Environmentally Friendly and Multifunctional Shaddock Peel-Based Carbon Aerogel for Thermal-Insulation and Microwave Absorption
Corresponding Author: Guangbin Ji
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 102
Abstract
Eco-friendly electromagnetic wave absorbing materials with excellent thermal infrared stealth property, heat-insulating ability and compression resistance are highly attractive in practical applications. Meeting the aforesaid requirements simultaneously is a formidable challenge. Herein, ultra-light carbon aerogels were fabricated via fresh shaddock peel by facile freeze-drying method and calcination process, forming porous network architecture. With the heating platform temperature of 70 °C, the upper surface temperatures of the as-prepared carbon aerogel present a slow upward trend. The color of the sample surface in thermal infrared images is similar to that of the surroundings. With the maximum compressive stress of 2.435 kPa, the carbon aerogels can provide favorable endurance. The shaddock peel-based carbon aerogels possess the minimum reflection loss value (RLmin) of − 29.50 dB in X band. Meanwhile, the effective absorption bandwidth covers 5.80 GHz at a relatively thin thickness of only 1.7 mm. With the detection theta of 0°, the maximum radar cross-sectional (RCS) reduction values of 16.28 dB m2 can be achieved. Theoretical simulations of RCS have aroused extensive interest owing to their ingenious design and time-saving feature. This work paves the way for preparing multi-functional microwave absorbers derived from biomass raw materials under the guidance of RCS simulations.
Highlights:
1 The eco-friendly shaddock peel-derived carbon aerogels were prepared by a freeze-drying method.
2 Multiple functions such as thermal insulation, compression resistance and microwave absorption can be integrated into one material-carbon aerogel.
3 Novel computer simulation technology strategy was selected to simulate significant radar cross-sectional reduction values under real far field condition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32, 2002112 (2020). https://doi.org/10.1002/adma.202002112
- M.A. Poothanari, J. Abraham, N. Kalarikkal, S. Thomas, Excellent electromagnetic interference shielding and high electrical conductivity of compatibilized polycarbonate/polypropylene carbon nanotube blend nanocomposites. Ind. Eng. Chem. Res. 57, 4287–4297 (2018). https://doi.org/10.1021/acs.iecr.7b05406
- Y.P. Wang, B. Suo, Y. Shi, H.R. Yuan, C.L. Zhu et al., General fabrication of 3D hierarchically structured bamboo-like nitrogen-doped carbon nanotubes arrays on 1D nitrogen-doped carbon skeletons for highly efficient electromagnetic wave energy attenuation. ACS Appl. Mater. Interfaces 12, 40692–40701 (2020). https://doi.org/10.1021/acsami.0c12413
- X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- R.C. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- J.X. Ma, W.H. Li, Y.C. Fan, J.Y. Yang, Q.K. Yang et al., Ultrathin and light-weight graphene aerogel with precisely tunable density for highly efficient microwave absorbing. ACS Appl. Mater. Interfaces 11, 46386–46396 (2019). https://doi.org/10.1021/acsami.9b17849
- J. Xu, X. Zhang, H.R. Yuan, S. Zhang, C.L. Zhu et al., N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 159, 357–365 (2020). https://doi.org/10.1016/j.carbon.2019.12.020
- P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
- Y.L. Zhang, K.P. Ruan, X.T. Shi, H. Qiu, Y. Pan et al., Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175, 271–280 (2021). https://doi.org/10.1016/j.carbon.2020.12.084
- X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang et al., CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2020). https://doi.org/10.1016/j.cej.2019.123208
