Self-Healing MXene- and Graphene-Based Composites: Properties and Applications
Corresponding Author: Siavash Iravani
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 100
Abstract
Today, self-healing graphene- and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications. Different studies have focused on designing novel self-healing graphene- and MXene-based composites with enhanced sensitivity, stretchability, and flexibility as well as improved electrical conductivity, healing efficacy, mechanical properties, and energy conversion efficacy. These composites with self-healing properties can be employed in the field of wearable sensors, supercapacitors, anticorrosive coatings, electromagnetic interference shielding, electronic-skin, soft robotics, etc. However, it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability, suitable adhesiveness, ideal durability, high stretchability, immediate self-healing responsibility, and outstanding electromagnetic features. Besides, optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated. MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area, which are important to evolve biomedical and sensing applications. However, flexibility and stretchability are important criteria that need to be improved for their future applications. Herein, the most recent advancements pertaining to the applications and properties of self-healing graphene- and MXene-based composites are deliberated, focusing on crucial challenges and future perspectives.
Highlights:
1 Self-healing graphene- and MXene-based composites can be deployed in wearable sensors, supercapacitors, anticorrosive coatings, electromagnetic interference shielding, electronic-skin, and soft robotics.
2 Self-healing graphene- and MXene-based composites have shown improved electrical conductivity, mechanical properties, healing efficacy, and energy conversion efficacy.
3 Self-healing structures can open up considerable new horizons in the future of healthcare, sensors, electronics, robotics, supercapacitors/batteries, coatings, and biomedicine.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Islam, G. Bhat, Progress and challenges in self-healing composite materials. Mater. Adv. 2, 1896–1926 (2021). https://doi.org/10.1039/D0MA00873G
- N.J. Kanu, E. Gupta, U.K. Vates, G.K. Singh, Self-healing composites: a state-of-the-art review. Compos. Part A Appl. Sci. 121, 474–486 (2019). https://doi.org/10.1016/j.compositesa.2019.04.012
- N.N.F. Nik Md Noordin Kahar, A.F. Osman, E. Alosime, N. Arsat, N.A. Mohammad Azman et al., The versatility of polymeric materials as self-healing agents for various types of applications: a review. Polymers 13, 1194 (2021). https://doi.org/10.3390/polym13081194
- C.E. Diesendruck, N.R. Sottos, J.S. Moore, S.R. White, Biomimetic self-healing. Angew Chem. Int. Ed. 54, 10428–10447 (2015). https://doi.org/10.1002/anie.201500484
- M. AbdolahZadeh, S. van der Zwaag, S.J. Garcia, Self-healing corrosion-protective sol–gel coatings based on extrinsic and intrinsic healing approaches, in Self-healing materials. ed. by M.D. Hager, S. van der Zwaag, U.S. Schubert (Springer International Publishing, Cham, 2016), pp.185–218. https://doi.org/10.1007/12_2015_339
- J. Xie, P. Yu, Z. Wang, J. Li, Recent advances of self-healing polymer materials via supramolecular forces for biomedical applications. Biomacromol 23, 641–660 (2022). https://doi.org/10.1021/acs.biomac.1c01647
- D.G. Bekas, K. Tsirka, D. Baltzis, A.S. Paipetis, Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos. B Eng. 87, 92–119 (2016). https://doi.org/10.1016/j.compositesb.2015.09.057
- S. Wang, M.W. Urban, Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020). https://doi.org/10.1038/s41578-020-0202-4
- X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional E-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
- J. He, Z. Zhang, Y. Yang, F. Ren, J. Li et al., Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 13, 80 (2021). https://doi.org/10.1007/s40820-020-00585-0
- R.V.S.P. Sanka, B. Krishnakumar, Y. Leterrier, S. Pandey, S. Rana et al., Soft self-healing nanocomposites. Front. Mater. 6, 137 (2019). https://doi.org/10.3389/fmats.2019.00137
