. Manuf. 85, 104158 (2024). https://doi.org/10.1016/j.addma.2024.104158
Z. Ma, K. Yang, D. Li, H. Liu, S. Hui et al., The electron migration polarization boosting electromagnetic wave absorption based on Ce atoms modulated yolk@shell FexN@NGC. Adv. Mater. 36, e2314233 (2024). https://doi.org/10.1002/adma.202314233