Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering
Corresponding Author: Rajender S. Varma
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 182
Abstract
Efficient strategies to promote microvascularization in vascular tissue engineering, a central priority in regenerative medicine, are still scarce; nano- and micro-sized aggregates and spheres or beads harboring primitive microvascular beds are promising methods in vascular tissue engineering. Capillaries are the smallest type and in numerous blood vessels, which are distributed densely in cardiovascular system. To mimic this microvascular network, specific cell components and proangiogenic factors are required. Herein, advanced biofabrication methods in microvascular engineering, including extrusion-based and droplet-based bioprinting, Kenzan, and biogripper approaches, are deliberated with emphasis on the newest works in prevascular nano- and micro-sized aggregates and microspheres/microbeads.
Highlights:
1 The first perspective regarding the application of nano-micro size aggregations on the prevascularizations and biomedicine.
2 This perspective provides an in-depth discussion regarding the use of these prevascularized nano-micro size aggregates in biomedicine and regenerative medicine.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.K. Gale, A.R. Jafek, C.J. Lambert, B.L. Goenner, H. Moghimifam et al., A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3(3), 60 (2018). https://doi.org/10.3390/inventions3030060
- K. Ren, J. Zhou, H.K. Wu, Materials for microfluidic chip fabrication. Acc. Chem. Res. 46(11), 2396–2406 (2013). https://doi.org/10.1021/ar300314s
- R. Riahi, A. Tamayol, S.A.M. Shaegh, A.M. Ghaemmaghami, M.R. Dokmeci et al., Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 7, 101–112 (2015). https://doi.org/10.1016/j.coche.2014.12.001
- A.K. Au, W. Huynh, L.F. Horowitz, A. Folch, 3d-printed microfluidics. Angew. Chem. Int. Ed. 55(12), 3862–3881 (2016). https://doi.org/10.1002/anie.201504382
- A. Hasan, A. Paul, N.E. Vrana, X. Zhao, A. Memic et al., Microfluidic techniques for development of 3d vascularized tissue. Biomaterials 35(26), 7308–7325 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.091
- R.W. Barrs, J. Jia, S.E. Silver, M. Yost, Y. Mei, Biomaterials for bioprinting microvasculature. Chem. Rev. 120(19), 10887–10949 (2020). https://doi.org/10.1021/acs.chemrev.0c00027
- Y.S. Zhang, A. Khademhosseini, Vascular tissue engineering: the role of 3d bioprinting. Tissue Eng. Vas. Grafts 321–338 (2020). doi: https://doi.org/10.1007/978-3-030-05336-9_11
- L. Shao, Q. Gao, C. Xie, J. Fu, M. Xiang et al., Directly coaxial 3d bioprinting of large-scale vascularized tissue constructs. Biofabrication 12(3), 035014 (2020). https://doi.org/10.1088/1758-5090/ab7e76
- Y. Wu, Y. Zhang, Y. Yu, I.T. Ozbolat, in 3D Coaxial Bioprinting of Vasculature. ed.by (Springer; 2020), pp. 171–181. https://doi.org/10.1007/978-1-0716-0520-2_11
- S.F. Parsa, A. Vafajoo, A. Rostami, R. Salarian, M. Rabiee et al., Early diagnosis of disease using microbead array technology: a review. Anal. Chim. Acta 1032, 1–17 (2018). https://doi.org/10.1016/j.aca.2018.05.011
- E.P. Chen, Z. Toksoy, B.A. Davis, J. Geibel, Biotechnology. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Front. Bioeng. Biotech. 9, 326 (2021). https://doi.org/10.3389/fbioe.2021.664188
- B. Zhang, Y. Luo, L. Ma, L. Gao, Y. Li et al., Manufacturing. 3D bioprinting: An emerging technology full of opportunities and challenges. Bio-des. Manuf. 1(1), 2–13 (2018). https://doi.org/10.1007/s42242-018-0004-3
- S. Hajebi, N. Rabiee, M. Bagherzadeh, S. Ahmadi, M. Rabiee et al., Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 92, 1–18 (2019). https://doi.org/10.1016/j.actbio.2019.05.018
- K. Lee, E.A. Silva, D. Mooney, Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8(55), 153–170 (2011). https://doi.org/10.1098/rsif.2010.0223
- L.M.C. Aguilar, S.M. Silva, S. Moulton, Growth factor delivery: Defining the next generation platforms for tissue engineering. J. Control. Release 306, 40–58 (2019). https://doi.org/10.1016/j.jconrel.2019.05.028
- M.R. Casanova, C. Oliveira, E.M. Fernandes, R.L. Reis, T.H. Silva et al., Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomater. Sci. 8(9), 2577–2589 (2020). https://doi.org/10.1039/D0BM00087F
- S. Toosi, J. Behravan, Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Adv. Drug Delivery Rev. 46(3), 326–340 (2020). https://doi.org/10.1002/biof.1598
- R. Burdis, D.J. Kelly, Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues. Acta Biomater. (Accepted, 2021). https://doi.org/10.2139/ssrn.3739622
- G. Nilsson Hall, L.F. Mendes, C. Gklava, L. Geris, F.P. Luyten et al., Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing. Adv. Sci. 7(2), 1902295 (2020). https://doi.org/10.1002/advs.201902295
- J. Rouwkema, B.F. Koopman, C.A.V. Blitterswijk, W.J. Dhert, J. Malda, Supply of nutrients to cells in engineered tissues. Biotech. Genetic Eng. Rev. 26(1), 163–178 (2009). https://doi.org/10.5661/bger-26-163
- L.M. Miller, A. Gal, Cardiovascular System and Lymphatic Vessels. Pathologic Basis of Veterinary Disease, 6th edn. (2017), pp. 561–616. https://doi.org/10.1016/B978-0-323-35775-3.00010-2
- A.P. Slovinski, L.A. Hajjar, C. Ince, Microcirculation in cardiovascular diseases. J. Cardiothor. Vas. Anesth. 33(12), 3458–3468 (2019). https://doi.org/10.1053/j.jvca.2019.08.008
- N. Rabiee, M.T. Yaraki, S.M. Garakani, S.M. Garakani, S. Ahmadi et al., Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 232, 119707 (2020). https://doi.org/10.1016/j.biomaterials.2019.119707
- Y. Wang, C. Xue, R. Surgery, Research progress of vascularization in tissue engineering. J. Tissue Engin. Reconstr. Surg. 9(4), 232–234 (2013)
- D. Gholobova, L. Terrie, M. Gerard, H. Declercq, L. Thorrez, Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 235, 119708 (2020). https://doi.org/10.1016/j.biomaterials.2019.119708
- S. Ahmadi, N. Rabiee, M. Bagherzadeh, F. Elmi, Y. Fatahi et al., Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 34, 100914 (2020). https://doi.org/10.1016/j.nantod.2020.100914
- P. Baldwin, D.J. Li, D.A. Auston, H.S. Mir, R.S. Yoon et al., Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J. Orthopaedic Trauma 33(4), 203–213 (2019). https://doi.org/10.1097/BOT.0000000000001420
- J.R. Yu, J. Navarro, J.C. Coburn, B. Mahadik, J. Molnar et al., Current and future perspectives on skin tissue engineering: Key features of biomedical research, translational assessment, and clinical application. Adv. Health. Mater. 8(5), 1801471 (2019). https://doi.org/10.1002/adhm.201801471
- S. Nour, N. Baheiraei, R. Imani, N. Rabiee, M. Khodaei et al., Bioactive materials: A comprehensive review on interactions with biological microenvironment based on the immune response. J. Bionic Engin. 16(4), 563–581 (2019). https://doi.org/10.1007/s42235-019-0046-z
- W.D. Tucker, Y. Arora, K. Mahajan, Anatomy, Blood Vessels. (2017).
- D.B. McMillan, R.J. Harris, An Atlas of Comparative Vertebrate Histology. (Academic Press; 2018).
- W.D. Tucker, B.J.S. Burns, Anatomy, thorax, heart pulmonary arteries. StatPearls [Internet] (2018).
- S. Maghsoudi, B.T. Shahraki, N. Rabiee, Y. Fatahi, R. Dinarvand et al., Burgeoning polymer nano blends for improved controlled drug release: a review. Inter. J. Nanomed. 15, 4363 (2020). https://doi.org/10.2147/IJN.S252237
- S. Nour, N. Baheiraei, R. Imani, M. Khodaei, A. Alizadeh et al., A review of accelerated wound healing approaches: Biomaterial-assisted tissue remodeling. J. Mater. Sci. Mater. Med. 30(10), 1–15 (2019). https://doi.org/10.1007/s10856-019-6319-6
- D. Gomez, K. Kessler, L.F. Borges, B. Richard, Z. Touat et al., Smad2-dependent protease nexin-1 overexpression differentiates chronic aneurysms from acute dissections of human ascending aorta. Arterioscler. Thromb. Vasc. Biol. 33(9), 2222–2232 (2013). https://doi.org/10.1161/ATVBAHA.113.301327
- W.D. Tucker, B.J.S. Burns, Anatomy, Thorax, Heart Pulmonary Arteries (2018).
- S.M. Nasr, N. Rabiee, S. Hajebi, S. Ahmadi, Y. Fatahi et al., Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine. Inter. J. Nanomed. 15, 4205 (2020). https://doi.org/10.2147/IJN.S245936
- A. Vafajoo, A. Rostami, S.F. Parsa, R. Salarian, N. Rabiee et al., Multiplexed microarrays based on optically encoded microbeads. Biomed. Microdev. 20(3), 1–14 (2018). https://doi.org/10.1007/s10544-018-0314-4
- J.L. Cronenwett, K.W. Johnston, Rutherford's Vascular Surgery e-Book. (Elsevier Health Sciences; 2014).
- M. Tavakolizadeh, A. Pourjavadi, M. Ansari, H. Tebyanian, S. Tabaei et al., An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel. Green Chem. 23(3), 1312–1329 (2021). https://doi.org/10.1039/D0GC02719G
- A. Chanakira, R. Dutta, R. Charboneau, R. Barke, S.M. Santilli et al., Hypoxia differentially regulates arterial and venous smooth muscle cell proliferation via PDGFR-β and VEGFR-2 expression. Am. J. Physiol. Heart Circ. Physiol. 302(5), H1173–H1184 (2012). https://doi.org/10.1152/ajpheart.00411.2011
- J. Paek, S.E. Park, Q. Lu, K.-T. Park, M. Cho, J.M. Oh et al., Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano 13(7), 7627–7643 (2019). https://doi.org/10.1021/acsnano.9b00686
- L. Sherwood, Human Physiology: From Cells to Systems (Cengage learning; 2015).