- L. Zhai, A. Narkar, K. Ahn, Self-healing polymers with nanomaterials and nanostructures. Nano Today 30, 100826 (2020). https://doi.org/10.1016/j.nantod.2019.100826
- J. Zhu, G.S. Xiao, X.X. Zuo, Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries. Nano-Micro Lett. 12, 120 (2020). https://doi.org/10.1007/s40820-020-00453-x
- A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao et al., Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12, 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
- P. Iravani, S. Iravani, R.S. Varma, MXene-chitosan composites and their biomedical potentials. Micromachines 13, 1383 (2022). https://doi.org/10.3390/mi13091383
- S. Iravani, R.S. Varma, MXenes for cancer therapy and diagnosis: recent advances and current challenges. ACS Biomater. Sci. Eng. 7, 1900–1913 (2021). https://doi.org/10.1021/acsbiomaterials.0c01763
- S. Iravani, R.S. Varma, MXenes in photomedicine: advances and prospects. Chem. Commun. 58, 7336–7350 (2022). https://doi.org/10.1039/D2CC01694J
- S. Iravani, R.S. Varma, Bioinspired and biomimetic MXene-based structures with fascinating properties: recent advances. Mater. Adv. 3, 4783–4796 (2022). https://doi.org/10.1039/D2MA00151A
- E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14, 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
- A. Shafiee, S. Iravani, R.S. Varma, Graphene and graphene oxide with anticancer applications: challenges and future perspectives. MedComm 3, e118 (2022). https://doi.org/10.1002/mco2.118
- D. Lai, X. Chen, G. Wang, X. Xu, Y. Wang, Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 188, 513–522 (2022). https://doi.org/10.1016/j.carbon.2021.12.047
- S. Iravani, R.S. Varma, MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Mater. Adv. 2, 2906–2917 (2021). https://doi.org/10.1039/D1MA00189B
- S. Iravani, MXenes and MXene-based, (nano)structures: a perspective on greener synthesis and biomedical prospects. Ceram. Int. 48, 24144–24156 (2022). https://doi.org/10.1016/j.ceramint.2022.05.137
- P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
- Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
- Y. Gogotsi, Q. Huang, MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021). https://doi.org/10.1021/acsnano.1c03161
- C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu et al., Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020). https://doi.org/10.1002/adem.201901241
- C.E. Shuck, K. Ventura-Martinez, A. Goad, S. Uzun, M. Shekhirev et al., Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28, 326–338 (2021). https://doi.org/10.1021/acs.chas.1c00051
- S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over mxenes-based materials. Nano-Micro Lett. 14, 178 (2022). https://doi.org/10.1007/s40820-022-00901-w
- S. Iravani, R.S. Varma, MXene-based composites as nanozymes in biomedicine: a perspective. Nano-Micro Lett. 14, 213 (2022). https://doi.org/10.1007/s40820-022-00958-7
- I. Ihsanullah, MXenes, (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. J. Chem. Eng. 388, 124340 (2020). https://doi.org/10.1016/j.cej.2020.124340
- I. Ihsanullah, MXenes as next-generation materials for the photocatalytic degradation of pharmaceuticals in water. J. Environ. Chem. Eng. 10, 107381 (2022). https://doi.org/10.1016/j.jece.2022.107381
- A. Iqbal, J. Kwon, M.-K. Kim, C.M. Koo, MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater. Today Adv. 9, 100124 (2021). https://doi.org/10.1016/j.mtadv.2020.100124
- S. Iravani, R.S. Varma, Smart MXene quantum dot-based nanosystems for biomedical applications. Nanomaterials 12, 1200 (2022). https://doi.org/10.3390/nano12071200
- H. Wang, Z. Cui, S.-A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14, 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
- G. Ge, Y.-Z. Zhang, W. Zhang, W. Yuan, J.K. El-Demellawi et al., Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano 15, 2698–2706 (2021). https://doi.org/10.1021/acsnano.0c07998
- K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang et al., Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Appl. Mater. Interfaces 12, 45306–45314 (2020). https://doi.org/10.1021/acsami.0c13653
