3D Printed Integrated Gradient-Conductive MXene/CNT/Polyimide Aerogel Frames for Electromagnetic Interference Shielding with Ultra-Low Reflection
Corresponding Author: Tianxi Liu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 45
Abstract
Construction of advanced electromagnetic interference (EMI) shielding materials with miniaturized, programmable structure and low reflection are promising but challenging. Herein, an integrated transition-metal carbides/carbon nanotube/polyimide (gradient-conductive MXene/CNT/PI, GCMCP) aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection. The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly (amic acid) inks with different CNT contents, where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer. In addition, the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections. Consequently, the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency (68.2 dB) and low reflection (R = 0.23). Furthermore, the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission, which shows a prosperous application prospect in defense industry and aerospace.
Highlights:
1 The MXene/CNT/Polyimide aerogel frame with integrated gradient-conductive structure was constructed by MXene/CNT/poly(amic acid) composite inks with different CNT contents via 3D printing technology.
2 The integrated gradient-conductivity and hierarchical porous structure of MXene/CNT/Polyimide aerogel frame rendered excellent electromagnetic interference shielding performance and ultra low reflection.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- J.Y. Zong, X.J. Zhou, Y.F. Hu, T.B. Yang, D.X. Yan et al., A wearable multifunctional fabric with excellent electromagnetic interference shielding and passive radiation heating performance. Compos. Part B Eng. 225, 109299 (2021). https://doi.org/10.1016/j.compositesb.2021.109299
- R. Baan, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard et al., Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 12(7), 624–626 (2011). https://doi.org/10.1016/s1470-2045(11)70147-4
- X.F. Liu, Y. Li, X. Sun, W.K. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- Y.L. Zhang, J.W. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14(1), 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
- D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- M.L. Cheng, M.F. Ying, R.Z. Zhao, L.Z. Ji, H.X. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16(10), 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
- M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B. Shen et al., Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 177, 377–402 (2021). https://doi.org/10.1016/j.carbon.2021.02.047
- L. Wang, Z.L. Ma, H. Qiu, Y.L. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14(1), 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
- Q.F. Guan, Z.M. Han, K.P. Yang, H.B. Yang, Z.C. Ling et al., Sustainable double-network structural materials for electromagnetic shielding. Nano Lett. 21(6), 2532–2537 (2021). https://doi.org/10.1021/acs.nanolett.0c05081
- Y.A. Chen, P. Potschke, J. Pionteck, B. Voit, H.S. Qi, Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(19), 22088–22098 (2020). https://doi.org/10.1021/acsami.9b23052
- F. Pan, Y.P. Rao, D. Batalu, L. Cai, Y.Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14(1), 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- Z.H. Zeng, T.T. Wu, D.X. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- Y.D. Xu, Y.Q. Yang, D.X. Yan, H.J. Duan, G.Z. Zhao et al., Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interfaces 10(22), 19143–19152 (2018). https://doi.org/10.1021/acsami.8b05129
- Y.Q. Hu, C. Hou, Y.X. Shi, J.M. Wu, D. Yang et al., Freestanding Fe3O4/Ti3C2Tx MXene/polyurethane composite film with efficient electromagnetic shielding and ultra-stretchable performance. Nanotechnology 33(16), 165603 (2022). https://doi.org/10.1088/1361-6528/ac4878