- S. Maghsoudi, B.T. Shahraki, N. Rabiee, R. Afshari, Y. Fatahi et al., Recent advancements in aptamer-bioconjugates: Sharpening stones for breast and prostate cancers targeting. J. Drug Deliv. Sci. Technol. 53, 101146 (2019). https://doi.org/10.1016/j.jddst.2019.101146
- N. Rabiee, M. Bagherzadeh, M. Heidarian Haris, A.M. Ghadiri, F. Matloubi Moghaddam et al., Polymer-coated NH2-UIO-66 for the codelivery of DOX/pCRISPR. ACS Appl. Mater. Interf. 13(9), 10796–10811 (2021). https://doi.org/10.1021/acsami.1c01460
- E.C. Novosel, C. Kleinhans, P. Kluger, Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63(4–5), 300–311 (2011). https://doi.org/10.1016/j.addr.2011.03.004
- M.W. Laschke, T. Später, M. Menger, Microvascular fragments: more than just natural vascularization units. Trends Biotechn. 39, 24–33 (2020). https://doi.org/10.1016/j.tibtech.2020.06.001
- O. Akhavan, E. Ghaderi, E. Abouei, S. Hatamie, E. Ghasemi, Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 66, 395–406 (2014). https://doi.org/10.1016/j.carbon.2013.09.015
- Y. Wang, W.C. Lee, K.K. Manga, P.K. Ang, J. Lu et al., Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater. 24(31), 4285–4290 (2012). https://doi.org/10.1002/adma.201200846
- O. Akhavan, Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J. Mater. Chem. B 4(19), 3169–3190 (2016). https://doi.org/10.1039/C6TB00152A
- M.H. Norahan, M. Amroon, R. Ghahremanzadeh, N. Rabiee, N. Baheiraei, Reduced graphene oxide: osteogenic potential for bone tissue engineering. IET Nanobiotechn. 13(7), 720–725 (2019). https://doi.org/10.1049/iet-nbt.2019.0125
- O. Akhavan, E. Ghaderi, M. Shahsavar, Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59, 200–211 (2013). https://doi.org/10.1016/j.carbon.2013.03.010
- C. Heo, J. Yoo, S. Lee, A. Jo, S. Jung et al., The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32(1), 19–27 (2011). https://doi.org/10.1016/j.biomaterials.2010.08.095
- H. Amani, E. Mostafavi, H. Arzaghi, S. Davaran, A. Akbarzadeh et al., Three-dimensional graphene foams: Synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater. Sci. Engin. 5(1), 193–214 (2018). https://doi.org/10.1021/acsbiomaterials.8b00658
- S. Bahrami, N. Baheiraei, M. Mohseni, M. Razavi, A. Ghaderi et al., Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering. J. Biomater. Appl. 34(1), 74–85 (2019). https://doi.org/10.1177/0885328219839037
- O. Akhavan, E. Ghaderi, S.A. Shirazian, R. Rahighi, Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97, 71–77 (2016). https://doi.org/10.1016/j.carbon.2015.06.079
- K. Ashtari, H. Nazari, H. Ko, P. Tebon, M. Akhshik et al., Electrically conductive nanomaterials for cardiac tissue engineering. Adv. Drug Delivery Rev. 144, 162–179 (2019). https://doi.org/10.1016/j.addr.2019.06.001
- R.O. Hynes, The extracellular matrix: Not just pretty fibrils. Science 326(5957), 1216–1219 (2009). https://doi.org/10.1126/science.1176009
- N. Rabiee, M. Bagherzadeh, A.M. Ghadiri, Y. Fatahi, N. Baheiraei et al., Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Sci. Rep. 11(1), 1–15 (2021). https://doi.org/10.1038/s41598-021-86119-z
- N. Rabiee, S. Ahmadvand, S. Ahmadi, Y. Fatahi, R. Dinarvand et al., Carbosilane dendrimers: drug and gene delivery applications. J. Drug Deliv. Sci. Techn. 101879 (2020).https://doi.org/10.1016/j.jddst.2020.101879
- M.M. Martino, P.S. Briquez, A. Ranga, M.P. Lutolf, J.A. Hubbell, Heparin-binding domain of fibrin (ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. 110(12), 4563–4568 (2013). https://doi.org/10.1073/pnas.1221602110
- M.M. Martino, S. Brkic, E. Bovo, M. Burger, D.J. Schaefer et al., Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front. Bioeng. Biotechnol. 3, 45 (2015). https://doi.org/10.3389/fbioe.2015.00045
- E. Ruvinov, J. Leor, S. Cohen, The effects of controlled hgf delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31(16), 4573–4582 (2010). https://doi.org/10.1016/j.biomaterials.2010.02.026
- J.E. Saik, D.J. Gould, E.M. Watkins, M.E. Dickinson, J.L. West, Covalently immobilized platelet-derived growth factor-bb promotes angiogenesis in biomimetic poly (ethylene glycol) hydrogels. Acta Biomater. 7(1), 133–143 (2011). https://doi.org/10.1016/j.actbio.2010.08.018
- Q. Liu, Y. Huang, Y. Lan, Q. Zuo, C. Li et al., Acceleration of skin regeneration in full-thickness burns by incorporation of BFGF-loaded alginate microspheres into a CMCS-PVA hydrogel. J. Tissue Engin. Regen. Med. 11(5), 1562–1573 (2017). https://doi.org/10.1002/term.2057
- S. Fleischer, A. Shapira, R. Feiner, T. Dvir, Modular assembly of thick multifunctional cardiac patches. Proc. Natl. Acad. Sci. 114(8), 1898–1903 (2017). https://doi.org/10.1073/pnas.1615728114
- M. Omidi, V. Mansouri, L. Mohammadi Amirabad, L. Tayebi, Impact of lipid/magnesium hydroxide hybrid nanops on the stability of vascular endothelial growth factor-loaded PLGA microspheres. ACS Appl. Mater. Interf. (2021). https://doi.org/10.1021/acsami.0c22140
- Z.D. Zhang, Y.Q. Xu, F. Chen, J.F. Luo, C. Liu, vessels. Sustained delivery of vascular endothelial growth factor using a dextran/poly (lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization. Heart Vessels 34(1), 167–176 (2019). https://doi.org/10.1007/s00380-018-1230-5
- M. Omidi, L. Almeida, L. Tayebi, A. Biochemistry, Microfluidic-assisted fabrication of reverse micelle/PLGA hybrid microspheres for sustained vascular endothelial growth factor delivery. Biotechn. Appl. Biochem. 68, 616–625 (2020). https://doi.org/10.1002/bab.1971
- M. Omidi, M. Hashemi, L. Tayebi, Microfluidic synthesis of PLGA/carbon quantum dot microspheres for vascular endothelial growth factor delivery. RSC Adv. 9(57), 33246–33256 (2019). https://doi.org/10.1039/C9RA06279C
- G. Della Porta, M.C. Ciardulli, N. Maffulli, A review. Microcapsule technology for controlled growth factor release in musculoskeletal tissue engineering. Sports Med. Arthros. Rev. 26(2), e2–e9 (2018). https://doi.org/10.1097/JSA.0000000000000188
- S. Fleischer, D.N. Tavakol, G. Vunjak-Novakovic, From arteries to capillaries: Approaches to engineering human vasculature. Adv. Funct. Mater. 30(37), 1910811 (2020). https://doi.org/10.1002/adfm.201910811
- A. Moncion, K.J. Arlotta, E.G. O’Neill, M. Lin, L.A. Mohr et al., In vitro and in vivo assessment of controlled release and degradation of acoustically responsive scaffolds. Acta Biomater. 46, 221–233 (2016). https://doi.org/10.1016/j.actbio.2016.09.026
- R.E. Liebano, A. Machado, Vascular endothelial growth factor release following electrical stimulation in human subjects. Adv. Wound Care 3(2), 98–103 (2014). https://doi.org/10.1089/wound.2013.0427
- O. Akhavan, E. Ghaderi, The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation. J. Mater. Chem. B 2(34), 5602–5611 (2014). https://doi.org/10.1039/C4TB00668B
- O. Akhavan, E. Ghaderi, Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nanoscale 5(21), 10316–10326 (2013). https://doi.org/10.1039/c3nr02161k
- C. Dionigi, L. Lungaro, V. Goranov, A. Riminucci, Y. Pineiro-Redondo et al., Smart magnetic poly (n-isopropylacrylamide) to control the release of bio-active molecules. J. Mater. Sci.: Mater. Med. 25(10), 2365–2371 (2014). https://doi.org/10.1007/s10856-014-5159-7
- N. Kuzmic, T. Moore, D. Devadas, E.W. Young, Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems. Biomech. Model. Mechanobiol. 18(3), 717–731 (2019). https://doi.org/10.1007/s10237-018-01111-3
- S. Kim, H. Lee, M. Chung, N.L. Jeon, Engineering of functional, perfusable 3d microvascular networks on a chip. Lab Chip 13(8), 1489–1500 (2013). https://doi.org/10.1039/c3lc41320a
- A.T. Alsop, J.C. Pence, D.W. Weisgerber, B.A. Harley, R.C. Bailey, Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells. Acta Biomater. 10(11), 4715–4722 (2014). https://doi.org/10.1016/j.actbio.2014.07.002
- M.H. Rich, M.K. Lee, K. Baek, J.H. Jeong, D.H. Kim et al., Material-mediated proangiogenic factor release pattern modulates quality of regenerated blood vessels. J. Control. Release 196, 363–369 (2014). https://doi.org/10.1016/j.jconrel.2014.10.020
- V.S. Shirure, A. Lezia, A. Tao, L.F. Alonzo, S.C. George, Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 20(4), 493–504 (2017). https://doi.org/10.1007/s10456-017-9559-4
- H.A. Strobel, A.D. Dikina, K. Levi, L.D. Solorio, E. Alsberg et al., Cellular self-assembly with microsphere incorporation for growth factor delivery within engineered vascular tissue rings. Tissue Engin. Part A 23(3–4), 143–155 (2017). https://doi.org/10.1089/ten.tea.2016.0260
- A.F. Godier-Furnémont, T.P. Martens, M.S. Koeckert, L. Wan, J. Parks et al., Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Natl. Acad. Sci. 108(19), 7974–7979 (2011). https://doi.org/10.1073/pnas.1104619108
- H.-M. Cho, K.-H. Lee, Y.-M. Shen, T.-J. Shin, P.-D. Ryu et al., Transplantation of hMSCs genome edited with LEF1 improves cardio-protective effects in myocardial infarction. Mol. Therapy-Nucleic Acids 19, 1186–1197 (2020). https://doi.org/10.1016/j.omtn.2020.01.007
- E.A. Phelps, D.M. Headen, W.R. Taylor, P.M. Thulé, A.J. García, Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34(19), 4602–4611 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.012
- P. Au, J. Tam, D. Fukumura, R.K. Jain, in Small Blood Vessel Engineering. (Springer; 2008), pp. 183–195. https://doi.org/10.1007/978-1-59745-443-8_11
- Y.-W. Cheng, D.J. Shiwarski, R.L. Ball, K.A. Whitehead, A.W. Feinberg, Engineering aligned skeletal muscle tissue using decellularized plant-derived scaffolds. ACS Biomater. Sci. Eng. 6(5), 3046–3054 (2020). https://doi.org/10.1021/acsbiomaterials.0c00058
- A. Dingle, K. Yap, Y. Gerrand, C. Taylor, E. Keramidaris et al., Characterization of isolated liver sinusoidal endothelial cells for liver bioengineering. Angiogenesis 21(3), 581–597 (2018). https://doi.org/10.1007/s10456-018-9610-0