- J.N. Ma, Y.L. Zhang, Y.Q. Liu, D.D. Han, J.W. Mao et al., Heterogeneous self-healing assembly of MXene and graphene oxide enables producing free-standing and self-reparable soft electronics and robots. Sci. Bull. 67, 501–511 (2022). https://doi.org/10.1016/j.scib.2021.11.015
- S. Iravani, R.S. Varma, MXenes in cancer nanotheranostics. Nanomaterials 12, 3360 (2022). https://doi.org/10.3390/nano12193360
- M. Khatami, S. Iravani, MXenes and MXene-based materials for the removal of water pollutants: challenges and opportunities. Comments Inorg. Chem. 41, 213–248 (2021). https://doi.org/10.1080/02603594.2021.1922396
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- Y. Dall’Agnese, P. Rozier, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitance of two-dimensional titanium carbide, (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.036
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10, 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
- A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14, 100 (2022). https://doi.org/10.1007/s40820-022-00845-1
- Y. Liu, W. Zhang, W. Zheng, Quantum dots compete at the acme of MXene family for the optimal catalysis. Nano-Micro Lett. 14, 158 (2022). https://doi.org/10.1007/s40820-022-00908-3
- Y. Zhang, K. Chen, Y. Li, J. Lan, B. Yan et al., High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor. ACS Appl. Mater. Interfaces 11, 47350–47357 (2019). https://doi.org/10.1021/acsami.9b16078
- X. Li, Z. Xue, W. Sun, J. Chu, Q. Wang et al., Bio-inspired self-healing MXene/polyurethane coating with superior active/passive anticorrosion performance for Mg alloy. Chem. Eng. J. 454, 140187 (2023). https://doi.org/10.1016/j.cej.2022.140187
- S. Sagadevan, M. Mehmood Shahid, Z. Yiqiang, W.-C. Oh, T. Soga et al., Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnol. Rev. 10, 605–635 (2021). https://doi.org/10.1515/ntrev-2021-0043
- L. Tang, J. Tan, H. Nong, B. Liu, H.-M. Cheng, Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2, 36–47 (2021). https://doi.org/10.1021/accountsmr.0c00063
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(1581), 15 (2021). https://doi.org/10.1126/science.abf1581
- K. Chen, Y. Hu, F. Wang, M. Liu, P. Liu et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf. A Physicochem. Eng. Asp. 645, 128897 (2022). https://doi.org/10.1016/j.colsurfa.2022.128897
- J. Wang, T. Dai, Y. Zhou, A. Mohamed, G. Yuan et al., Adhesive and high-sensitivity modified Ti3C2TX(MXene)-based organohydrogels with wide work temperature range for wearable sensors. J. Colloid Interface Sci. 613, 94–102 (2022). https://doi.org/10.1016/j.jcis.2022.01.021
- M. Qin, W. Yuan, X. Zhang, Y. Cheng, M. Xu et al., Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf. B 214, 112482 (2022). https://doi.org/10.1016/j.colsurfb.2022.112482
- X. Wu, H. Liao, D. Ma, M. Chao, Y. Wang et al., A wearable, self-adhesive, long-lastingly moist and healable epidermal sensor assembled from conductive MXene nanocomposites. J. Mater. Chem. C 8, 1788–1795 (2020). https://doi.org/10.1039/C9TC05575D
- Z. Wang, Y. Liu, D. Zhang, K. Zhang, C. Gao et al., Tough, stretchable and self-healing C-MXenes/PDMS conductive composites as sensitive strain sensors. Compos. Sci. Technol. 216, 109042 (2021). https://doi.org/10.1016/j.compscitech.2021.109042
- Z. Wang, K. Zhang, Y. Liu, H. Zhao, C. Gao et al., Modified MXene-doped conductive organosilicon elastomer with high-stretchable, toughness, and self-healable for strain sensors. Compos. Struct. 282, 115071 (2022). https://doi.org/10.1016/j.compstruct.2021.115071
- L. Zhang, X. Zhang, H. Zhang, L. Xu, D. Wang et al., Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. J. Chem. Eng. 434, 134751 (2022). https://doi.org/10.1016/j.cej.2022.134751
- X. Li, Y. Ma, P. Shen, C. Zhang, J. Yan et al., Self-healing microsupercapacitors with size-dependent 2D MXene. ChemElectroChem 7, 821–829 (2020). https://doi.org/10.1002/celc.201902099