- B. Xue, Y. Li, Z.L. Cheng, S.D. Yang, L. Xie et al., Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 14(1), 16 (2021). https://doi.org/10.1007/s40820-021-00743-y
- Z.M. Lei, D.K. Tian, X.B. Liu, J.H. Wei, K. Rajavel et al., Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity. Chem. Eng. J. 424, 130365 (2021). https://doi.org/10.1016/j.cej.2021.130365
- J.M. Yang, X. Liao, G. Wang, J. Chen, F.M. Guo et al., Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 390, 124589 (2020). https://doi.org/10.1016/j.cej.2020.124589
- A. Bandyopadhyay, B. Heer, Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 129, 1–16 (2018). https://doi.org/10.1016/j.mser.2018.04.001
- L.A.E. Müller, T. Zimmermann, G. Nyström, I. Burgert, G. Siqueira, Mechanical properties tailoring of 3D printed photoresponsive nanocellulose composites. Adv. Funct. Mater. 30(35), 2002914 (2020). https://doi.org/10.1002/adfm.202002914
- R.S. Ambekar, B. Kushwaha, P. Sharma, F. Bosia, M. Fraldi et al., Topologically engineered 3D printed architectures with superior mechanical strength. Mater. Today 48, 72–94 (2021). https://doi.org/10.1016/j.mattod.2021.03.014
- J.Z. Feng, B.L. Su, H.S. Xia, S.Y. Zhao, C. Gao et al., Printed aerogels: Chemistry, processing, and applications. Chem. Soc. Rev. 50(6), 3842–3888 (2021). https://doi.org/10.1039/c9cs00757a
- W. Zong, N.B. Chui, Z.H. Tian, Y.T. Li, C. Yang et al., Ultrafine MOP nanop splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors. Adv. Sci. 8(7), 2004142 (2021). https://doi.org/10.1002/advs.202004142
- Y. Kwon, S.E. Seo, J. Lee, S. Berezvai, J. Read de Alaniz et al., 3D-printed polymer foams maintain stiffness and energy dissipation under repeated loading. Compos. Commun. (2022). https://doi.org/10.1016/j.coco.2022.101453
- L. Pu, Y.P. Liu, L. Li, C. Zhang, P.M. Ma et al., Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13(39), 47134–47146 (2021). https://doi.org/10.1021/acsami.1c13863
- C.H. Lin, S.H. Luo, F.C. Meng, B. Xu, T. Long et al., MXene/air-laid paper composite sensors for both tensile and torsional deformations detection. Compos. Commun. 25, 100768 (2021). https://doi.org/10.1016/j.coco.2021.100768
- T.T. Xue, C.Y. Zhu, X.L. Feng, Q. Wali, W. Fan et al., Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv. Fiber Mater. 4(5), 1118–1128 (2022). https://doi.org/10.1007/s42765-022-00145-8
- J. Tian, Y. Yang, T.T. Xue, G.J. Chao, W. Fan et al., Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J. Mater. Sci. Technol. 105, 194–202 (2022). https://doi.org/10.1016/j.jmst.2021.07.030
- C.Y. Zhu, F. Yang, T.T. Xue, Q. Wali, W. Fan et al., Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal. Sep. Purif. Technol. 300, 121881 (2022). https://doi.org/10.1016/j.seppur.2022.121881
- H.C. Lu, Z.H. Xia, X.J. Zheng, Q.Y. Mi, J.M. Zhang et al., Patternable cellulose/MWCNT laminated nanocomposites with anisotropic thermal and electrical conductivity. Compos. Commun. 26, 100786 (2021). https://doi.org/10.1016/j.coco.2021.100786
- D. Wang, Y.D. Peng, J.C. Dong, L. Pu, K.Q. Chang et al., Hierarchically porous polyimide aerogel fibers based on the confinement of Ti3C2Tx flakes for thermal insulation and fire retardancy. Compos. Commun. 37, 101429 (2023). https://doi.org/10.1016/j.coco.2022.101429
- J. Liu, H.B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14(45), e1802479 (2018). https://doi.org/10.1002/smll.201802479
- L. Ma, M. Hamidinejad, B. Zhao, C.Y. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14(1), 19 (2021). https://doi.org/10.1007/s40820-021-00759-4
- Z.X. Xie, Y.F. Cai, Z.J. Wei, Y.H. Zhan, Y.Y. Meng et al., Robust and self-healing polydimethylsiloxane/carbon nanotube foams for electromagnetic interference shielding and thermal insulation. Compos. Commun. 35, 101323 (2022). https://doi.org/10.1016/j.coco.2022.101323