- J.A. Whisler, M.B. Chen, R.D. Kamm, Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng. Part C: Methods 20(7), 543–552 (2014). https://doi.org/10.1089/ten.tec.2013.0370
- C.M. Ghajar, X. Chen, J.W. Harris, V. Suresh, C.C. Hughes et al., The effect of matrix density on the regulation of 3-d capillary morphogenesis. Biophys. J. 94(5), 1930–1941 (2008). https://doi.org/10.1529/biophysj.107.120774
- S. Jeon, J.H. Heo, M.K. Kim, W. Jeong, H. Kang, High-precision 3d bio-dot printing to improve paracrine interaction between multiple types of cell spheroids. Adv. Funct. Mater. 30(52), 2005324 (2020). https://doi.org/10.1002/adfm.202005324
- S. Bersini, M. Gilardi, G.S. Ugolini, V. Sansoni, G. Talo et al., Engineering an environment for the study of fibrosis: a 3d human muscle model with endothelium specificity and endomysium. Cell Rep. 25(13), 3858–3868. e3854 (2018). https://doi.org/10.1016/j.celrep.2018.11.092
- T. Kageyama, Y.-S. Chun, J.J.S.r. Fukuda, Hair follicle germs containing vascular endothelial cells for hair regenerative medicine. Sci. Rep. 11(1), 1–10 (2021). https://doi.org/10.1038/s41598-020-79722-z
- J. Kalucka, L.P. de Rooij, J. Goveia, K. Rohlenova, S.J. Dumas et al., Single-cell transcriptome atlas of murine endothelial cells. Cell 180(4), 764–779 (2020). https://doi.org/10.1016/j.cell.2020.01.015
- A. Sivarapatna, M. Ghaedi, Y. Xiao, E. Han, B. Aryal et al., Engineered microvasculature in pdms networks using endothelial cells derived from human induced pluripotent stem cells. Cell Transp. 26(8), 1365–1379 (2017). https://doi.org/10.1177/0963689717720282
- M.R. Kelly-Goss, R.S. Sweat, P.C. Stapor, S.M. Peirce, W.L. Murfee, Targeting pericytes for angiogenic therapies. Microcirculation 21(4), 345–357 (2014). https://doi.org/10.1111/micc.12107
- X.-Y. Wang, Z.-H. Jin, B.-W. Gan, S. Xie et al., Engineering interconnected 3d vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab Chip 14(15), 2709–2716 (2014). https://doi.org/10.1039/C4LC00069B
- K.A. DiVito, M.A. Daniele, S.A. Roberts, F.S. Ligler, A.A. Adams, Microfabricated blood vessels undergo neoangiogenesis. Biomaterials 138, 142–152 (2017). https://doi.org/10.1016/j.biomaterials.2017.05.012
- S. Alimperti, T. Mirabella, V. Bajaj, W. Polacheck, D.M. Pirone et al., Three-dimensional biomimetic vascular model reveals a Rhoa, Rac1, and N-cadherin balance in mural cell-endothelial cell-regulated barrier function. Proc. Natl. Acad. Sci. 114(33), 8758–8763 (2017). https://doi.org/10.1073/pnas.1618333114
- T. Sun, Q. Shi, Y. Yao, J. Sun, H. Wang et al., Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibres for a bottom-up tissue engineering approach. Biofabrication 11(3), 035029 (2019). https://doi.org/10.1088/1758-5090/ab1ee5
- C. Peticone, D.D.S. Thompson, N. Dimov, B. Jevans, N. Glass et al., Characterisation of osteogenic and vascular responses of hmscs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform. J. Tissue Eng. Regen. Med. 11, 2041731420954712 (2020). https://doi.org/10.1177/2041731420954712
- A. Peterson, D. Caldwell, A. Rioja, R. Rao, A. Putnam et al., Vasculogenesis and angiogenesis in modular collagen-fibrin microtissues. Biomater. Sci. 2(10), 1497–1508 (2014). https://doi.org/10.1039/C4BM00141A
- G. Yang, B. Mahadik, J.Y. Choi, R.Y. Justine, T. Mollot et al., Fabrication of centimeter-sized 3d constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft. Acta Biomater. 121, 204–213 (2021). https://doi.org/10.1016/j.actbio.2020.11.040
- C. Patsch, L. Challet-Meylan, E.C. Thoma, E. Urich, T. Heckel et al., Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat. Cell Biol. 17(8), 994–1003 (2015). https://doi.org/10.1038/ncb3205
- G. Sriram, J.Y. Tan, I. Islam, A.J. Rufaihah, T. Cao, Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder-and serum-free conditions. Stem Cell Res. Therapy 6(1), 1–17 (2015). https://doi.org/10.1186/s13287-015-0260-5
- S. Kusuma, Y.-I. Shen, D. Hanjaya-Putra, P. Mali, L. Cheng et al., Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc. Natl. Acad. Sci. 110(31), 12601–12606 (2013). https://doi.org/10.1073/pnas.1306562110
- Y. Wu, R.-N. Zhang, J. Tang, Isolation and culture of vascular wall-resident cd34+ stem/progenitor cells. Cardiol. Plus 4(4), 116 (2019). https://doi.org/10.4103/cp.cp_19_19
- S. Levenberg, J.S. Golub, M. Amit, J. Itskovitz-Eldor, R. Langer, Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. 99(7), 4391–4396 (2002). https://doi.org/10.1073/pnas.032074999
- H. Cho, B.L. Macklin, Y.-Y. Lin, L. Zhou, M.J. Lai et al., Ipsc-derived endothelial cell response to hypoxia via SDF1a/CXCR4 axis facilitates incorporation to revascularize ischemic retina. JCI Insight 5(6), e131828 (2020). https://doi.org/10.1172/jci.insight.131828
- K.-B. Celie, Y. Toyoda, X. Dong, K.A. Morrison, P. Zhang et al., Microstructured hydrogel scaffolds containing differential density interfaces promote rapid cellular invasion and vascularization. Acta Biomater. 91, 144–158 (2019). https://doi.org/10.1016/j.actbio.2019.04.027
- J. Jamieson, B. Macklin, S. Gerecht, Pericytes derived from human pluripotent stem cells. Pericyte Biology-Novel Concepts 111–124 (2018). https://doi.org/10.1007/978-3-030-02601-1_9
- A. Cochrane, H.J. Albers, R. Passier, C.L. Mummery, A. Van Den Berg et al., Advanced in vitro models of vascular biology: human induced pluripotent stem cells and organ-on-chip technology. Adv. Drug Deliv. Rev. 140, 68–77 (2019). https://doi.org/10.1016/j.addr.2018.06.007
- A. Dar, H. Domev, O. Ben-Yosef, M. Tzukerman, N. Zeevi-Levin et al., Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1), 87–99 (2012). https://doi.org/10.1161/CIRCULATIONAHA.111.048264
- M. Wanjare, S. Kusuma, S. Gerecht, Defining differences among perivascular cells derived from human pluripotent stem cells. Stem Cell Rep. 2(5), 561–575 (2014). https://doi.org/10.1016/j.stemcr.2014.03.004
- E.A. Bulanova, E.V. Koudan, J. Degosserie, C. Heymans, F.D. Pereira et al., Bioprinting of a functional vascularized mouse thyroid gland construct. Biofabrication 9(3), 034105 (2017). https://doi.org/10.1088/1758-5090/aa7fdd
- N. Mekhileri, K. Lim, G. Brown, I. Mutreja, B. Schon et al., Automated 3d bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication 10(2), 024103 (2018). https://doi.org/10.1088/1758-5090/aa9ef1
- L. Gutzweiler, S. Kartmann, K. Troendle, L. Benning, G. Finkenzeller et al., Large scale production and controlled deposition of single huvec spheroids for bioprinting applications. Biofabrication 9(2), 025027 (2017). https://doi.org/10.1088/1758-5090/aa7218
- N.I. Moldovan, N. Hibino, K.J.T.E.P.B.R. Nakayama, Principles of the kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng. Part B: Rev. 23(3), 237–244 (2017). https://doi.org/10.1089/ten.teb.2016.0322
- B.C. Ip, F. Cui, A. Tripathi, J.R.J.B. Morgan, The bio-gripper: A fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing. Biofabrication 8(2), 025015 (2016). https://doi.org/10.1088/1758-5090/8/2/025015
- A.M. Blakely, K.L. Manning, A. Tripathi, J.R. Morgan, Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Eng. Part C: Methods 21(7), 737–746 (2015). https://doi.org/10.1089/ten.tec.2014.0439
- Y. Yu, K.K. Moncal, J. Li, W. Peng, I. Rivero et al., Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci. Rep. 6(1), 1–11 (2016). https://doi.org/10.1038/srep28714
- Q. Mao, Y. Wang, Y. Li, S. Juengpanich, W. Li et al., Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater. Sci. Eng. C 109, 110625 (2020). https://doi.org/10.1016/j.msec.2020.110625
- V. Mironov, R.P. Visconti, V. Kasyanov, G. Forgacs, C.J. Drake et al., Organ printing: tissue spheroids as building blocks. Biomaterials 30(12), 2164–2174 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.084
- M.E. Prendergast, G. Montoya, T. Pereira, J. Lewicki, R. Solorzano et al., Microphysiological systems: automated fabrication via extrusion bioprinting. Microphysiol. Syst. 2, 1–16 (2018). https://doi.org/10.21037/mps.2018.03.01
- W. Lee, Y. Hong, G. Dai, 3d bioprinting of vascular conduits for pediatric congenital heart repairs. Transl. Res. 211, 35–45 (2019). https://doi.org/10.1016/j.trsl.2019.03.007
- H. Xu, J. Casillas, C. Xu, Effects of printing conditions on cell distribution within microspheres during inkjet-based bioprinting. AIP Adv. 9(9), 095055 (2019). https://doi.org/10.1063/1.5116371
- S. Zhang, G. Li, J. Man, S. Zhang, J. Li et al., Fabrication of microspheres from high-viscosity bioink using a novel microfluidic-based 3d bioprinting nozzle. Micromachines 11(7), 681 (2020). https://doi.org/10.3390/mi11070681
- J. Kim, I.K. Shim, D.G. Hwang, Y.N. Lee, M. Kim et al., 3d cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J. Mater. Chem. B 7(10), 1773–1781 (2019). https://doi.org/10.1039/C8TB02787K
- Y. Ji, Q. Yang, G. Huang, M. Shen, Z. Jian et al., Improved resolution and fidelity of droplet-based bioprinting by upward ejection. ACS Biomater. Sci. Eng. 5(8), 4112–4121 (2019). https://doi.org/10.1021/acsbiomaterials.9b00400
- S. Yamaguchi, A. Ueno, Y. Akiyama, K. Morishima, Cell patterning through inkjet printing of one cell per droplet. Biofabrication 4(4), 045005 (2012). https://doi.org/10.1088/1758-5082/4/4/045005
- L. Benning, L. Gutzweiler, K. Tröndle, J. Riba, R. Zengerle et al., Assessment of hydrogels for bioprinting of endothelial cells. J. Biomed. Mater. Res. Part A 106(4), 935–947 (2018). https://doi.org/10.1002/jbm.a.36291
- W.C. Wilson Jr., T. Boland, Cell and organ printing 1: Protein and cell printers. Anat. Rec. 272(2), 491–496 (2003). https://doi.org/10.1002/ar.a.10057
- D. Murata, K. Arai, K.J.A.h.m. Nakayama, Scaffold‐free bio‐3d printing using spheroids as "bio‐inks" for tissue (re‐) construction and drug response tests. Adv. Healthcare Mater. 9(15), 1901831 (2020). https://doi.org/10.1002/adhm.201901831
