Charge Engineering of Mo2C@Defect-Rich N-Doped Carbon Nanosheets for Efficient Electrocatalytic H2 Evolution
Corresponding Author: Yongpeng Lei
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 45
Abstract
Charge engineering of carbon materials with many defects shows great potential in electrocatalysis, and molybdenum carbide (Mo2C) is one of the noble-metal-free electrocatalysts with the most potential. Herein, we study the Mo2C on pyridinic nitrogen-doped defective carbon sheets (MoNCs) as catalysts for the hydrogen evolution reaction. Theoretical calculations imply that the introduction of Mo2C produces a graphene wave structure, which in some senses behaves like N doping to form localized charges. Being an active electrocatalyst, MoNCs demonstrate a Tafel slope as low as 60.6 mV dec−1 and high durability of up to 10 h in acidic media. Besides charge engineering, plentiful defects and hierarchical morphology also contribute to good performance. This work underlines the importance of charge engineering to boost catalytic performance.
Highlights:
1 The Mo2C modified carbon nanosheets produce a graphene wave structure to form localized charges and further enhance the N-doping effect.
2 The optimal sample shows a Tafel slope as low as 60.6 mV dec−1 and high durability up to 10 h in acidic media.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Shi, K. Nie, Z.J. Shao, B. Gao, H. Lin et al., Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy Environ. Sci. 10, 1262–1271 (2017). https://doi.org/10.1039/C7EE00388A
- C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 54, 9351–9355 (2015). https://doi.org/10.1002/anie.201503407
- Y. Fang, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W.A. Goddardlll, S. Chen, Z. Ren, High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
- Z.L. Chen, H. Yuan, Y. Liu, H. Wang, H.Y. Yang, H.B. Xu, Y.J. Li, R.B. Wu, In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces. 10, 7134–7144 (2018). https://doi.org/10.1021/acsami.7b18858
- W. Ma, R. Ma, J. Wu, P. Sun, X. Liu, K. Zhou, T. Sasaki, Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene. Nanoscale 8, 10425–10432 (2016). https://doi.org/10.1039/C6NR00988C
- G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen, B. Wu, A. Pan, S. Liang, Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 9b00816 (2019). https://doi.org/10.1021/acsnano.9b00816
- T. He, H. Xue, X. Wang, S. He, Y. Lei et al., Architecture of CoNx single clusters on nanocarbon as excellent oxygen reduction catalysts with high-efficient atomic utilization. Nanoscale 9, 8341–8348 (2017). https://doi.org/10.1039/C7NR02165H
- H. Zhang, H. Qiao, H. Wang, N. Zhou, J. Chen, Y. Tang, J. Li, C. Huang, Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale 6, 10235–10242 (2014). https://doi.org/10.1039/C4NR02125H
- M. Wang, Z. Fang, K. Zhang, J. Fang, F. Qin, Z. Zhang, J. Li, Y. Liu, Y. Lai, Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: A novel all-carbon hybrid electrocatalyst for metal/air batteries. Nanoscale 8, 11398–11402 (2016). https://doi.org/10.1039/C6NR02622B
- T. Sun, L. Xu, D. Wang, Y. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. (2019). https://doi.org/10.1007/s12274-019-2345-4
- F. Yu, L. Yu, I.K. Mishra, Y. Yu, Z. Ren, H. Zhou, Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 7, 121–138 (2018). https://doi.org/10.1016/j.mtphys.2018.11.007
- R.B. Levy, M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547–549 (1973). https://doi.org/10.1126/science.181.4099.547
- Y. Zhu, G. Chen, X. Xu, G. Yang, M. Liu, Z. Shao, Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons. ACS Catal. 7, 3540–3547 (2017). https://doi.org/10.1021/acscatal.7b00120
- J. Wang, W. Chen, T. Wang, N. Bate, C. Wang, E. Wang, A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Res. 11, 4535–4548 (2018). https://doi.org/10.1007/s12274-018-2034-8
- L. Chen, H. Jiang, H. Jiang, H. Zhang, S. Guo, Y. Hu, C. Li, Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater. 7, 1602782 (2017). https://doi.org/10.1002/aenm.201602782