- T. Yu, X. Lei, Y. Zhou, H. Chen, Ti3C2Tx MXenes reinforced PAA/CS hydrogels with self-healing function as flexible supercapacitor electrodes. Polym. Adv. Technol. 32, 3167–3179 (2021). https://doi.org/10.1002/pat.5329
- J. Yin, K. Wei, J. Zhang, S. Liu, X. Wang et al., MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 3, 100893 (2022). https://doi.org/10.1016/j.xcrp.2022.100893
- X. Sun, C. Ma, F. Ma, T. Wang, C. Feng et al., A novel coating with SiO2 anchored on MXene loading tannic acid for self-healing anticorrosive performance. J. Alloys Compd. 928, 167202 (2022). https://doi.org/10.1016/j.jallcom.2022.167202
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- Z. Tan, H. Zhao, F. Sun, L. Ran, L. Yi et al., Fabrication of chitosan/MXene multilayered film based on layer-by-layer assembly: toward enhanced electromagnetic interference shielding and thermal management capacity. Compos. Part A Appl. Sci. 155, 106809 (2022). https://doi.org/10.1016/j.compositesa.2022.106809
- W. Wang, X. Bing, Y. Zhou, M. Geng, Y. Zhan et al., Tunable electromagnetic interference shielding ability of MXene/chitosan/silver nanowire sandwich films. Funct. Mater. Lett. 14, 2151041 (2021). https://doi.org/10.1142/S1793604721510413
- X. Zheng, H. Zhang, Z. Liu, R. Jiang, X. Zhou, Functional composite electromagnetic shielding materials for aerospace, electronics and wearable fields. Mater. Today Commun. 33, 104498 (2022). https://doi.org/10.1016/j.mtcomm.2022.104498
- X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14, 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
- C. Jiao, Z. Deng, P. Min, J. Lai, Q. Gou et al., Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon 198, 179–187 (2022). https://doi.org/10.1016/j.carbon.2022.07.017
- X. Liu, J. Wu, J. He, L. Zhang, Electromagnetic interference shielding effectiveness of titanium carbide sheets. Mater. Lett. 205, 261–263 (2017). https://doi.org/10.1016/j.matlet.2017.06.101
- L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. B Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
- W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. J. Chem. Eng. 426, 130729 (2021). https://doi.org/10.1016/j.cej.2021.130729
- H. Li, X. Ru, Y. Song, H. Wang, C. Yang et al., Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 227, 109602 (2022). https://doi.org/10.1016/j.compscitech.2022.109602
- S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- S. Kwon, R. Ma, U. Kim, H.R. Choi, S. Baik, Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 68, 118–124 (2014). https://doi.org/10.1016/j.carbon.2013.10.070
- J. Liu, G. Song, C. He, H. Wang, Self-healing in tough graphene oxide composite hydrogels. Macromol. Rapid Commun. 34, 1002–1007 (2013). https://doi.org/10.1002/marc.201300242
- X. Xiao, T. Xie, Y.-T. Cheng, Self-healable graphene polymer composites. J. Mater. Chem. 20, 3508–3514 (2010). https://doi.org/10.1039/C0JM00307G
- S.M.M. Hizam, A.M. Al-Dhahebi, M.S. Mohamed Saheed, Recent advances in graphene-based nanocomposites for ammonia detection. Polymers 14, 5125 (2022). https://doi.org/10.3390/polym14235125
- Y. Du, D. Li, L. Liu, G. Gai, Recent achievements of self-healing graphene/polymer composites. Polymers 10, 114 (2018). https://doi.org/10.3390/polym10020114
- K. VijayaSekhar, S.G. Acharyya, S. Debroy, V.P.K. Miriyala, A. Acharyya, Self-healing phenomena of graphene: potential and applications. Open Phys. 14, 364–370 (2016). https://doi.org/10.1515/phys-2016-0040
- S. Debroy, V. Pavan Kumar Miriyala, K. Vijaya Sekhar, S.G. Acharyya, A. Acharyya, Self healing nature of bilayer graphene. Superlatt. Microstr. 96, 26–35 (2016). https://doi.org/10.1016/j.spmi.2016.05.010
- S. Debroy, V.P.K. Miriyala, K.V. Sekhar, S. Ghosh Acharyya, A. Acharyya, Graphene heals thy cracks. Comput. Mater. Sci. 109, 84–89 (2015). https://doi.org/10.1016/j.commatsci.2015.05.025
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
- C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. chem. 8, 618–624 (2016). https://doi.org/10.1038/nchem.2492
- H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14, 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