- I.N. Aguilar, L.J. Smith, D.J. Olivos III., T.-M.G. Chu, M.A. Kacena et al., Scaffold-free bioprinting of mesenchymal stem cells with the regenova printer: Optimization of printing parameters. Bioprinting 15, e00048 (2019). https://doi.org/10.1016/j.bprint.2019.e00048
- K. Nakayama, Kenzan Method for Scaffold-free Biofabrication (2021). https://doi.org/10.1007/978-3-030-58688-1
- N.I. Moldovan, N. Hibino, K. Nakayama, Principles of the kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng. Part B: Rev. 23(3), 237–244 (2017). https://doi.org/10.1089/ten.teb.2016.0322
- H. Matsushita, V. Nguyen, K. Nurminsky, N. Hibino, in Cardiac Tissue Creation with the Kenzan Method. (Springer; 2021), pp. 109–115. https://doi.org/10.1007/978-3-030-58688-1_8
- M. Itoh, Y. Mukae, T. Kitsuka, K. Arai, A. Nakamura et al., Development of an immunodeficient pig model allowing long-term accommodation of artificial human vascular tubes. Nat. Commun. 10(1), 1–8 (2019). https://doi.org/10.1038/s41467-019-10107-1
- X.-Y. Zhang, Y. Yanagi, Z. Sheng, K. Nagata, K. Nakayama et al., Regeneration of diaphragm with bio-3d cellular patch. Biomaterials 167, 1–14 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.012
- A.M. Blakely, K.L. Manning, A. Tripathi, J. Morgan, Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Engin. Part C Methods 21(7), 737–746 (2015). https://doi.org/10.1089/ten.tec.2014.0439
- I.T., Ozbolat, Medicine. Scaffold-based or scaffold-free bioprinting: Competing or complementing approaches? J. Nanotechnol. Eng. Med. 6(2), 024701 (2015). https://doi.org/10.1115/1.4030414
- I.T. Ozbolat, Medicine. Scaffold-based or scaffold-free bioprinting: Competing or complementing approaches? J. Nanotechnol. Eng. Med. 6(2), 024701 (2015). https://doi.org/10.1115/1.4030414
- S. Zhang, Z. Wan, R.D. Kamm, Vascularized organoids on a chip: Strategies for engineering organoids with functional vasculature. Lab Chip 21(3), 473–488 (2021). https://doi.org/10.1039/D0LC01186J
- C.-T. Kuo, C.-L. Chiang, R.Y.-J. Huang, H. Lee, A.M. Wo, Configurable 2d and 3d spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial-mesenchymal transition characteristics. NPG Asia Mater. 4(9), e27 (2012). https://doi.org/10.1038/am.2012.50
- K.C. Scheiner, F. Coulter, R.F. Maas-Bakker, G. Ghersi, T.T. Nguyen et al., Vascular endothelial growth factor-releasing microspheres based on poly (ε-caprolactone-PEG-ε-caprolactone)-b-poly (l-lactide) multiblock copolymers incorporated in a three-dimensional printed poly (dimethylsiloxane) cell macroencapsulation device. J. Pharm. Sci. 109(1), 863–870 (2020). https://doi.org/10.1016/j.xphs.2019.10.028
- X. Xu, C. Liang, X. Gao, H. Huang, X. Xing et al., Adipose tissue-derived microvascular fragments as vascularization units for dental pulp regeneration. J. Endodontics 47, 1092–1100 (2021). https://doi.org/10.1016/j.joen.2021.04.012
- B.A. Juliar, M.T. Keating, Y.P. Kong, E.L. Botvinick, A. Putnam, Sprouting angiogenesis induces significant mechanical heterogeneities and ecm stiffening across length scales in fibrin hydrogels. Biomaterials 162, 99–108 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.012
- M. Mahmoudi, O. Akhavan, M. Ghavami, F. Rezaee, S. Ghiasi, Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 4(23), 7322–7325 (2012). https://doi.org/10.1039/c2nr31657a
- L. De Moor, I. Merovci, S. Baetens, J. Verstraeten, P. Kowalska et al., High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication 10(3), 035009 (2018). https://doi.org/10.1088/1758-5090/aac7e6
- M. Kuss, B. Duan, in 3D Bioprinting for Cardiovascular Tissue Engineering. (Springer; 2017), pp. 167–182. https://doi.org/10.1007/978-3-319-53523-4_18
- K. Haase, R. Kamm, Advances in on-chip vascularization. Regen. Med. 12(3), 285–302 (2017). https://doi.org/10.2217/rme-2016-0152
- P. Wu, B. Ringeisen, J. Callahan, M. Brooks, D. Bubb et al., The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and maple direct write. Thin Solid Films 398, 607–614 (2001). https://doi.org/10.1016/S0040-6090(01)01347-5
- O. Kérourédan, D. Hakobyan, M. Rémy, S. Ziane, N. Dusserre et al., In situ prevascularization designed by laser-assisted bioprinting: Effect on bone regeneration. Biofabrication 11(4), 045002 (2019). https://doi.org/10.1088/1758-5090/ab2620
- P. Wu, B. Ringeisen, Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2(1), 014111 (2010). https://doi.org/10.1088/1758-5082/2/1/014111
- X. Cui, T. Boland, Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31), 6221–6227 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.056
- E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, J. De Boer, Spheroid culture as a tool for creating 3d complex tissues. Trends Biotechnol. 31(2), 108–115 (2013). https://doi.org/10.1016/j.tibtech.2012.12.003
- M. Hospodiuk, M. Dey, B. Ayan, D. Sosnoski, K.K. Moncal et al., Sprouting angiogenesis in engineered pseudo islets. Biofabrication 10(3), 035003 (2018). https://doi.org/10.1088/1758-5090/aab002
- W. Peng, P. Datta, B. Ayan, V. Ozbolat, D. Sosnoski et al., 3d bioprinting for drug discovery and development in pharmaceutics. Acta Biomater. 57, 26–46 (2017). https://doi.org/10.1016/j.actbio.2017.05.025
- C. Norotte, F.S. Marga, L.E. Niklason, G. Forgacs, Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30), 5910–5917 (2009). https://doi.org/10.1016/j.biomaterials.2009.06.034
- M.B. Chen, Engineered microvasculature platforms to study tumor-host-matrix interactions during metastatic seeding (2017).
- J. Ahn, H. Lee, H. Kang, H. Choi, K. Son et al., Pneumatically actuated microfluidic platform for reconstituting 3d vascular tissue compression. Appl. Sci. 10(6), 2027 (2020). https://doi.org/10.3390/app10062027
- J. Lim, H. Ching, J.-K. Yoon, N.L. Jeon, Y. Kim, Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance. Nano Converg. 8(1), 1–16 (2021). https://doi.org/10.1186/s40580-021-00261-y
- J.M. Kelm, V. Lorber, J.G. Snedeker, D. Schmidt, A. Broggini-Tenzer et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J. Biotechn. 148(1), 46–55 (2010). https://doi.org/10.1258/rsmsmj.55.3.46
- G.H. Lee, J.S. Lee, G.-H. Lee, W.Y. Joung, S.H. Kim et al., Networked concave microwell arrays for constructing 3d cell spheroids. Biofabrication 10(1), 015001 (2017). https://doi.org/10.1088/1758-5090/aa9876
- J. Park, G.-H. Lee, J.Y. Park, J.C. Lee, H. Kim, Hypergravity-induced multicellular spheroid generation with different morphological patterns precisely controlled on a centrifugal microfluidic platform. Biofabrication 9(4), 045006 (2017). https://doi.org/10.1088/1758-5090/aa9472
- M.A. Skylar-Scott, S.G. Uzel, L.L. Nam, J.H. Ahrens, R.L. Truby et al., Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5(9), eaaw2459 (2019). https://doi.org/10.1126/sciadv.aaw2459
- P. Datta, B. Ayan, I. Ozbolat, Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 51, 1–20 (2017). https://doi.org/10.1016/j.actbio.2017.01.035
- C.R. Thoma, M. Zimmermann, I. Agarkova, J.M. Kelm, W.J. Krek, 3d cell culture systems modeling tumor growth determinants in cancer target discovery. Adv. Drug Delivery Rev. 69, 29–41 (2014). https://doi.org/10.1016/j.addr.2014.03.001
- S. Ahn, H. Lee, J. Puetzer, L.J. Bonassar, G.J. Kim, Fabrication of cell-laden three-dimensional alginate-scaffolds with an aerosol cross-linking process. J. Mater. Chem. 22(36), 18735–18740 (2012). https://doi.org/10.1039/c2jm33749e
- B. Ayan, D.N. Heo, Z. Zhang, M. Dey, A. Povilianskas et al., Aspiration-assisted bioprinting for precise positioning of biologics. Sci. Adv. 6(10), eaaw5111 (2020). https://doi.org/10.1126/sciadv.aaw5111
- A. Torres, S. Bidarra, M. Pinto, P. Aguiar, E. Silva et al., Guiding morphogenesis in cell-instructive microgels for therapeutic angiogenesis. Biomaterials 154, 34–47 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.051
- C. Gentile, P.A. Fleming, V. Mironov, K.M. Argraves, W.S. Argraves et al., VEGF-mediated fusion in the generation of uniluminal vascular spheroids. Dev. Dyn. 237(10), 2918–2925 (2008). https://doi.org/10.1002/dvdy.21720
- P.A. Fleming, W.S. Argraves, C. Gentile, A. Neagu, G. Forgacs et al., Fusion of uniluminal vascular spheroids: A model for assembly of blood vessels. Dev. Dyn. 239(2), 398–406 (2010). https://doi.org/10.1002/dvdy.22161
- J.M. Kelm, V. Djonov, L.M. Ittner, D. Fluri, W. Born et al., Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Engin. Part C Methods 12(8), 2151–2160 (2006). https://doi.org/10.1089/ten.2006.12.2151
- M. Sofman, A. Brown, L.G. Griffith, P.T. Hammond, A modular polymer microbead angiogenesis scaffold to characterize the effects of adhesion ligand density on angiogenic sprouting. Biomaterials 264, 120231 (2021). https://doi.org/10.1016/j.biomaterials.2020.120231
- A. Alajati, A.M. Laib, H. Weber, A.M. Boos, A. Bartol et al., Spheroid-based engineering of a human vasculature in mice. Nat. Methods 5(5), 439–445 (2008). https://doi.org/10.1038/nmeth.1198
- Y. Atlas, C. Gorin, A. Novais, M.F. Marchand, E. Chatzopoulou et al., Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials 268, 120594 (2021). https://doi.org/10.1016/j.biomaterials.2020.120594
- S. Pattanaik, C. Arbra, H. Bainbridge, S.G. Dennis, S.A. Fann et al., Vascular tissue engineering using scaffold-free prevascular endothelial-fibroblast constructs. BioResearch 8(1), 1–15 (2019). https://doi.org/10.1089/biores.2018.0039
- K. Jakab, A. Neagu, V. Mironov, R.R. Markwald, G. Forgacs, Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. 101(9), 2864–2869 (2004). https://doi.org/10.1073/pnas.0400164101
- K. Jakab, C. Norotte, B. Damon, F. Marga, A. Neagu et al., Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 14(3), 413–421 (2008). https://doi.org/10.1089/tea.2007.0173
- N.E. Friend, A.Y. Rioja, Y.P. Kong, J.A. Beamish, X. Hong et al., Injectable pre-cultured tissue modules catalyze the formation of extensive functional microvasculature in vivo. Sci. Rep. 10(1), 1–16 (2020). https://doi.org/10.1038/s41598-020-72576-5