- Z.B. Jiao, W.J. Huyan, F. Yang, J.R. Yao, R.Y. Tan et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14(1), 173 (2022). https://doi.org/10.1007/s40820-022-00904-7
- Q.Y. Li, M.L. Liu, B.C. Zhong, W.Q. Zhang, Z.X. Jia et al., Tetramethylammonium hydroxide modified MXene as a functional nanofiller for electrical and thermal conductive rubber composites. Compos. Commun. 34, 101249 (2022). https://doi.org/10.1016/j.coco.2022.101249
- T.Z. Zhou, Y.Z. Yu, B. He, Z. Wang, T. Xiong et al., Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat. Commun. 13(1), 4564 (2022). https://doi.org/10.1038/s41467-022-32361-6
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14(1), 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- X.Q. Yang, Y.F. Zhang, J.M. Luo, R. Tusiime, C.Z. Lu et al., Fe3O4 uniformly decorated reduced graphene oxide aerogel for epoxy nanocomposites with high emi shielding performance. Compos. Commun. 36, 101391 (2022). https://doi.org/10.1016/j.coco.2022.101391
- H. Liu, X.Y. Chen, Y.J. Zheng, D.B. Zhang, Y. Zhao et al., Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 31(13), 2008006 (2021). https://doi.org/10.1002/adfm.202008006
- Y. Yang, W. Fan, S.J. Yuan, J. Tian, G.J. Chao et al., A 3D-printed integrated MXene-based evaporator with a vertical array structure for salt-resistant solar desalination. J. Mater. Chem. A 9(42), 23968–23976 (2021). https://doi.org/10.1039/d1ta07225k
- J.J. Liu, W.J. Yang, Y. Xu, A.C.Y. Yuen, T.B.Y. Chen et al., MXene-based films via scalable fabrication with improved mechanical and antioxidant properties for electromagnetic interference shielding. Compos. Commun. 31, 101112 (2022). https://doi.org/10.1016/j.coco.2022.101112
- T.Y. Zhu, Q.C. Feng, K.N. Wan, C. Zhang, B. Li et al., Articular cartilage-inspired 3D superelastic and fatigue-resistant spongy conductors against harsh environments. Sci. China Mater. (2022). https://doi.org/10.1007/s40843-022-2262-7
- Z.M. Deng, P.P. Tang, X.Y. Wu, H.B. Zhang, Z.Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
- X.L. Li, X.W. Yin, H.L. Xu, M.K. Han, M.H. Li et al., Ultralight mxene-coated, interconnected sicnws three-dimensional lamellar foams for efficient microwave absorption in the x-band. ACS Appl. Mater. Interfaces 10(40), 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
- K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics i alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941). https://doi.org/10.1063/1.1750906
- Y.M. Huangfu, K.P. Ruan, H. Qiu, Y.J. Lu, C.B. Liang et al., Fabrication and investigation on the PANi/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Part A Appl. Sci. Manuf. 121, 265–272 (2019). https://doi.org/10.1016/j.compositesa.2019.03.041
- Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
- X.Y. Pei, G.D. Liu, R.Q. Shao, R.R. Yu, R.X. Chen et al., 3D-printing carbon nanotubes/Ti3C2Tx/chitosan composites with different arrangement structures based on ball milling for emi shielding. J. Appl. Polym. Sci. 139(45), e53125 (2022). https://doi.org/10.1002/app.53125
- B. Shen, Y. Li, W.T. Zhai, W.G. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
- Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong et al., Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115, 629–639 (2017). https://doi.org/10.1016/j.carbon.2017.01.054
- Z.M. Fan, D.L. Wang, Y. Yuan, Y.S. Wang, Z.J. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
- B. Shen, W.T. Zhai, M.M. Tao, J.Q. Ling, W.G. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383–11391 (2013). https://doi.org/10.1021/am4036527
- Y.Y. Wang, W.J. Sun, D.X. Yan, K. Dai, Z.M. Li, Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 176, 118–125 (2021). https://doi.org/10.1016/j.carbon.2020.12.028