- L. Zhao, Q. Wang, X. Zhang, C. Deng, Z. Li, Y. Lei, M. Zhu, Combined electron and structure manipulation on Fe containing N-doped CNTs to boost bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interfaces 10, 35888–35895 (2018). https://doi.org/10.1021/acsami.8b09197
- Y. Dong, B. Zeng, J. Xiao, X. Zhang, D. Li, M. Li, J. He, M. Long, Effect of sulphur vacancy and interlayer interaction on the electronic structure and spin splitting of bilayer MoS2. J. Phys. Condens. Mat. 30, 125302 (2018). https://doi.org/10.1088/1361-648X/aaad3b
- Y.Y. Chen, Y. Zhang, W.J. Jiang, X. Zhang, Z. Dai, L.J. Wan, J.S. Hu, Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 10, 8851–8860 (2016). https://doi.org/10.1021/acsnano.6b04725
- N. Han, K.R. Yang, Z. Lu, W. Xu, T. Gao et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
- Y. Bai, H. Huang, C. Wang, R. Long, Y. Xiong, Engineering the surface charge states of nanostructures for enhanced catalytic performance. Mater. Chem. Front. 1, 1951–1964 (2017). https://doi.org/10.1039/C7QM00020K
- W.F. Chen, C.H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J.T. Muckerman, Y. Zhu, R.R. Adzic, Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 6, 943–951 (2013). https://doi.org/10.1039/c2ee23891h
- Y. Lei, Q. Shi, C. Han, B. Wang, N. Wu, H. Wang, Y. Wang, N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production. Nano Res. 9, 2498–2509 (2016). https://doi.org/10.1007/s12274-016-1136-4
- Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. (Advance Article, 2019). https://doi.org/10.1039/C8EE03781G
- L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen et al., Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285–297 (2018). https://doi.org/10.1016/j.chempr.2017.12.005
- Y. Wei, X. Zhang, Z. Luo, D. Tang, C. Chen, T. Zhang, Z. Xie, Nitrogen-doped carbon nanotube supported Pd catalyst for improved electrocatalytic performance towards ethanol electrooxidation. Nano-Micro Lett. 9, 28 (2017). https://doi.org/10.1007/s40820-017-0129-5
- J. Liu, T. He, Q. Wang, Z. Zhou, Y. Zhang et al., Confining ultrasmall bimetal alloys in porous N-Carbon as scalable and sustainable electrocatalysts for rechargeable Zn-air batteries. J. Mater. Chem. A (Advance Article, 2019). https://doi.org/10.1039/C9TA02264C
- Q. Wang, Y. Lei, Y. Zhu, H. Wang, J. Feng et al., Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn-air batteries. ACS Appl. Mater. Interfaces 10, 29448–29456 (2018). https://doi.org/10.1021/acsami.8b07863
- W. Gao, Y. Shi, Y. Zhang, L. Zuo, H. Lu, Y. Huang, W. Fan, T. Liu, Molybdenum carbide anchored on graphene nanoribbons as highly efficient all-pH hydrogen evolution reaction electrocatalyst. ACS Sustain. Chem. Eng. 4, 6313–6321 (2016). https://doi.org/10.1021/acssuschemeng.6b00859
- G. Kresse, J. Hafner, Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558
- G. Kresse, J. Hafner, Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251
- G. Kresse, J. Furthmüller, Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J. Jia, W. Zhou, Z. Wei, T. Xiong, G. Li et al., Molybdenum carbide on hierarchical porous carbon synthesized from Cu–MoO2 as efficient electrocatalysts for electrochemical hydrogen generation. Nano Energy 41, 749–757 (2017). https://doi.org/10.1016/j.nanoen.2017.10.030
- J.R. Dos Santos Politi, F. Viñes, J.A. Rodriguez, F. Illas, Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces. Phys. Chem. Chem. Phys. 15, 12617–12625 (2013). https://doi.org/10.1039/c3cp51389k
- J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu, R. Hu, J. Zhou, W. Zhou, S. Chen, Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11, 12509–12518 (2017). https://doi.org/10.1021/acsnano.7b06607
- K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970
- F.X. Ma, H.B. Wu, B.Y. Xia, C.Y. Xu, X.W.D. Lou, Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem. Int. Ed. 54, 15395–15399 (2015). https://doi.org/10.1002/anie.201508715
- S. Zhou, G. Zhou, S. Jiang, P. Fan, H. Hou, Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity. Mater. Lett. 200, 97–100 (2017). https://doi.org/10.1016/j.matlet.2017.04.115