- Y. Tan, D.J. Richards, T.C. Trusk, R.P. Visconti, M.J. Yost et al., 3d printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6(2), 024111 (2014). https://doi.org/10.1088/1758-5082/6/2/024111
- C. Xu, W. Chai, Y. Huang, R.R. Markwald, Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol. Bioeng. 109(12), 3152–3160 (2012). https://doi.org/10.1002/bit.24591
- X. Yang, V. Mironov, Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. J. Theor. Biol. 303, 110–118 (2012). https://doi.org/10.1016/j.jtbi.2012.03.003
- I.T. Ozbolat, Y. Yu, Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60(3), 691–699 (2013). https://doi.org/10.1109/TBME.2013.2243912
- A. Shafiee, M. McCune, G. Forgacs, I. Kosztin, Post-deposition bioink self-assembly: a quantitative study. Biofabrication 7(4), 045005 (2015). https://doi.org/10.1088/1758-5090/7/4/045005
- A.Y. Rioja, E.L. Daley, J.C. Habif, A.J. Putnam, J.P. Stegemann, Distributed vasculogenesis from modular agarose-hydroxyapatite-fibrinogen microbeads. Acta Biomater. 55, 144–152 (2017). https://doi.org/10.1016/j.actbio.2017.03.050
- P.M. Baptista, D. Vyas, E. Moran, Z. Wang, S. Soker, in Human Liver Bioengineering Using a Whole Liver Decellularized Bioscaffold. (Springer; 2013), pp. 289–298. https://doi.org/10.1007/978-1-62703-363-3_24
- F. Ruedinger, A. Lavrentieva, C. Blume, I. Pepelanova, T. Scheper, biotechnology. Hydrogels for 3d mammalian cell culture: A starting guide for laboratory practice. Appl. Microbiol. Biotechn. 99(2), 623–636 (2015). https://doi.org/10.1007/s00253-014-6253-y
- S. Hong, S.-J. Song, J.Y. Lee, H. Jang, J. Choi et al., Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J. Biosci. Bioeng. 116(2), 224–230 (2013). https://doi.org/10.1016/j.jbiosc.2013.02.011
- M. Sarker, S. Naghieh, N. Sharma, L. Ning, X. Chen, Bioprinting of vascularized tissue scaffolds: Influence of biopolymer, cells, growth factors, and gene delivery. J. Healthcare Eng. 9156921 (2019). https://doi.org/10.1155/2019/9156921
References
B.K. Gale, A.R. Jafek, C.J. Lambert, B.L. Goenner, H. Moghimifam et al., A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3(3), 60 (2018). https://doi.org/10.3390/inventions3030060
K. Ren, J. Zhou, H.K. Wu, Materials for microfluidic chip fabrication. Acc. Chem. Res. 46(11), 2396–2406 (2013). https://doi.org/10.1021/ar300314s
R. Riahi, A. Tamayol, S.A.M. Shaegh, A.M. Ghaemmaghami, M.R. Dokmeci et al., Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 7, 101–112 (2015). https://doi.org/10.1016/j.coche.2014.12.001
A.K. Au, W. Huynh, L.F. Horowitz, A. Folch, 3d-printed microfluidics. Angew. Chem. Int. Ed. 55(12), 3862–3881 (2016). https://doi.org/10.1002/anie.201504382
A. Hasan, A. Paul, N.E. Vrana, X. Zhao, A. Memic et al., Microfluidic techniques for development of 3d vascularized tissue. Biomaterials 35(26), 7308–7325 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.091
R.W. Barrs, J. Jia, S.E. Silver, M. Yost, Y. Mei, Biomaterials for bioprinting microvasculature. Chem. Rev. 120(19), 10887–10949 (2020). https://doi.org/10.1021/acs.chemrev.0c00027
Y.S. Zhang, A. Khademhosseini, Vascular tissue engineering: the role of 3d bioprinting. Tissue Eng. Vas. Grafts 321–338 (2020). doi: https://doi.org/10.1007/978-3-030-05336-9_11
L. Shao, Q. Gao, C. Xie, J. Fu, M. Xiang et al., Directly coaxial 3d bioprinting of large-scale vascularized tissue constructs. Biofabrication 12(3), 035014 (2020). https://doi.org/10.1088/1758-5090/ab7e76
Y. Wu, Y. Zhang, Y. Yu, I.T. Ozbolat, in 3D Coaxial Bioprinting of Vasculature. ed.by (Springer; 2020), pp. 171–181. https://doi.org/10.1007/978-1-0716-0520-2_11
S.F. Parsa, A. Vafajoo, A. Rostami, R. Salarian, M. Rabiee et al., Early diagnosis of disease using microbead array technology: a review. Anal. Chim. Acta 1032, 1–17 (2018). https://doi.org/10.1016/j.aca.2018.05.011
E.P. Chen, Z. Toksoy, B.A. Davis, J. Geibel, Biotechnology. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Front. Bioeng. Biotech. 9, 326 (2021). https://doi.org/10.3389/fbioe.2021.664188
B. Zhang, Y. Luo, L. Ma, L. Gao, Y. Li et al., Manufacturing. 3D bioprinting: An emerging technology full of opportunities and challenges. Bio-des. Manuf. 1(1), 2–13 (2018). https://doi.org/10.1007/s42242-018-0004-3
S. Hajebi, N. Rabiee, M. Bagherzadeh, S. Ahmadi, M. Rabiee et al., Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 92, 1–18 (2019). https://doi.org/10.1016/j.actbio.2019.05.018
K. Lee, E.A. Silva, D. Mooney, Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8(55), 153–170 (2011). https://doi.org/10.1098/rsif.2010.0223
L.M.C. Aguilar, S.M. Silva, S. Moulton, Growth factor delivery: Defining the next generation platforms for tissue engineering. J. Control. Release 306, 40–58 (2019). https://doi.org/10.1016/j.jconrel.2019.05.028
M.R. Casanova, C. Oliveira, E.M. Fernandes, R.L. Reis, T.H. Silva et al., Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomater. Sci. 8(9), 2577–2589 (2020). https://doi.org/10.1039/D0BM00087F
S. Toosi, J. Behravan, Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Adv. Drug Delivery Rev. 46(3), 326–340 (2020). https://doi.org/10.1002/biof.1598
R. Burdis, D.J. Kelly, Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues. Acta Biomater. (Accepted, 2021). https://doi.org/10.2139/ssrn.3739622
G. Nilsson Hall, L.F. Mendes, C. Gklava, L. Geris, F.P. Luyten et al., Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing. Adv. Sci. 7(2), 1902295 (2020). https://doi.org/10.1002/advs.201902295
J. Rouwkema, B.F. Koopman, C.A.V. Blitterswijk, W.J. Dhert, J. Malda, Supply of nutrients to cells in engineered tissues. Biotech. Genetic Eng. Rev. 26(1), 163–178 (2009). https://doi.org/10.5661/bger-26-163
L.M. Miller, A. Gal, Cardiovascular System and Lymphatic Vessels. Pathologic Basis of Veterinary Disease, 6th edn. (2017), pp. 561–616. https://doi.org/10.1016/B978-0-323-35775-3.00010-2
A.P. Slovinski, L.A. Hajjar, C. Ince, Microcirculation in cardiovascular diseases. J. Cardiothor. Vas. Anesth. 33(12), 3458–3468 (2019). https://doi.org/10.1053/j.jvca.2019.08.008
N. Rabiee, M.T. Yaraki, S.M. Garakani, S.M. Garakani, S. Ahmadi et al., Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 232, 119707 (2020). https://doi.org/10.1016/j.biomaterials.2019.119707
Y. Wang, C. Xue, R. Surgery, Research progress of vascularization in tissue engineering. J. Tissue Engin. Reconstr. Surg. 9(4), 232–234 (2013)
D. Gholobova, L. Terrie, M. Gerard, H. Declercq, L. Thorrez, Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 235, 119708 (2020). https://doi.org/10.1016/j.biomaterials.2019.119708
S. Ahmadi, N. Rabiee, M. Bagherzadeh, F. Elmi, Y. Fatahi et al., Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 34, 100914 (2020). https://doi.org/10.1016/j.nantod.2020.100914
P. Baldwin, D.J. Li, D.A. Auston, H.S. Mir, R.S. Yoon et al., Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J. Orthopaedic Trauma 33(4), 203–213 (2019). https://doi.org/10.1097/BOT.0000000000001420
J.R. Yu, J. Navarro, J.C. Coburn, B. Mahadik, J. Molnar et al., Current and future perspectives on skin tissue engineering: Key features of biomedical research, translational assessment, and clinical application. Adv. Health. Mater. 8(5), 1801471 (2019). https://doi.org/10.1002/adhm.201801471
S. Nour, N. Baheiraei, R. Imani, N. Rabiee, M. Khodaei et al., Bioactive materials: A comprehensive review on interactions with biological microenvironment based on the immune response. J. Bionic Engin. 16(4), 563–581 (2019). https://doi.org/10.1007/s42235-019-0046-z
W.D. Tucker, Y. Arora, K. Mahajan, Anatomy, Blood Vessels. (2017).
D.B. McMillan, R.J. Harris, An Atlas of Comparative Vertebrate Histology. (Academic Press; 2018).
W.D. Tucker, B.J.S. Burns, Anatomy, thorax, heart pulmonary arteries. StatPearls [Internet] (2018).
S. Maghsoudi, B.T. Shahraki, N. Rabiee, Y. Fatahi, R. Dinarvand et al., Burgeoning polymer nano blends for improved controlled drug release: a review. Inter. J. Nanomed. 15, 4363 (2020). https://doi.org/10.2147/IJN.S252237
S. Nour, N. Baheiraei, R. Imani, M. Khodaei, A. Alizadeh et al., A review of accelerated wound healing approaches: Biomaterial-assisted tissue remodeling. J. Mater. Sci. Mater. Med. 30(10), 1–15 (2019). https://doi.org/10.1007/s10856-019-6319-6
D. Gomez, K. Kessler, L.F. Borges, B. Richard, Z. Touat et al., Smad2-dependent protease nexin-1 overexpression differentiates chronic aneurysms from acute dissections of human ascending aorta. Arterioscler. Thromb. Vasc. Biol. 33(9), 2222–2232 (2013). https://doi.org/10.1161/ATVBAHA.113.301327
W.D. Tucker, B.J.S. Burns, Anatomy, Thorax, Heart Pulmonary Arteries (2018).
S.M. Nasr, N. Rabiee, S. Hajebi, S. Ahmadi, Y. Fatahi et al., Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine. Inter. J. Nanomed. 15, 4205 (2020). https://doi.org/10.2147/IJN.S245936
A. Vafajoo, A. Rostami, S.F. Parsa, R. Salarian, N. Rabiee et al., Multiplexed microarrays based on optically encoded microbeads. Biomed. Microdev. 20(3), 1–14 (2018). https://doi.org/10.1007/s10544-018-0314-4
J.L. Cronenwett, K.W. Johnston, Rutherford's Vascular Surgery e-Book. (Elsevier Health Sciences; 2014).
M. Tavakolizadeh, A. Pourjavadi, M. Ansari, H. Tebyanian, S. Tabaei et al., An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel. Green Chem. 23(3), 1312–1329 (2021). https://doi.org/10.1039/D0GC02719G
A. Chanakira, R. Dutta, R. Charboneau, R. Barke, S.M. Santilli et al., Hypoxia differentially regulates arterial and venous smooth muscle cell proliferation via PDGFR-β and VEGFR-2 expression. Am. J. Physiol. Heart Circ. Physiol. 302(5), H1173–H1184 (2012). https://doi.org/10.1152/ajpheart.00411.2011
J. Paek, S.E. Park, Q. Lu, K.-T. Park, M. Cho, J.M. Oh et al., Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano 13(7), 7627–7643 (2019). https://doi.org/10.1021/acsnano.9b00686