- Z. Yu, T.W. Dai, S.W. Yuan, H.W. Zou, P.B. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
- X.H. Li, X.F. Li, K.N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
- Z.H. Zeng, C.X. Wang, Y.F. Zhang, P.Y. Wang, S.I. Seyed Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10(9), 8205–8213 (2018). https://doi.org/10.1021/acsami.7b19427
- B.H. Xia, X.H. Zhang, J. Jiang, Y. Wang, T. Li et al., Facile preparation of high strength, lightweight and thermal insulation polyetherimide/Ti3C2Tx MXenes/Ag nanops composite foams for electromagnetic interference shielding. Compos. Commun. 29, 101028 (2022). https://doi.org/10.1016/j.coco.2021.101028
References
J. Liu, H.B. Zhang, R.H. Sun, Y.F. Liu, Z.S. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
J.Y. Zong, X.J. Zhou, Y.F. Hu, T.B. Yang, D.X. Yan et al., A wearable multifunctional fabric with excellent electromagnetic interference shielding and passive radiation heating performance. Compos. Part B Eng. 225, 109299 (2021). https://doi.org/10.1016/j.compositesb.2021.109299
R. Baan, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard et al., Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 12(7), 624–626 (2011). https://doi.org/10.1016/s1470-2045(11)70147-4
X.F. Liu, Y. Li, X. Sun, W.K. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
Y.L. Zhang, J.W. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14(1), 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014). https://doi.org/10.1002/adma.201305293
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
M.L. Cheng, M.F. Ying, R.Z. Zhao, L.Z. Ji, H.X. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16(10), 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B. Shen et al., Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 177, 377–402 (2021). https://doi.org/10.1016/j.carbon.2021.02.047
L. Wang, Z.L. Ma, H. Qiu, Y.L. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14(1), 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
Q.F. Guan, Z.M. Han, K.P. Yang, H.B. Yang, Z.C. Ling et al., Sustainable double-network structural materials for electromagnetic shielding. Nano Lett. 21(6), 2532–2537 (2021). https://doi.org/10.1021/acs.nanolett.0c05081
Y.A. Chen, P. Potschke, J. Pionteck, B. Voit, H.S. Qi, Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12(19), 22088–22098 (2020). https://doi.org/10.1021/acsami.9b23052
F. Pan, Y.P. Rao, D. Batalu, L. Cai, Y.Y. Dong et al., Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 14(1), 140 (2022). https://doi.org/10.1007/s40820-022-00869-7
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
Z.H. Zeng, T.T. Wu, D.X. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
Y.D. Xu, Y.Q. Yang, D.X. Yan, H.J. Duan, G.Z. Zhao et al., Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl. Mater. Interfaces 10(22), 19143–19152 (2018). https://doi.org/10.1021/acsami.8b05129
Y.Q. Hu, C. Hou, Y.X. Shi, J.M. Wu, D. Yang et al., Freestanding Fe3O4/Ti3C2Tx MXene/polyurethane composite film with efficient electromagnetic shielding and ultra-stretchable performance. Nanotechnology 33(16), 165603 (2022). https://doi.org/10.1088/1361-6528/ac4878
B. Xue, Y. Li, Z.L. Cheng, S.D. Yang, L. Xie et al., Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 14(1), 16 (2021). https://doi.org/10.1007/s40820-021-00743-y
Z.M. Lei, D.K. Tian, X.B. Liu, J.H. Wei, K. Rajavel et al., Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity. Chem. Eng. J. 424, 130365 (2021). https://doi.org/10.1016/j.cej.2021.130365
J.M. Yang, X. Liao, G. Wang, J. Chen, F.M. Guo et al., Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 390, 124589 (2020). https://doi.org/10.1016/j.cej.2020.124589
A. Bandyopadhyay, B. Heer, Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 129, 1–16 (2018). https://doi.org/10.1016/j.mser.2018.04.001