- M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117
- Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batteries. ACS Energy Lett. 3, 1183–1191 (2018). https://doi.org/10.1021/acsenergylett.8b00303
- C. Liu, F. Wang, J. Zhang, K. Wang, Y. Qiu, Q. Liang, Z. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10, 37 (2018). https://doi.org/10.1007/s40820-018-0192-6
- J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova, M. Jaroniec, S.Z. Qiao, Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem. Int. Ed. 51, 3892–3896 (2012). https://doi.org/10.1002/anie.201107981
- Q. Wang, Y. Lei, Z. Chen, N. Wu, Y. Wang, B. Wang, Y. Wang, Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J. Mater. Chem. A 6, 516–526 (2018). https://doi.org/10.1039/C7TA08423D
- N. Wang, T. Hang, D. Chu, M. Li, Three dimensional hierarchical nanostructured Cu/Ni-Co coating electrode for hydrogen evolution reaction in alkaline media. Nano-Micro Lett. 7, 347–352 (2015). https://doi.org/10.1007/s40820-015-0049-1
- Z. Chen, Q. Wang, X. Zhang, Y. Lei, W. Hu, Y. Luo, Y. Wang, N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries. Sci. Bull. 63, 548–555 (2018). https://doi.org/10.1016/j.scib.2018.04.003
- G. Duan, H. Fang, C. Huang, S. Jiang, H. Hou, Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J. Mater. Sci. 53, 15096–15106 (2018). https://doi.org/10.1007/s10853-018-2700-y
- P. Xiao, Y. Yan, X. Ge, Z. Liu, J.Y. Wang, X. Wang, Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media. Appl. Catal. B Environ. 154–155, 232–237 (2014). https://doi.org/10.1016/j.apcatb.2014.02.020
- Y.J. Tang, M.R. Gao, C.H. Liu, S.L. Li, H.L. Jiang, Y.Q. Lan, M. Han, S.H. Yu, Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 54, 12928–12932 (2015). https://doi.org/10.1002/anie.201505691
- Y. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137, 110–113 (2014). https://doi.org/10.1021/ja5114529
- Y. Liu, G. Yu, G.D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew. Chem. Int. Ed. 54, 10752–10757 (2015). https://doi.org/10.1002/anie.201504376
- C. Lu, D. Tranca, J. Zhang, F.N. Rodrı́guez Hernández, Y. Su, X. Zhuang, F. Zhang, G. Seifert, X. Feng, Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano 11, 3933–3942 (2017). https://doi.org/10.1021/acsnano.7b00365
- W.F. Chen, J.T. Muckerman, E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49, 8896–8909 (2013). https://doi.org/10.1039/c3cc44076a
- C. Tang, W. Wang, A. Sun, C. Qi, D. Zhang, Z. Wu, D. Wang, Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution. ACS Catal. 5, 6956–6963 (2015). https://doi.org/10.1021/acscatal.5b01803
References
Z. Shi, K. Nie, Z.J. Shao, B. Gao, H. Lin et al., Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy Environ. Sci. 10, 1262–1271 (2017). https://doi.org/10.1039/C7EE00388A
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 54, 9351–9355 (2015). https://doi.org/10.1002/anie.201503407
Y. Fang, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W.A. Goddardlll, S. Chen, Z. Ren, High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
Z.L. Chen, H. Yuan, Y. Liu, H. Wang, H.Y. Yang, H.B. Xu, Y.J. Li, R.B. Wu, In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl. Mater. Interfaces. 10, 7134–7144 (2018). https://doi.org/10.1021/acsami.7b18858
W. Ma, R. Ma, J. Wu, P. Sun, X. Liu, K. Zhou, T. Sasaki, Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene. Nanoscale 8, 10425–10432 (2016). https://doi.org/10.1039/C6NR00988C
G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen, B. Wu, A. Pan, S. Liang, Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 9b00816 (2019). https://doi.org/10.1021/acsnano.9b00816
T. He, H. Xue, X. Wang, S. He, Y. Lei et al., Architecture of CoNx single clusters on nanocarbon as excellent oxygen reduction catalysts with high-efficient atomic utilization. Nanoscale 9, 8341–8348 (2017). https://doi.org/10.1039/C7NR02165H
H. Zhang, H. Qiao, H. Wang, N. Zhou, J. Chen, Y. Tang, J. Li, C. Huang, Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale 6, 10235–10242 (2014). https://doi.org/10.1039/C4NR02125H