L. Sherwood, Human Physiology: From Cells to Systems (Cengage learning; 2015).
S. Maghsoudi, B.T. Shahraki, N. Rabiee, R. Afshari, Y. Fatahi et al., Recent advancements in aptamer-bioconjugates: Sharpening stones for breast and prostate cancers targeting. J. Drug Deliv. Sci. Technol. 53, 101146 (2019). https://doi.org/10.1016/j.jddst.2019.101146
N. Rabiee, M. Bagherzadeh, M. Heidarian Haris, A.M. Ghadiri, F. Matloubi Moghaddam et al., Polymer-coated NH2-UIO-66 for the codelivery of DOX/pCRISPR. ACS Appl. Mater. Interf. 13(9), 10796–10811 (2021). https://doi.org/10.1021/acsami.1c01460
E.C. Novosel, C. Kleinhans, P. Kluger, Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63(4–5), 300–311 (2011). https://doi.org/10.1016/j.addr.2011.03.004
M.W. Laschke, T. Später, M. Menger, Microvascular fragments: more than just natural vascularization units. Trends Biotechn. 39, 24–33 (2020). https://doi.org/10.1016/j.tibtech.2020.06.001
O. Akhavan, E. Ghaderi, E. Abouei, S. Hatamie, E. Ghasemi, Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets. Carbon 66, 395–406 (2014). https://doi.org/10.1016/j.carbon.2013.09.015
Y. Wang, W.C. Lee, K.K. Manga, P.K. Ang, J. Lu et al., Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater. 24(31), 4285–4290 (2012). https://doi.org/10.1002/adma.201200846
O. Akhavan, Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J. Mater. Chem. B 4(19), 3169–3190 (2016). https://doi.org/10.1039/C6TB00152A
M.H. Norahan, M. Amroon, R. Ghahremanzadeh, N. Rabiee, N. Baheiraei, Reduced graphene oxide: osteogenic potential for bone tissue engineering. IET Nanobiotechn. 13(7), 720–725 (2019). https://doi.org/10.1049/iet-nbt.2019.0125
O. Akhavan, E. Ghaderi, M. Shahsavar, Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59, 200–211 (2013). https://doi.org/10.1016/j.carbon.2013.03.010
C. Heo, J. Yoo, S. Lee, A. Jo, S. Jung et al., The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32(1), 19–27 (2011). https://doi.org/10.1016/j.biomaterials.2010.08.095
H. Amani, E. Mostafavi, H. Arzaghi, S. Davaran, A. Akbarzadeh et al., Three-dimensional graphene foams: Synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater. Sci. Engin. 5(1), 193–214 (2018). https://doi.org/10.1021/acsbiomaterials.8b00658
S. Bahrami, N. Baheiraei, M. Mohseni, M. Razavi, A. Ghaderi et al., Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering. J. Biomater. Appl. 34(1), 74–85 (2019). https://doi.org/10.1177/0885328219839037
O. Akhavan, E. Ghaderi, S.A. Shirazian, R. Rahighi, Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97, 71–77 (2016). https://doi.org/10.1016/j.carbon.2015.06.079
K. Ashtari, H. Nazari, H. Ko, P. Tebon, M. Akhshik et al., Electrically conductive nanomaterials for cardiac tissue engineering. Adv. Drug Delivery Rev. 144, 162–179 (2019). https://doi.org/10.1016/j.addr.2019.06.001
R.O. Hynes, The extracellular matrix: Not just pretty fibrils. Science 326(5957), 1216–1219 (2009). https://doi.org/10.1126/science.1176009
N. Rabiee, M. Bagherzadeh, A.M. Ghadiri, Y. Fatahi, N. Baheiraei et al., Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Sci. Rep. 11(1), 1–15 (2021). https://doi.org/10.1038/s41598-021-86119-z
N. Rabiee, S. Ahmadvand, S. Ahmadi, Y. Fatahi, R. Dinarvand et al., Carbosilane dendrimers: drug and gene delivery applications. J. Drug Deliv. Sci. Techn. 101879 (2020).https://doi.org/10.1016/j.jddst.2020.101879
M.M. Martino, P.S. Briquez, A. Ranga, M.P. Lutolf, J.A. Hubbell, Heparin-binding domain of fibrin (ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. 110(12), 4563–4568 (2013). https://doi.org/10.1073/pnas.1221602110
M.M. Martino, S. Brkic, E. Bovo, M. Burger, D.J. Schaefer et al., Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front. Bioeng. Biotechnol. 3, 45 (2015). https://doi.org/10.3389/fbioe.2015.00045
E. Ruvinov, J. Leor, S. Cohen, The effects of controlled hgf delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31(16), 4573–4582 (2010). https://doi.org/10.1016/j.biomaterials.2010.02.026
J.E. Saik, D.J. Gould, E.M. Watkins, M.E. Dickinson, J.L. West, Covalently immobilized platelet-derived growth factor-bb promotes angiogenesis in biomimetic poly (ethylene glycol) hydrogels. Acta Biomater. 7(1), 133–143 (2011). https://doi.org/10.1016/j.actbio.2010.08.018
Q. Liu, Y. Huang, Y. Lan, Q. Zuo, C. Li et al., Acceleration of skin regeneration in full-thickness burns by incorporation of BFGF-loaded alginate microspheres into a CMCS-PVA hydrogel. J. Tissue Engin. Regen. Med. 11(5), 1562–1573 (2017). https://doi.org/10.1002/term.2057
S. Fleischer, A. Shapira, R. Feiner, T. Dvir, Modular assembly of thick multifunctional cardiac patches. Proc. Natl. Acad. Sci. 114(8), 1898–1903 (2017). https://doi.org/10.1073/pnas.1615728114
M. Omidi, V. Mansouri, L. Mohammadi Amirabad, L. Tayebi, Impact of lipid/magnesium hydroxide hybrid nanops on the stability of vascular endothelial growth factor-loaded PLGA microspheres. ACS Appl. Mater. Interf. (2021). https://doi.org/10.1021/acsami.0c22140
Z.D. Zhang, Y.Q. Xu, F. Chen, J.F. Luo, C. Liu, vessels. Sustained delivery of vascular endothelial growth factor using a dextran/poly (lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization. Heart Vessels 34(1), 167–176 (2019). https://doi.org/10.1007/s00380-018-1230-5
M. Omidi, L. Almeida, L. Tayebi, A. Biochemistry, Microfluidic-assisted fabrication of reverse micelle/PLGA hybrid microspheres for sustained vascular endothelial growth factor delivery. Biotechn. Appl. Biochem. 68, 616–625 (2020). https://doi.org/10.1002/bab.1971
M. Omidi, M. Hashemi, L. Tayebi, Microfluidic synthesis of PLGA/carbon quantum dot microspheres for vascular endothelial growth factor delivery. RSC Adv. 9(57), 33246–33256 (2019). https://doi.org/10.1039/C9RA06279C
G. Della Porta, M.C. Ciardulli, N. Maffulli, A review. Microcapsule technology for controlled growth factor release in musculoskeletal tissue engineering. Sports Med. Arthros. Rev. 26(2), e2–e9 (2018). https://doi.org/10.1097/JSA.0000000000000188
S. Fleischer, D.N. Tavakol, G. Vunjak-Novakovic, From arteries to capillaries: Approaches to engineering human vasculature. Adv. Funct. Mater. 30(37), 1910811 (2020). https://doi.org/10.1002/adfm.201910811
A. Moncion, K.J. Arlotta, E.G. O’Neill, M. Lin, L.A. Mohr et al., In vitro and in vivo assessment of controlled release and degradation of acoustically responsive scaffolds. Acta Biomater. 46, 221–233 (2016). https://doi.org/10.1016/j.actbio.2016.09.026
R.E. Liebano, A. Machado, Vascular endothelial growth factor release following electrical stimulation in human subjects. Adv. Wound Care 3(2), 98–103 (2014). https://doi.org/10.1089/wound.2013.0427
O. Akhavan, E. Ghaderi, The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation. J. Mater. Chem. B 2(34), 5602–5611 (2014). https://doi.org/10.1039/C4TB00668B
O. Akhavan, E. Ghaderi, Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons. Nanoscale 5(21), 10316–10326 (2013). https://doi.org/10.1039/c3nr02161k
C. Dionigi, L. Lungaro, V. Goranov, A. Riminucci, Y. Pineiro-Redondo et al., Smart magnetic poly (n-isopropylacrylamide) to control the release of bio-active molecules. J. Mater. Sci.: Mater. Med. 25(10), 2365–2371 (2014). https://doi.org/10.1007/s10856-014-5159-7
N. Kuzmic, T. Moore, D. Devadas, E.W. Young, Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems. Biomech. Model. Mechanobiol. 18(3), 717–731 (2019). https://doi.org/10.1007/s10237-018-01111-3
S. Kim, H. Lee, M. Chung, N.L. Jeon, Engineering of functional, perfusable 3d microvascular networks on a chip. Lab Chip 13(8), 1489–1500 (2013). https://doi.org/10.1039/c3lc41320a
A.T. Alsop, J.C. Pence, D.W. Weisgerber, B.A. Harley, R.C. Bailey, Photopatterning of vascular endothelial growth factor within collagen-glycosaminoglycan scaffolds can induce a spatially confined response in human umbilical vein endothelial cells. Acta Biomater. 10(11), 4715–4722 (2014). https://doi.org/10.1016/j.actbio.2014.07.002
M.H. Rich, M.K. Lee, K. Baek, J.H. Jeong, D.H. Kim et al., Material-mediated proangiogenic factor release pattern modulates quality of regenerated blood vessels. J. Control. Release 196, 363–369 (2014). https://doi.org/10.1016/j.jconrel.2014.10.020
V.S. Shirure, A. Lezia, A. Tao, L.F. Alonzo, S.C. George, Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 20(4), 493–504 (2017). https://doi.org/10.1007/s10456-017-9559-4
H.A. Strobel, A.D. Dikina, K. Levi, L.D. Solorio, E. Alsberg et al., Cellular self-assembly with microsphere incorporation for growth factor delivery within engineered vascular tissue rings. Tissue Engin. Part A 23(3–4), 143–155 (2017). https://doi.org/10.1089/ten.tea.2016.0260
A.F. Godier-Furnémont, T.P. Martens, M.S. Koeckert, L. Wan, J. Parks et al., Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Natl. Acad. Sci. 108(19), 7974–7979 (2011). https://doi.org/10.1073/pnas.1104619108
H.-M. Cho, K.-H. Lee, Y.-M. Shen, T.-J. Shin, P.-D. Ryu et al., Transplantation of hMSCs genome edited with LEF1 improves cardio-protective effects in myocardial infarction. Mol. Therapy-Nucleic Acids 19, 1186–1197 (2020). https://doi.org/10.1016/j.omtn.2020.01.007
E.A. Phelps, D.M. Headen, W.R. Taylor, P.M. Thulé, A.J. García, Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34(19), 4602–4611 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.012
P. Au, J. Tam, D. Fukumura, R.K. Jain, in Small Blood Vessel Engineering. (Springer; 2008), pp. 183–195. https://doi.org/10.1007/978-1-59745-443-8_11
Y.-W. Cheng, D.J. Shiwarski, R.L. Ball, K.A. Whitehead, A.W. Feinberg, Engineering aligned skeletal muscle tissue using decellularized plant-derived scaffolds. ACS Biomater. Sci. Eng. 6(5), 3046–3054 (2020). https://doi.org/10.1021/acsbiomaterials.0c00058
A. Dingle, K. Yap, Y. Gerrand, C. Taylor, E. Keramidaris et al., Characterization of isolated liver sinusoidal endothelial cells for liver bioengineering. Angiogenesis 21(3), 581–597 (2018). https://doi.org/10.1007/s10456-018-9610-0
J.A. Whisler, M.B. Chen, R.D. Kamm, Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng. Part C: Methods 20(7), 543–552 (2014). https://doi.org/10.1089/ten.tec.2013.0370
C.M. Ghajar, X. Chen, J.W. Harris, V. Suresh, C.C. Hughes et al., The effect of matrix density on the regulation of 3-d capillary morphogenesis. Biophys. J. 94(5), 1930–1941 (2008). https://doi.org/10.1529/biophysj.107.120774
S. Jeon, J.H. Heo, M.K. Kim, W. Jeong, H. Kang, High-precision 3d bio-dot printing to improve paracrine interaction between multiple types of cell spheroids. Adv. Funct. Mater. 30(52), 2005324 (2020). https://doi.org/10.1002/adfm.202005324