- J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng et al., Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 22, 100486 (2020). https://doi.org/10.1016/j.coco.2020.100486
- J.Q. Sheng, Y. Zhang, L. Liu, B. Quan, N. Zhang et al., Optimizing electromagnetic wave absorption performance: Design from microscopic bamboo carbon nanotubes to macroscopic patterns. J. Alloys Compd. 809, 151866 (2019). https://doi.org/10.1016/j.jallcom.2019.151866
- S.T. Wu, M.C. Zou, Z.C. Li, D.Q. Chen, H. Zhang et al., Robust and stable Cu nanowire@graphene core-shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, 1800634 (2018). https://doi.org/10.1002/smll.201800634
- J. Liu, H.B. Zhang, X. Xie, R. Yang, Z.S. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14, 1802479 (2018). https://doi.org/10.1002/smll.201802479
- W.H. Gu, J.W. Tan, J.B. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12, 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
- J.B. Chen, X.H. Liang, J. Zheng, W.H. Gu, C.C. Pei et al., Modulating dielectric loss of mesoporouscarbon fibers with radar cross section reduction performance via computer simulation technology. Inorg. Chem. Front. 8, 758–765 (2020). https://doi.org/10.1039/d0qi01237h
- H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
- X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon. Nanoscale 9, 7408–7418 (2017). https://doi.org/10.1039/c7nr02628e
- S. Dong, P.T. Hu, X.T. Li, C.Q. Hong, X.H. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 123817 (2020). https://doi.org/10.1016/j.cej.2020.125588
- Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C.J. Xu, G.B. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
- H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, Y.W. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
- Z.C. Wang, R.B. Wei, J.W. Gu, H. Liu, C.T. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
- Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang et al., Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9, 8933–8941 (2015). https://doi.org/10.1021/acsnano.5b02781
- X. Zhang, X. Zhao, T. Xue, F. Yang, W. Fan et al., Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 385, 123963 (2020). https://doi.org/10.1016/j.cej.2019.123963
- J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, G.B. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 174, 509–517 (2021). https://doi.org/10.1016/j.carbon.2020.12.077
- S. Lee, D. Suh, W. Kim, C. Xu, T. Kim et al., Carbon nanotube covalent bonding mediates extraordinary electron and phonon transports in soft epoxy matrix interface materials. Carbon 157, 12–21 (2020). https://doi.org/10.1016/j.carbon.2019.10.013
- P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
- B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122, 194–206 (2018). https://doi.org/10.1021/acs.jpcc.7b10582
- B. Zhou, M.J. Su, D.Z. Yang, G.J. Han, Y.Z. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12, 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
- Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Y.D. Wang et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- A.A. Gunay, H. Kim, N. Nagarajan, M. Lopez, R. Kantharaj et al., Optically transparent thermally insulating silica aerogels for solar thermal insulation. ACS Appl. Mater. Interfaces 10, 12603–12611 (2018). https://doi.org/10.1021/acsami.7b18856
- M. Stanzione, M. Oliviero, M. Cocca, M. Errico, G. Gentile et al., Tuning of polyurethane foam mechanical and thermal properties using ball-milled cellulose. Carbohydr. Polym. 231, 115772 (2020). https://doi.org/10.1016/j.carbpol.2019.115772
- R.Y. Tan, J.T. Zhou, Z.J. Yao, B. Wei, Z. Li, A low-cost lightweight microwave absorber: silicon carbide synthesized from tissue. Ceram. Int. 47, 2077–2085 (2021). https://doi.org/10.1016/j.ceramint.2020.09.040