L.A.E. Müller, T. Zimmermann, G. Nyström, I. Burgert, G. Siqueira, Mechanical properties tailoring of 3D printed photoresponsive nanocellulose composites. Adv. Funct. Mater. 30(35), 2002914 (2020). https://doi.org/10.1002/adfm.202002914
R.S. Ambekar, B. Kushwaha, P. Sharma, F. Bosia, M. Fraldi et al., Topologically engineered 3D printed architectures with superior mechanical strength. Mater. Today 48, 72–94 (2021). https://doi.org/10.1016/j.mattod.2021.03.014
J.Z. Feng, B.L. Su, H.S. Xia, S.Y. Zhao, C. Gao et al., Printed aerogels: Chemistry, processing, and applications. Chem. Soc. Rev. 50(6), 3842–3888 (2021). https://doi.org/10.1039/c9cs00757a
W. Zong, N.B. Chui, Z.H. Tian, Y.T. Li, C. Yang et al., Ultrafine MOP nanop splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors. Adv. Sci. 8(7), 2004142 (2021). https://doi.org/10.1002/advs.202004142
Y. Kwon, S.E. Seo, J. Lee, S. Berezvai, J. Read de Alaniz et al., 3D-printed polymer foams maintain stiffness and energy dissipation under repeated loading. Compos. Commun. (2022). https://doi.org/10.1016/j.coco.2022.101453
L. Pu, Y.P. Liu, L. Li, C. Zhang, P.M. Ma et al., Polyimide nanofiber-reinforced Ti3C2Tx aerogel with “lamella-pillar” microporosity for high-performance piezoresistive strain sensing and electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13(39), 47134–47146 (2021). https://doi.org/10.1021/acsami.1c13863
C.H. Lin, S.H. Luo, F.C. Meng, B. Xu, T. Long et al., MXene/air-laid paper composite sensors for both tensile and torsional deformations detection. Compos. Commun. 25, 100768 (2021). https://doi.org/10.1016/j.coco.2021.100768
T.T. Xue, C.Y. Zhu, X.L. Feng, Q. Wali, W. Fan et al., Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv. Fiber Mater. 4(5), 1118–1128 (2022). https://doi.org/10.1007/s42765-022-00145-8
J. Tian, Y. Yang, T.T. Xue, G.J. Chao, W. Fan et al., Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J. Mater. Sci. Technol. 105, 194–202 (2022). https://doi.org/10.1016/j.jmst.2021.07.030
C.Y. Zhu, F. Yang, T.T. Xue, Q. Wali, W. Fan et al., Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal. Sep. Purif. Technol. 300, 121881 (2022). https://doi.org/10.1016/j.seppur.2022.121881
H.C. Lu, Z.H. Xia, X.J. Zheng, Q.Y. Mi, J.M. Zhang et al., Patternable cellulose/MWCNT laminated nanocomposites with anisotropic thermal and electrical conductivity. Compos. Commun. 26, 100786 (2021). https://doi.org/10.1016/j.coco.2021.100786
D. Wang, Y.D. Peng, J.C. Dong, L. Pu, K.Q. Chang et al., Hierarchically porous polyimide aerogel fibers based on the confinement of Ti3C2Tx flakes for thermal insulation and fire retardancy. Compos. Commun. 37, 101429 (2023). https://doi.org/10.1016/j.coco.2022.101429
J. Liu, H.B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14(45), e1802479 (2018). https://doi.org/10.1002/smll.201802479
L. Ma, M. Hamidinejad, B. Zhao, C.Y. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14(1), 19 (2021). https://doi.org/10.1007/s40820-021-00759-4
Z.X. Xie, Y.F. Cai, Z.J. Wei, Y.H. Zhan, Y.Y. Meng et al., Robust and self-healing polydimethylsiloxane/carbon nanotube foams for electromagnetic interference shielding and thermal insulation. Compos. Commun. 35, 101323 (2022). https://doi.org/10.1016/j.coco.2022.101323
Z.B. Jiao, W.J. Huyan, F. Yang, J.R. Yao, R.Y. Tan et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14(1), 173 (2022). https://doi.org/10.1007/s40820-022-00904-7
Q.Y. Li, M.L. Liu, B.C. Zhong, W.Q. Zhang, Z.X. Jia et al., Tetramethylammonium hydroxide modified MXene as a functional nanofiller for electrical and thermal conductive rubber composites. Compos. Commun. 34, 101249 (2022). https://doi.org/10.1016/j.coco.2022.101249
T.Z. Zhou, Y.Z. Yu, B. He, Z. Wang, T. Xiong et al., Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat. Commun. 13(1), 4564 (2022). https://doi.org/10.1038/s41467-022-32361-6