S. Bersini, M. Gilardi, G.S. Ugolini, V. Sansoni, G. Talo et al., Engineering an environment for the study of fibrosis: a 3d human muscle model with endothelium specificity and endomysium. Cell Rep. 25(13), 3858–3868. e3854 (2018). https://doi.org/10.1016/j.celrep.2018.11.092
T. Kageyama, Y.-S. Chun, J.J.S.r. Fukuda, Hair follicle germs containing vascular endothelial cells for hair regenerative medicine. Sci. Rep. 11(1), 1–10 (2021). https://doi.org/10.1038/s41598-020-79722-z
J. Kalucka, L.P. de Rooij, J. Goveia, K. Rohlenova, S.J. Dumas et al., Single-cell transcriptome atlas of murine endothelial cells. Cell 180(4), 764–779 (2020). https://doi.org/10.1016/j.cell.2020.01.015
A. Sivarapatna, M. Ghaedi, Y. Xiao, E. Han, B. Aryal et al., Engineered microvasculature in pdms networks using endothelial cells derived from human induced pluripotent stem cells. Cell Transp. 26(8), 1365–1379 (2017). https://doi.org/10.1177/0963689717720282
M.R. Kelly-Goss, R.S. Sweat, P.C. Stapor, S.M. Peirce, W.L. Murfee, Targeting pericytes for angiogenic therapies. Microcirculation 21(4), 345–357 (2014). https://doi.org/10.1111/micc.12107
X.-Y. Wang, Z.-H. Jin, B.-W. Gan, S. Xie et al., Engineering interconnected 3d vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Lab Chip 14(15), 2709–2716 (2014). https://doi.org/10.1039/C4LC00069B
K.A. DiVito, M.A. Daniele, S.A. Roberts, F.S. Ligler, A.A. Adams, Microfabricated blood vessels undergo neoangiogenesis. Biomaterials 138, 142–152 (2017). https://doi.org/10.1016/j.biomaterials.2017.05.012
S. Alimperti, T. Mirabella, V. Bajaj, W. Polacheck, D.M. Pirone et al., Three-dimensional biomimetic vascular model reveals a Rhoa, Rac1, and N-cadherin balance in mural cell-endothelial cell-regulated barrier function. Proc. Natl. Acad. Sci. 114(33), 8758–8763 (2017). https://doi.org/10.1073/pnas.1618333114
T. Sun, Q. Shi, Y. Yao, J. Sun, H. Wang et al., Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibres for a bottom-up tissue engineering approach. Biofabrication 11(3), 035029 (2019). https://doi.org/10.1088/1758-5090/ab1ee5
C. Peticone, D.D.S. Thompson, N. Dimov, B. Jevans, N. Glass et al., Characterisation of osteogenic and vascular responses of hmscs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform. J. Tissue Eng. Regen. Med. 11, 2041731420954712 (2020). https://doi.org/10.1177/2041731420954712
A. Peterson, D. Caldwell, A. Rioja, R. Rao, A. Putnam et al., Vasculogenesis and angiogenesis in modular collagen-fibrin microtissues. Biomater. Sci. 2(10), 1497–1508 (2014). https://doi.org/10.1039/C4BM00141A
G. Yang, B. Mahadik, J.Y. Choi, R.Y. Justine, T. Mollot et al., Fabrication of centimeter-sized 3d constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft. Acta Biomater. 121, 204–213 (2021). https://doi.org/10.1016/j.actbio.2020.11.040
C. Patsch, L. Challet-Meylan, E.C. Thoma, E. Urich, T. Heckel et al., Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat. Cell Biol. 17(8), 994–1003 (2015). https://doi.org/10.1038/ncb3205
G. Sriram, J.Y. Tan, I. Islam, A.J. Rufaihah, T. Cao, Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder-and serum-free conditions. Stem Cell Res. Therapy 6(1), 1–17 (2015). https://doi.org/10.1186/s13287-015-0260-5
S. Kusuma, Y.-I. Shen, D. Hanjaya-Putra, P. Mali, L. Cheng et al., Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc. Natl. Acad. Sci. 110(31), 12601–12606 (2013). https://doi.org/10.1073/pnas.1306562110
Y. Wu, R.-N. Zhang, J. Tang, Isolation and culture of vascular wall-resident cd34+ stem/progenitor cells. Cardiol. Plus 4(4), 116 (2019). https://doi.org/10.4103/cp.cp_19_19
S. Levenberg, J.S. Golub, M. Amit, J. Itskovitz-Eldor, R. Langer, Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. 99(7), 4391–4396 (2002). https://doi.org/10.1073/pnas.032074999
H. Cho, B.L. Macklin, Y.-Y. Lin, L. Zhou, M.J. Lai et al., Ipsc-derived endothelial cell response to hypoxia via SDF1a/CXCR4 axis facilitates incorporation to revascularize ischemic retina. JCI Insight 5(6), e131828 (2020). https://doi.org/10.1172/jci.insight.131828
K.-B. Celie, Y. Toyoda, X. Dong, K.A. Morrison, P. Zhang et al., Microstructured hydrogel scaffolds containing differential density interfaces promote rapid cellular invasion and vascularization. Acta Biomater. 91, 144–158 (2019). https://doi.org/10.1016/j.actbio.2019.04.027
J. Jamieson, B. Macklin, S. Gerecht, Pericytes derived from human pluripotent stem cells. Pericyte Biology-Novel Concepts 111–124 (2018). https://doi.org/10.1007/978-3-030-02601-1_9
A. Cochrane, H.J. Albers, R. Passier, C.L. Mummery, A. Van Den Berg et al., Advanced in vitro models of vascular biology: human induced pluripotent stem cells and organ-on-chip technology. Adv. Drug Deliv. Rev. 140, 68–77 (2019). https://doi.org/10.1016/j.addr.2018.06.007
A. Dar, H. Domev, O. Ben-Yosef, M. Tzukerman, N. Zeevi-Levin et al., Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1), 87–99 (2012). https://doi.org/10.1161/CIRCULATIONAHA.111.048264
M. Wanjare, S. Kusuma, S. Gerecht, Defining differences among perivascular cells derived from human pluripotent stem cells. Stem Cell Rep. 2(5), 561–575 (2014). https://doi.org/10.1016/j.stemcr.2014.03.004
E.A. Bulanova, E.V. Koudan, J. Degosserie, C. Heymans, F.D. Pereira et al., Bioprinting of a functional vascularized mouse thyroid gland construct. Biofabrication 9(3), 034105 (2017). https://doi.org/10.1088/1758-5090/aa7fdd
N. Mekhileri, K. Lim, G. Brown, I. Mutreja, B. Schon et al., Automated 3d bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication 10(2), 024103 (2018). https://doi.org/10.1088/1758-5090/aa9ef1
L. Gutzweiler, S. Kartmann, K. Troendle, L. Benning, G. Finkenzeller et al., Large scale production and controlled deposition of single huvec spheroids for bioprinting applications. Biofabrication 9(2), 025027 (2017). https://doi.org/10.1088/1758-5090/aa7218
N.I. Moldovan, N. Hibino, K.J.T.E.P.B.R. Nakayama, Principles of the kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng. Part B: Rev. 23(3), 237–244 (2017). https://doi.org/10.1089/ten.teb.2016.0322
B.C. Ip, F. Cui, A. Tripathi, J.R.J.B. Morgan, The bio-gripper: A fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing. Biofabrication 8(2), 025015 (2016). https://doi.org/10.1088/1758-5090/8/2/025015
A.M. Blakely, K.L. Manning, A. Tripathi, J.R. Morgan, Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Eng. Part C: Methods 21(7), 737–746 (2015). https://doi.org/10.1089/ten.tec.2014.0439
Y. Yu, K.K. Moncal, J. Li, W. Peng, I. Rivero et al., Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci. Rep. 6(1), 1–11 (2016). https://doi.org/10.1038/srep28714
Q. Mao, Y. Wang, Y. Li, S. Juengpanich, W. Li et al., Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater. Sci. Eng. C 109, 110625 (2020). https://doi.org/10.1016/j.msec.2020.110625
V. Mironov, R.P. Visconti, V. Kasyanov, G. Forgacs, C.J. Drake et al., Organ printing: tissue spheroids as building blocks. Biomaterials 30(12), 2164–2174 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.084
M.E. Prendergast, G. Montoya, T. Pereira, J. Lewicki, R. Solorzano et al., Microphysiological systems: automated fabrication via extrusion bioprinting. Microphysiol. Syst. 2, 1–16 (2018). https://doi.org/10.21037/mps.2018.03.01
W. Lee, Y. Hong, G. Dai, 3d bioprinting of vascular conduits for pediatric congenital heart repairs. Transl. Res. 211, 35–45 (2019). https://doi.org/10.1016/j.trsl.2019.03.007
H. Xu, J. Casillas, C. Xu, Effects of printing conditions on cell distribution within microspheres during inkjet-based bioprinting. AIP Adv. 9(9), 095055 (2019). https://doi.org/10.1063/1.5116371
S. Zhang, G. Li, J. Man, S. Zhang, J. Li et al., Fabrication of microspheres from high-viscosity bioink using a novel microfluidic-based 3d bioprinting nozzle. Micromachines 11(7), 681 (2020). https://doi.org/10.3390/mi11070681
J. Kim, I.K. Shim, D.G. Hwang, Y.N. Lee, M. Kim et al., 3d cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J. Mater. Chem. B 7(10), 1773–1781 (2019). https://doi.org/10.1039/C8TB02787K
Y. Ji, Q. Yang, G. Huang, M. Shen, Z. Jian et al., Improved resolution and fidelity of droplet-based bioprinting by upward ejection. ACS Biomater. Sci. Eng. 5(8), 4112–4121 (2019). https://doi.org/10.1021/acsbiomaterials.9b00400
S. Yamaguchi, A. Ueno, Y. Akiyama, K. Morishima, Cell patterning through inkjet printing of one cell per droplet. Biofabrication 4(4), 045005 (2012). https://doi.org/10.1088/1758-5082/4/4/045005
L. Benning, L. Gutzweiler, K. Tröndle, J. Riba, R. Zengerle et al., Assessment of hydrogels for bioprinting of endothelial cells. J. Biomed. Mater. Res. Part A 106(4), 935–947 (2018). https://doi.org/10.1002/jbm.a.36291
W.C. Wilson Jr., T. Boland, Cell and organ printing 1: Protein and cell printers. Anat. Rec. 272(2), 491–496 (2003). https://doi.org/10.1002/ar.a.10057
D. Murata, K. Arai, K.J.A.h.m. Nakayama, Scaffold‐free bio‐3d printing using spheroids as "bio‐inks" for tissue (re‐) construction and drug response tests. Adv. Healthcare Mater. 9(15), 1901831 (2020). https://doi.org/10.1002/adhm.201901831
I.N. Aguilar, L.J. Smith, D.J. Olivos III., T.-M.G. Chu, M.A. Kacena et al., Scaffold-free bioprinting of mesenchymal stem cells with the regenova printer: Optimization of printing parameters. Bioprinting 15, e00048 (2019). https://doi.org/10.1016/j.bprint.2019.e00048
K. Nakayama, Kenzan Method for Scaffold-free Biofabrication (2021). https://doi.org/10.1007/978-3-030-58688-1
N.I. Moldovan, N. Hibino, K. Nakayama, Principles of the kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng. Part B: Rev. 23(3), 237–244 (2017). https://doi.org/10.1089/ten.teb.2016.0322
H. Matsushita, V. Nguyen, K. Nurminsky, N. Hibino, in Cardiac Tissue Creation with the Kenzan Method. (Springer; 2021), pp. 109–115. https://doi.org/10.1007/978-3-030-58688-1_8
M. Itoh, Y. Mukae, T. Kitsuka, K. Arai, A. Nakamura et al., Development of an immunodeficient pig model allowing long-term accommodation of artificial human vascular tubes. Nat. Commun. 10(1), 1–8 (2019). https://doi.org/10.1038/s41467-019-10107-1
X.-Y. Zhang, Y. Yanagi, Z. Sheng, K. Nagata, K. Nakayama et al., Regeneration of diaphragm with bio-3d cellular patch. Biomaterials 167, 1–14 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.012
A.M. Blakely, K.L. Manning, A. Tripathi, J. Morgan, Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Engin. Part C Methods 21(7), 737–746 (2015). https://doi.org/10.1089/ten.tec.2014.0439