- R. Guo, Y.C. Fan, L.J. Wang, W. Jiang, Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber. Carbon 169, 214–224 (2020). https://doi.org/10.1016/j.carbon.2020.07.054
- C. Wu, Z.F. Chen, M.L. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16, 2001686 (2020). https://doi.org/10.1002/smll.202001686
- S. Dong, X.H. Zhang, X.T. Li, J.M. Chen, P. Hu et al., SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption. Chem. Eng. J. 392, 123817 (2020). https://doi.org/10.1016/j.cej.2019.123817
- B. Quan, W.H. Shi, S.J. Hoong Ong, X.C. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29, 1901236 (2019). https://doi.org/10.1002/adfm.201901236
- B. Quan, W.H. Gu, J.Q. Sheng, X.F. Lv, Y.Y. Mao et al., From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495–1501 (2020). https://doi.org/10.1007/s12274-020-3208-8
- J.C. Liu, Z.H. Yang, L.J. Yang, Y.T. Zhu, T. Xue et al., Rational design of yolk-shell NiCo2O4@void@NiCo2S4 nanospheres for effective enhancement in microwave absorption. J. Alloys Compd. 853, 157403 (2021). https://doi.org/10.1016/j.jallcom.2020.157403
- G.H. Wang, S.J.H. Ong, Y. Zhao, Z.C.J. Xu, G.B. Ji, Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 8, 24368 (2020). https://doi.org/10.1039/d0ta08515d
- J. Singh, C. Singh, D. Kaur, S.B. Narang, R.B. Jotania et al., Development of doped BaeSr hexagonal ferrites for microwave absorber applications: Structural characterization, tunable thickness, absorption peaks and electromagnetic parameters. J. Alloys Compd. 855, 157242 (2021). https://doi.org/10.1016/j.jallcom.2020.157242
- Y.L. Lian, B.H. Han, D.W. Liu, Y.H. Wang, H.H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
- Y.M. Mao, Z.J. Yao, J.T. Zhou, B. Wei, L. Lei et al., Fabrication and investigations on BMI/OMMT nanocomposites with superior high-temperature wave-transparent performance. J. Mater. Sci. Mater. Electron. 31, 16073–16086 (2020). https://doi.org/10.1007/s10854-020-04172-2
- M. Javid, X.H. Qu, F.R. Huang, X.Y. Li, A. Farid et al., In-situ synthesis of SiC/Fe nanowires coated with thin amorphous carbon layers for excellent electromagnetic wave absorption in GHz range. Carbon 171, 785–797 (2021). https://doi.org/10.1016/j.carbon.2020.09.066
- L. Su, J.X. Ma, F.Z. Zhang, Y.C. Fan, W. Luo et al., Achieving effective broadband microwave absorption with Fe3O4@C supraparticles. J. Materiomics 7, 80–88 (2021). https://doi.org/10.1016/j.jmat.2020.07.011
- Y.L. Duan, Y. Li, D. Wang, R.Q. Wang, Y.L. Wang et al., Transverse size effect on electromagnetic wave absorption performance of exfoliated thin-layered flake graphite. Carbon 153, 682–690 (2019). https://doi.org/10.1016/j.carbon.2019.07.078
- B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- J.C. Shu, M.S. Cao, M. Zhang, X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299
References
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
X.X. Wang, W.Q. Cao, M.S. Cao, J. Yuan, Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32, 2002112 (2020). https://doi.org/10.1002/adma.202002112
M.A. Poothanari, J. Abraham, N. Kalarikkal, S. Thomas, Excellent electromagnetic interference shielding and high electrical conductivity of compatibilized polycarbonate/polypropylene carbon nanotube blend nanocomposites. Ind. Eng. Chem. Res. 57, 4287–4297 (2018). https://doi.org/10.1021/acs.iecr.7b05406
Y.P. Wang, B. Suo, Y. Shi, H.R. Yuan, C.L. Zhu et al., General fabrication of 3D hierarchically structured bamboo-like nitrogen-doped carbon nanotubes arrays on 1D nitrogen-doped carbon skeletons for highly efficient electromagnetic wave energy attenuation. ACS Appl. Mater. Interfaces 12, 40692–40701 (2020). https://doi.org/10.1021/acsami.0c12413
X.H. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
R.C. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