M. Wang, Z. Fang, K. Zhang, J. Fang, F. Qin, Z. Zhang, J. Li, Y. Liu, Y. Lai, Synergistically enhanced activity of graphene quantum dots/graphene hydrogel composites: A novel all-carbon hybrid electrocatalyst for metal/air batteries. Nanoscale 8, 11398–11402 (2016). https://doi.org/10.1039/C6NR02622B
T. Sun, L. Xu, D. Wang, Y. Li, Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. (2019). https://doi.org/10.1007/s12274-019-2345-4
F. Yu, L. Yu, I.K. Mishra, Y. Yu, Z. Ren, H. Zhou, Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 7, 121–138 (2018). https://doi.org/10.1016/j.mtphys.2018.11.007
R.B. Levy, M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547–549 (1973). https://doi.org/10.1126/science.181.4099.547
Y. Zhu, G. Chen, X. Xu, G. Yang, M. Liu, Z. Shao, Enhancing electrocatalytic activity for hydrogen evolution by strongly coupled molybdenum nitride@nitrogen-doped carbon porous nano-octahedrons. ACS Catal. 7, 3540–3547 (2017). https://doi.org/10.1021/acscatal.7b00120
J. Wang, W. Chen, T. Wang, N. Bate, C. Wang, E. Wang, A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Res. 11, 4535–4548 (2018). https://doi.org/10.1007/s12274-018-2034-8
L. Chen, H. Jiang, H. Jiang, H. Zhang, S. Guo, Y. Hu, C. Li, Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis. Adv. Energy Mater. 7, 1602782 (2017). https://doi.org/10.1002/aenm.201602782
L. Zhao, Q. Wang, X. Zhang, C. Deng, Z. Li, Y. Lei, M. Zhu, Combined electron and structure manipulation on Fe containing N-doped CNTs to boost bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interfaces 10, 35888–35895 (2018). https://doi.org/10.1021/acsami.8b09197
Y. Dong, B. Zeng, J. Xiao, X. Zhang, D. Li, M. Li, J. He, M. Long, Effect of sulphur vacancy and interlayer interaction on the electronic structure and spin splitting of bilayer MoS2. J. Phys. Condens. Mat. 30, 125302 (2018). https://doi.org/10.1088/1361-648X/aaad3b
Y.Y. Chen, Y. Zhang, W.J. Jiang, X. Zhang, Z. Dai, L.J. Wan, J.S. Hu, Pomegranate-like N, P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 10, 8851–8860 (2016). https://doi.org/10.1021/acsnano.6b04725
N. Han, K.R. Yang, Z. Lu, W. Xu, T. Gao et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
Y. Bai, H. Huang, C. Wang, R. Long, Y. Xiong, Engineering the surface charge states of nanostructures for enhanced catalytic performance. Mater. Chem. Front. 1, 1951–1964 (2017). https://doi.org/10.1039/C7QM00020K
W.F. Chen, C.H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J.T. Muckerman, Y. Zhu, R.R. Adzic, Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 6, 943–951 (2013). https://doi.org/10.1039/c2ee23891h
Y. Lei, Q. Shi, C. Han, B. Wang, N. Wu, H. Wang, Y. Wang, N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production. Nano Res. 9, 2498–2509 (2016). https://doi.org/10.1007/s12274-016-1136-4
Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. (Advance Article, 2019). https://doi.org/10.1039/C8EE03781G
L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen et al., Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285–297 (2018). https://doi.org/10.1016/j.chempr.2017.12.005
Y. Wei, X. Zhang, Z. Luo, D. Tang, C. Chen, T. Zhang, Z. Xie, Nitrogen-doped carbon nanotube supported Pd catalyst for improved electrocatalytic performance towards ethanol electrooxidation. Nano-Micro Lett. 9, 28 (2017). https://doi.org/10.1007/s40820-017-0129-5
J. Liu, T. He, Q. Wang, Z. Zhou, Y. Zhang et al., Confining ultrasmall bimetal alloys in porous N-Carbon as scalable and sustainable electrocatalysts for rechargeable Zn-air batteries. J. Mater. Chem. A (Advance Article, 2019). https://doi.org/10.1039/C9TA02264C
Q. Wang, Y. Lei, Y. Zhu, H. Wang, J. Feng et al., Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn-air batteries. ACS Appl. Mater. Interfaces 10, 29448–29456 (2018). https://doi.org/10.1021/acsami.8b07863
W. Gao, Y. Shi, Y. Zhang, L. Zuo, H. Lu, Y. Huang, W. Fan, T. Liu, Molybdenum carbide anchored on graphene nanoribbons as highly efficient all-pH hydrogen evolution reaction electrocatalyst. ACS Sustain. Chem. Eng. 4, 6313–6321 (2016). https://doi.org/10.1021/acssuschemeng.6b00859