I.T., Ozbolat, Medicine. Scaffold-based or scaffold-free bioprinting: Competing or complementing approaches? J. Nanotechnol. Eng. Med. 6(2), 024701 (2015). https://doi.org/10.1115/1.4030414
I.T. Ozbolat, Medicine. Scaffold-based or scaffold-free bioprinting: Competing or complementing approaches? J. Nanotechnol. Eng. Med. 6(2), 024701 (2015). https://doi.org/10.1115/1.4030414
S. Zhang, Z. Wan, R.D. Kamm, Vascularized organoids on a chip: Strategies for engineering organoids with functional vasculature. Lab Chip 21(3), 473–488 (2021). https://doi.org/10.1039/D0LC01186J
C.-T. Kuo, C.-L. Chiang, R.Y.-J. Huang, H. Lee, A.M. Wo, Configurable 2d and 3d spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial-mesenchymal transition characteristics. NPG Asia Mater. 4(9), e27 (2012). https://doi.org/10.1038/am.2012.50
K.C. Scheiner, F. Coulter, R.F. Maas-Bakker, G. Ghersi, T.T. Nguyen et al., Vascular endothelial growth factor-releasing microspheres based on poly (ε-caprolactone-PEG-ε-caprolactone)-b-poly (l-lactide) multiblock copolymers incorporated in a three-dimensional printed poly (dimethylsiloxane) cell macroencapsulation device. J. Pharm. Sci. 109(1), 863–870 (2020). https://doi.org/10.1016/j.xphs.2019.10.028
X. Xu, C. Liang, X. Gao, H. Huang, X. Xing et al., Adipose tissue-derived microvascular fragments as vascularization units for dental pulp regeneration. J. Endodontics 47, 1092–1100 (2021). https://doi.org/10.1016/j.joen.2021.04.012
B.A. Juliar, M.T. Keating, Y.P. Kong, E.L. Botvinick, A. Putnam, Sprouting angiogenesis induces significant mechanical heterogeneities and ecm stiffening across length scales in fibrin hydrogels. Biomaterials 162, 99–108 (2018). https://doi.org/10.1016/j.biomaterials.2018.02.012
M. Mahmoudi, O. Akhavan, M. Ghavami, F. Rezaee, S. Ghiasi, Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 4(23), 7322–7325 (2012). https://doi.org/10.1039/c2nr31657a
L. De Moor, I. Merovci, S. Baetens, J. Verstraeten, P. Kowalska et al., High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication 10(3), 035009 (2018). https://doi.org/10.1088/1758-5090/aac7e6
M. Kuss, B. Duan, in 3D Bioprinting for Cardiovascular Tissue Engineering. (Springer; 2017), pp. 167–182. https://doi.org/10.1007/978-3-319-53523-4_18
K. Haase, R. Kamm, Advances in on-chip vascularization. Regen. Med. 12(3), 285–302 (2017). https://doi.org/10.2217/rme-2016-0152
P. Wu, B. Ringeisen, J. Callahan, M. Brooks, D. Bubb et al., The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and maple direct write. Thin Solid Films 398, 607–614 (2001). https://doi.org/10.1016/S0040-6090(01)01347-5
O. Kérourédan, D. Hakobyan, M. Rémy, S. Ziane, N. Dusserre et al., In situ prevascularization designed by laser-assisted bioprinting: Effect on bone regeneration. Biofabrication 11(4), 045002 (2019). https://doi.org/10.1088/1758-5090/ab2620
P. Wu, B. Ringeisen, Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2(1), 014111 (2010). https://doi.org/10.1088/1758-5082/2/1/014111
X. Cui, T. Boland, Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30(31), 6221–6227 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.056
E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, J. De Boer, Spheroid culture as a tool for creating 3d complex tissues. Trends Biotechnol. 31(2), 108–115 (2013). https://doi.org/10.1016/j.tibtech.2012.12.003
M. Hospodiuk, M. Dey, B. Ayan, D. Sosnoski, K.K. Moncal et al., Sprouting angiogenesis in engineered pseudo islets. Biofabrication 10(3), 035003 (2018). https://doi.org/10.1088/1758-5090/aab002
W. Peng, P. Datta, B. Ayan, V. Ozbolat, D. Sosnoski et al., 3d bioprinting for drug discovery and development in pharmaceutics. Acta Biomater. 57, 26–46 (2017). https://doi.org/10.1016/j.actbio.2017.05.025
C. Norotte, F.S. Marga, L.E. Niklason, G. Forgacs, Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30), 5910–5917 (2009). https://doi.org/10.1016/j.biomaterials.2009.06.034
M.B. Chen, Engineered microvasculature platforms to study tumor-host-matrix interactions during metastatic seeding (2017).
J. Ahn, H. Lee, H. Kang, H. Choi, K. Son et al., Pneumatically actuated microfluidic platform for reconstituting 3d vascular tissue compression. Appl. Sci. 10(6), 2027 (2020). https://doi.org/10.3390/app10062027
J. Lim, H. Ching, J.-K. Yoon, N.L. Jeon, Y. Kim, Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance. Nano Converg. 8(1), 1–16 (2021). https://doi.org/10.1186/s40580-021-00261-y
J.M. Kelm, V. Lorber, J.G. Snedeker, D. Schmidt, A. Broggini-Tenzer et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J. Biotechn. 148(1), 46–55 (2010). https://doi.org/10.1258/rsmsmj.55.3.46
G.H. Lee, J.S. Lee, G.-H. Lee, W.Y. Joung, S.H. Kim et al., Networked concave microwell arrays for constructing 3d cell spheroids. Biofabrication 10(1), 015001 (2017). https://doi.org/10.1088/1758-5090/aa9876
J. Park, G.-H. Lee, J.Y. Park, J.C. Lee, H. Kim, Hypergravity-induced multicellular spheroid generation with different morphological patterns precisely controlled on a centrifugal microfluidic platform. Biofabrication 9(4), 045006 (2017). https://doi.org/10.1088/1758-5090/aa9472
M.A. Skylar-Scott, S.G. Uzel, L.L. Nam, J.H. Ahrens, R.L. Truby et al., Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5(9), eaaw2459 (2019). https://doi.org/10.1126/sciadv.aaw2459
P. Datta, B. Ayan, I. Ozbolat, Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater. 51, 1–20 (2017). https://doi.org/10.1016/j.actbio.2017.01.035
C.R. Thoma, M. Zimmermann, I. Agarkova, J.M. Kelm, W.J. Krek, 3d cell culture systems modeling tumor growth determinants in cancer target discovery. Adv. Drug Delivery Rev. 69, 29–41 (2014). https://doi.org/10.1016/j.addr.2014.03.001
S. Ahn, H. Lee, J. Puetzer, L.J. Bonassar, G.J. Kim, Fabrication of cell-laden three-dimensional alginate-scaffolds with an aerosol cross-linking process. J. Mater. Chem. 22(36), 18735–18740 (2012). https://doi.org/10.1039/c2jm33749e
B. Ayan, D.N. Heo, Z. Zhang, M. Dey, A. Povilianskas et al., Aspiration-assisted bioprinting for precise positioning of biologics. Sci. Adv. 6(10), eaaw5111 (2020). https://doi.org/10.1126/sciadv.aaw5111
A. Torres, S. Bidarra, M. Pinto, P. Aguiar, E. Silva et al., Guiding morphogenesis in cell-instructive microgels for therapeutic angiogenesis. Biomaterials 154, 34–47 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.051
C. Gentile, P.A. Fleming, V. Mironov, K.M. Argraves, W.S. Argraves et al., VEGF-mediated fusion in the generation of uniluminal vascular spheroids. Dev. Dyn. 237(10), 2918–2925 (2008). https://doi.org/10.1002/dvdy.21720
P.A. Fleming, W.S. Argraves, C. Gentile, A. Neagu, G. Forgacs et al., Fusion of uniluminal vascular spheroids: A model for assembly of blood vessels. Dev. Dyn. 239(2), 398–406 (2010). https://doi.org/10.1002/dvdy.22161
J.M. Kelm, V. Djonov, L.M. Ittner, D. Fluri, W. Born et al., Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Engin. Part C Methods 12(8), 2151–2160 (2006). https://doi.org/10.1089/ten.2006.12.2151
M. Sofman, A. Brown, L.G. Griffith, P.T. Hammond, A modular polymer microbead angiogenesis scaffold to characterize the effects of adhesion ligand density on angiogenic sprouting. Biomaterials 264, 120231 (2021). https://doi.org/10.1016/j.biomaterials.2020.120231
A. Alajati, A.M. Laib, H. Weber, A.M. Boos, A. Bartol et al., Spheroid-based engineering of a human vasculature in mice. Nat. Methods 5(5), 439–445 (2008). https://doi.org/10.1038/nmeth.1198
Y. Atlas, C. Gorin, A. Novais, M.F. Marchand, E. Chatzopoulou et al., Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials 268, 120594 (2021). https://doi.org/10.1016/j.biomaterials.2020.120594
S. Pattanaik, C. Arbra, H. Bainbridge, S.G. Dennis, S.A. Fann et al., Vascular tissue engineering using scaffold-free prevascular endothelial-fibroblast constructs. BioResearch 8(1), 1–15 (2019). https://doi.org/10.1089/biores.2018.0039
K. Jakab, A. Neagu, V. Mironov, R.R. Markwald, G. Forgacs, Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc. Natl. Acad. Sci. 101(9), 2864–2869 (2004). https://doi.org/10.1073/pnas.0400164101
K. Jakab, C. Norotte, B. Damon, F. Marga, A. Neagu et al., Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 14(3), 413–421 (2008). https://doi.org/10.1089/tea.2007.0173
N.E. Friend, A.Y. Rioja, Y.P. Kong, J.A. Beamish, X. Hong et al., Injectable pre-cultured tissue modules catalyze the formation of extensive functional microvasculature in vivo. Sci. Rep. 10(1), 1–16 (2020). https://doi.org/10.1038/s41598-020-72576-5
Y. Tan, D.J. Richards, T.C. Trusk, R.P. Visconti, M.J. Yost et al., 3d printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6(2), 024111 (2014). https://doi.org/10.1088/1758-5082/6/2/024111
C. Xu, W. Chai, Y. Huang, R.R. Markwald, Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol. Bioeng. 109(12), 3152–3160 (2012). https://doi.org/10.1002/bit.24591
X. Yang, V. Mironov, Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. J. Theor. Biol. 303, 110–118 (2012). https://doi.org/10.1016/j.jtbi.2012.03.003
I.T. Ozbolat, Y. Yu, Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60(3), 691–699 (2013). https://doi.org/10.1109/TBME.2013.2243912
A. Shafiee, M. McCune, G. Forgacs, I. Kosztin, Post-deposition bioink self-assembly: a quantitative study. Biofabrication 7(4), 045005 (2015). https://doi.org/10.1088/1758-5090/7/4/045005
A.Y. Rioja, E.L. Daley, J.C. Habif, A.J. Putnam, J.P. Stegemann, Distributed vasculogenesis from modular agarose-hydroxyapatite-fibrinogen microbeads. Acta Biomater. 55, 144–152 (2017). https://doi.org/10.1016/j.actbio.2017.03.050
P.M. Baptista, D. Vyas, E. Moran, Z. Wang, S. Soker, in Human Liver Bioengineering Using a Whole Liver Decellularized Bioscaffold. (Springer; 2013), pp. 289–298. https://doi.org/10.1007/978-1-62703-363-3_24
F. Ruedinger, A. Lavrentieva, C. Blume, I. Pepelanova, T. Scheper, biotechnology. Hydrogels for 3d mammalian cell culture: A starting guide for laboratory practice. Appl. Microbiol. Biotechn. 99(2), 623–636 (2015). https://doi.org/10.1007/s00253-014-6253-y
S. Hong, S.-J. Song, J.Y. Lee, H. Jang, J. Choi et al., Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J. Biosci. Bioeng. 116(2), 224–230 (2013). https://doi.org/10.1016/j.jbiosc.2013.02.011
M. Sarker, S. Naghieh, N. Sharma, L. Ning, X. Chen, Bioprinting of vascularized tissue scaffolds: Influence of biopolymer, cells, growth factors, and gene delivery. J. Healthcare Eng. 9156921 (2019). https://doi.org/10.1155/2019/9156921