J.X. Ma, W.H. Li, Y.C. Fan, J.Y. Yang, Q.K. Yang et al., Ultrathin and light-weight graphene aerogel with precisely tunable density for highly efficient microwave absorbing. ACS Appl. Mater. Interfaces 11, 46386–46396 (2019). https://doi.org/10.1021/acsami.9b17849
J. Xu, X. Zhang, H.R. Yuan, S. Zhang, C.L. Zhu et al., N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 159, 357–365 (2020). https://doi.org/10.1016/j.carbon.2019.12.020
P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
Y.L. Zhang, K.P. Ruan, X.T. Shi, H. Qiu, Y. Pan et al., Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175, 271–280 (2021). https://doi.org/10.1016/j.carbon.2020.12.084
X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang et al., CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 383, 123208 (2020). https://doi.org/10.1016/j.cej.2019.123208
J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng et al., Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 22, 100486 (2020). https://doi.org/10.1016/j.coco.2020.100486
J.Q. Sheng, Y. Zhang, L. Liu, B. Quan, N. Zhang et al., Optimizing electromagnetic wave absorption performance: Design from microscopic bamboo carbon nanotubes to macroscopic patterns. J. Alloys Compd. 809, 151866 (2019). https://doi.org/10.1016/j.jallcom.2019.151866
S.T. Wu, M.C. Zou, Z.C. Li, D.Q. Chen, H. Zhang et al., Robust and stable Cu nanowire@graphene core-shell aerogels for ultraeffective electromagnetic interference shielding. Small 14, 1800634 (2018). https://doi.org/10.1002/smll.201800634
J. Liu, H.B. Zhang, X. Xie, R. Yang, Z.S. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14, 1802479 (2018). https://doi.org/10.1002/smll.201802479
W.H. Gu, J.W. Tan, J.B. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12, 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
J.B. Chen, X.H. Liang, J. Zheng, W.H. Gu, C.C. Pei et al., Modulating dielectric loss of mesoporouscarbon fibers with radar cross section reduction performance via computer simulation technology. Inorg. Chem. Front. 8, 758–765 (2020). https://doi.org/10.1039/d0qi01237h
H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 52, 119–126 (2020). https://doi.org/10.1016/j.jmst.2020.03.029
X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon. Nanoscale 9, 7408–7418 (2017). https://doi.org/10.1039/c7nr02628e
S. Dong, P.T. Hu, X.T. Li, C.Q. Hong, X.H. Zhang et al., NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 398, 123817 (2020). https://doi.org/10.1016/j.cej.2020.125588
Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C.J. Xu, G.B. Ji, A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 12, 125 (2020). https://doi.org/10.1007/s40820-020-00461-x
H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, Y.W. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
Z.C. Wang, R.B. Wei, J.W. Gu, H. Liu, C.T. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang et al., Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9, 8933–8941 (2015). https://doi.org/10.1021/acsnano.5b02781
X. Zhang, X. Zhao, T. Xue, F. Yang, W. Fan et al., Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 385, 123963 (2020). https://doi.org/10.1016/j.cej.2019.123963
J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, G.B. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 174, 509–517 (2021). https://doi.org/10.1016/j.carbon.2020.12.077
S. Lee, D. Suh, W. Kim, C. Xu, T. Kim et al., Carbon nanotube covalent bonding mediates extraordinary electron and phonon transports in soft epoxy matrix interface materials. Carbon 157, 12–21 (2020). https://doi.org/10.1016/j.carbon.2019.10.013
P.B. Liu, S. Gao, Y. Wang, Y. Huang, W.J. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122, 194–206 (2018). https://doi.org/10.1021/acs.jpcc.7b10582