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14(1), 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
X.Q. Yang, Y.F. Zhang, J.M. Luo, R. Tusiime, C.Z. Lu et al., Fe3O4 uniformly decorated reduced graphene oxide aerogel for epoxy nanocomposites with high emi shielding performance. Compos. Commun. 36, 101391 (2022). https://doi.org/10.1016/j.coco.2022.101391
H. Liu, X.Y. Chen, Y.J. Zheng, D.B. Zhang, Y. Zhao et al., Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 31(13), 2008006 (2021). https://doi.org/10.1002/adfm.202008006
Y. Yang, W. Fan, S.J. Yuan, J. Tian, G.J. Chao et al., A 3D-printed integrated MXene-based evaporator with a vertical array structure for salt-resistant solar desalination. J. Mater. Chem. A 9(42), 23968–23976 (2021). https://doi.org/10.1039/d1ta07225k
J.J. Liu, W.J. Yang, Y. Xu, A.C.Y. Yuen, T.B.Y. Chen et al., MXene-based films via scalable fabrication with improved mechanical and antioxidant properties for electromagnetic interference shielding. Compos. Commun. 31, 101112 (2022). https://doi.org/10.1016/j.coco.2022.101112
T.Y. Zhu, Q.C. Feng, K.N. Wan, C. Zhang, B. Li et al., Articular cartilage-inspired 3D superelastic and fatigue-resistant spongy conductors against harsh environments. Sci. China Mater. (2022). https://doi.org/10.1007/s40843-022-2262-7
Z.M. Deng, P.P. Tang, X.Y. Wu, H.B. Zhang, Z.Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
X.L. Li, X.W. Yin, H.L. Xu, M.K. Han, M.H. Li et al., Ultralight mxene-coated, interconnected sicnws three-dimensional lamellar foams for efficient microwave absorption in the x-band. ACS Appl. Mater. Interfaces 10(40), 34524–34533 (2018). https://doi.org/10.1021/acsami.8b13658
K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics i alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941). https://doi.org/10.1063/1.1750906
Y.M. Huangfu, K.P. Ruan, H. Qiu, Y.J. Lu, C.B. Liang et al., Fabrication and investigation on the PANi/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Part A Appl. Sci. Manuf. 121, 265–272 (2019). https://doi.org/10.1016/j.compositesa.2019.03.041
Z.H. Zeng, H. Jin, M.J. Chen, W.W. Li, L.C. Zhou et al., Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303–310 (2016). https://doi.org/10.1002/adfm.201503579
X.Y. Pei, G.D. Liu, R.Q. Shao, R.R. Yu, R.X. Chen et al., 3D-printing carbon nanotubes/Ti3C2Tx/chitosan composites with different arrangement structures based on ball milling for emi shielding. J. Appl. Polym. Sci. 139(45), e53125 (2022). https://doi.org/10.1002/app.53125
B. Shen, Y. Li, W.T. Zhai, W.G. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong et al., Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115, 629–639 (2017). https://doi.org/10.1016/j.carbon.2017.01.054
Z.M. Fan, D.L. Wang, Y. Yuan, Y.S. Wang, Z.J. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
B. Shen, W.T. Zhai, M.M. Tao, J.Q. Ling, W.G. Zheng, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383–11391 (2013). https://doi.org/10.1021/am4036527
Y.Y. Wang, W.J. Sun, D.X. Yan, K. Dai, Z.M. Li, Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 176, 118–125 (2021). https://doi.org/10.1016/j.carbon.2020.12.028
Z. Yu, T.W. Dai, S.W. Yuan, H.W. Zou, P.B. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
X.H. Li, X.F. Li, K.N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
Z.H. Zeng, C.X. Wang, Y.F. Zhang, P.Y. Wang, S.I. Seyed Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10(9), 8205–8213 (2018). https://doi.org/10.1021/acsami.7b19427
B.H. Xia, X.H. Zhang, J. Jiang, Y. Wang, T. Li et al., Facile preparation of high strength, lightweight and thermal insulation polyetherimide/Ti3C2Tx MXenes/Ag nanops composite foams for electromagnetic interference shielding. Compos. Commun. 29, 101028 (2022). https://doi.org/10.1016/j.coco.2021.101028