G. Kresse, J. Hafner, Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558
G. Kresse, J. Hafner, Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251
G. Kresse, J. Furthmüller, Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J. Jia, W. Zhou, Z. Wei, T. Xiong, G. Li et al., Molybdenum carbide on hierarchical porous carbon synthesized from Cu–MoO2 as efficient electrocatalysts for electrochemical hydrogen generation. Nano Energy 41, 749–757 (2017). https://doi.org/10.1016/j.nanoen.2017.10.030
J.R. Dos Santos Politi, F. Viñes, J.A. Rodriguez, F. Illas, Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces. Phys. Chem. Chem. Phys. 15, 12617–12625 (2013). https://doi.org/10.1039/c3cp51389k
J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu, R. Hu, J. Zhou, W. Zhou, S. Chen, Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11, 12509–12518 (2017). https://doi.org/10.1021/acsnano.7b06607
K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970
F.X. Ma, H.B. Wu, B.Y. Xia, C.Y. Xu, X.W.D. Lou, Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem. Int. Ed. 54, 15395–15399 (2015). https://doi.org/10.1002/anie.201508715
S. Zhou, G. Zhou, S. Jiang, P. Fan, H. Hou, Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity. Mater. Lett. 200, 97–100 (2017). https://doi.org/10.1016/j.matlet.2017.04.115
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117
Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batteries. ACS Energy Lett. 3, 1183–1191 (2018). https://doi.org/10.1021/acsenergylett.8b00303
C. Liu, F. Wang, J. Zhang, K. Wang, Y. Qiu, Q. Liang, Z. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10, 37 (2018). https://doi.org/10.1007/s40820-018-0192-6
J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova, M. Jaroniec, S.Z. Qiao, Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem. Int. Ed. 51, 3892–3896 (2012). https://doi.org/10.1002/anie.201107981
Q. Wang, Y. Lei, Z. Chen, N. Wu, Y. Wang, B. Wang, Y. Wang, Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J. Mater. Chem. A 6, 516–526 (2018). https://doi.org/10.1039/C7TA08423D
N. Wang, T. Hang, D. Chu, M. Li, Three dimensional hierarchical nanostructured Cu/Ni-Co coating electrode for hydrogen evolution reaction in alkaline media. Nano-Micro Lett. 7, 347–352 (2015). https://doi.org/10.1007/s40820-015-0049-1
Z. Chen, Q. Wang, X. Zhang, Y. Lei, W. Hu, Y. Luo, Y. Wang, N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries. Sci. Bull. 63, 548–555 (2018). https://doi.org/10.1016/j.scib.2018.04.003
G. Duan, H. Fang, C. Huang, S. Jiang, H. Hou, Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J. Mater. Sci. 53, 15096–15106 (2018). https://doi.org/10.1007/s10853-018-2700-y
P. Xiao, Y. Yan, X. Ge, Z. Liu, J.Y. Wang, X. Wang, Investigation of molybdenum carbide nano-rod as an efficient and durable electrocatalyst for hydrogen evolution in acidic and alkaline media. Appl. Catal. B Environ. 154–155, 232–237 (2014). https://doi.org/10.1016/j.apcatb.2014.02.020
Y.J. Tang, M.R. Gao, C.H. Liu, S.L. Li, H.L. Jiang, Y.Q. Lan, M. Han, S.H. Yu, Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew. Chem. Int. Ed. 54, 12928–12932 (2015). https://doi.org/10.1002/anie.201505691
Y. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137, 110–113 (2014). https://doi.org/10.1021/ja5114529
Y. Liu, G. Yu, G.D. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew. Chem. Int. Ed. 54, 10752–10757 (2015). https://doi.org/10.1002/anie.201504376
C. Lu, D. Tranca, J. Zhang, F.N. Rodrı́guez Hernández, Y. Su, X. Zhuang, F. Zhang, G. Seifert, X. Feng, Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano 11, 3933–3942 (2017). https://doi.org/10.1021/acsnano.7b00365
W.F. Chen, J.T. Muckerman, E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49, 8896–8909 (2013). https://doi.org/10.1039/c3cc44076a
C. Tang, W. Wang, A. Sun, C. Qi, D. Zhang, Z. Wu, D. Wang, Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution. ACS Catal. 5, 6956–6963 (2015). https://doi.org/10.1021/acscatal.5b01803