B. Zhou, M.J. Su, D.Z. Yang, G.J. Han, Y.Z. Feng et al., Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 12, 40859–40869 (2020). https://doi.org/10.1021/acsami.0c09020
Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Y.D. Wang et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1807624 (2019). https://doi.org/10.1002/adfm.201807624
A.A. Gunay, H. Kim, N. Nagarajan, M. Lopez, R. Kantharaj et al., Optically transparent thermally insulating silica aerogels for solar thermal insulation. ACS Appl. Mater. Interfaces 10, 12603–12611 (2018). https://doi.org/10.1021/acsami.7b18856
M. Stanzione, M. Oliviero, M. Cocca, M. Errico, G. Gentile et al., Tuning of polyurethane foam mechanical and thermal properties using ball-milled cellulose. Carbohydr. Polym. 231, 115772 (2020). https://doi.org/10.1016/j.carbpol.2019.115772
R.Y. Tan, J.T. Zhou, Z.J. Yao, B. Wei, Z. Li, A low-cost lightweight microwave absorber: silicon carbide synthesized from tissue. Ceram. Int. 47, 2077–2085 (2021). https://doi.org/10.1016/j.ceramint.2020.09.040
R. Guo, Y.C. Fan, L.J. Wang, W. Jiang, Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber. Carbon 169, 214–224 (2020). https://doi.org/10.1016/j.carbon.2020.07.054
C. Wu, Z.F. Chen, M.L. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16, 2001686 (2020). https://doi.org/10.1002/smll.202001686
S. Dong, X.H. Zhang, X.T. Li, J.M. Chen, P. Hu et al., SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption. Chem. Eng. J. 392, 123817 (2020). https://doi.org/10.1016/j.cej.2019.123817
B. Quan, W.H. Shi, S.J. Hoong Ong, X.C. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29, 1901236 (2019). https://doi.org/10.1002/adfm.201901236
B. Quan, W.H. Gu, J.Q. Sheng, X.F. Lv, Y.Y. Mao et al., From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495–1501 (2020). https://doi.org/10.1007/s12274-020-3208-8
J.C. Liu, Z.H. Yang, L.J. Yang, Y.T. Zhu, T. Xue et al., Rational design of yolk-shell NiCo2O4@void@NiCo2S4 nanospheres for effective enhancement in microwave absorption. J. Alloys Compd. 853, 157403 (2021). https://doi.org/10.1016/j.jallcom.2020.157403
G.H. Wang, S.J.H. Ong, Y. Zhao, Z.C.J. Xu, G.B. Ji, Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 8, 24368 (2020). https://doi.org/10.1039/d0ta08515d
J. Singh, C. Singh, D. Kaur, S.B. Narang, R.B. Jotania et al., Development of doped BaeSr hexagonal ferrites for microwave absorber applications: Structural characterization, tunable thickness, absorption peaks and electromagnetic parameters. J. Alloys Compd. 855, 157242 (2021). https://doi.org/10.1016/j.jallcom.2020.157242
Y.L. Lian, B.H. Han, D.W. Liu, Y.H. Wang, H.H. Zhao et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 12, 153 (2020). https://doi.org/10.1007/s40820-020-00491-5
Y.M. Mao, Z.J. Yao, J.T. Zhou, B. Wei, L. Lei et al., Fabrication and investigations on BMI/OMMT nanocomposites with superior high-temperature wave-transparent performance. J. Mater. Sci. Mater. Electron. 31, 16073–16086 (2020). https://doi.org/10.1007/s10854-020-04172-2
M. Javid, X.H. Qu, F.R. Huang, X.Y. Li, A. Farid et al., In-situ synthesis of SiC/Fe nanowires coated with thin amorphous carbon layers for excellent electromagnetic wave absorption in GHz range. Carbon 171, 785–797 (2021). https://doi.org/10.1016/j.carbon.2020.09.066
L. Su, J.X. Ma, F.Z. Zhang, Y.C. Fan, W. Luo et al., Achieving effective broadband microwave absorption with Fe3O4@C supraparticles. J. Materiomics 7, 80–88 (2021). https://doi.org/10.1016/j.jmat.2020.07.011
Y.L. Duan, Y. Li, D. Wang, R.Q. Wang, Y.L. Wang et al., Transverse size effect on electromagnetic wave absorption performance of exfoliated thin-layered flake graphite. Carbon 153, 682–690 (2019). https://doi.org/10.1016/j.carbon.2019.07.078
B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
J.C. Shu, M.S. Cao, M. Zhang, X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299