- M. Zhong, Y.-T. Liu, X.-M. Xie, Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J. Mater. Chem. B 3, 4001–4008 (2015). https://doi.org/10.1039/C5TB00075K
- X. Dai, Y. Du, J. Yang, D. Wang, J. Gu et al., Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 174, 27–32 (2019). https://doi.org/10.1016/j.compscitech.2019.02.018
- L. Huang, N. Yi, Y. Wu, Y. Zhang, Q. Zhang et al., Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv. Mater. 25, 2224–2228 (2013). https://doi.org/10.1002/adma.201204768
- S. Thakur, N. Karak, Tuning of sunlight-induced self-cleaning and self-healing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2–reduced graphene oxide nanohybrid. J. Mater. Chem. 3, 12334–12342 (2015). https://doi.org/10.1039/C5TA02162F
- S. Wu, J. Li, G. Zhang, Y. Yao, G. Li et al., Ultrafast self-healing nanocomposites via infrared laser and their application in flexible electronics. ACS Appl. Mater. Interfaces 9, 3040–3049 (2017). https://doi.org/10.1021/acsami.6b15476
- M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- X.-X. Wang, J.-C. Shu, W.-Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. J. Chem. Eng. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
- A.V. Menon, B. Choudhury, G. Madras, S. Bose, ‘Trigger-free’ self-healable electromagnetic shielding material assisted by co-doped graphene nanostructures. J. Chem. Eng. 382, 122816 (2020). https://doi.org/10.1016/j.cej.2019.122816
- M.C. Vu, D. Mani, J.-B. Kim, T.-H. Jeong, S. Park et al., Hybrid shell of MXene and reduced graphene oxide assembled on PMMA bead core towards tunable thermoconductive and EMI shielding nanocomposites. Compos. Part A Appl. Sci. 149, 106574 (2021). https://doi.org/10.1016/j.compositesa.2021.106574
- H.J. Sim, D.W. Lee, H. Kim, Y. Jang, G.M. Spinks et al., Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon 155, 499–505 (2019). https://doi.org/10.1016/j.carbon.2019.08.073
- M. Sang, J. Shin, K. Kim, K.J. Yu, Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 9, 374 (2019). https://doi.org/10.3390/nano9030374
- Y. Liu, J. Ding, Q.-Q. Wang, M.-L. Wen, T.-T. Tang et al., Research progress on the biomedical uses of graphene and its derivatives. New Carbon Mater. 36, 779–793 (2021). https://doi.org/10.1016/S1872-5805(21)60073-2
- K. Chen, H. Liu, J. Zhou, Y. Sun, K. Yu, Polyurethane blended with silica-nanop-modified graphene as a flexible and superhydrophobic conductive coating with a self-healing ability for sensing applications. ACS Appl. Nano Mater. 5, 615–625 (2022). https://doi.org/10.1021/acsanm.1c03414
- P. Niu, N. Bao, H. Zhao, S. Yan, B. Liu et al., Room-temperature self-healing elastomer-graphene composite conducting wires with superior strength for stretchable electronics. Compos. Sci. Technol. 219, 109261 (2022). https://doi.org/10.1016/j.compscitech.2022.109261
- L.T. Duy, H. Seo, Eco-friendly, self-healing, and stretchable graphene hydrogels functionalized with diol oligomer for wearable sensing applications. Sens. Actuat. B Chem. 321, 128507 (2020). https://doi.org/10.1016/j.snb.2020.128507
- C. Zheng, K. Lu, Y. Lu, S. Zhu, Y. Yue et al., A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr. Polym. 250, 116905 (2020). https://doi.org/10.1016/j.carbpol.2020.116905
- Y. Zhang, B. Liang, Q. Jiang, Y. Li, Y. Feng et al., Flexible and wearable sensor based on graphene nanocomposite hydrogels. Smart Mater. Struct. 29, 075027 (2020). https://doi.org/10.1088/1361-665X/ab89ff
- Q. Tian, W.-R. Yan, Y. Li, D. Ho, Bean pod-inspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched structure. ACS Appl. Mater. Interfaces 12, 9710–9717 (2020). https://doi.org/10.1021/acsami.9b18873
- Y. Ting, K. Dajiang, H. Weiyi, Y. Yunjie, W. Chaoxia, Room-temperature self-healing graphene/rubber-based supramolecular elastomers utilized by dynamic boroxines and hydrogen bonds for human motion detection. Colloids Surf. A Physicochem. Eng. Asp. 657, 130411 (2023). https://doi.org/10.1016/j.colsurfa.2022.130411
- M. El-Kady, Y. Shao, R. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016). https://doi.org/10.1038/natrevmats.2016.33
- S. Zhai, Y. Chen, Graphene-based fiber supercapacitors. Acc. Chem. Res. 3, 922–934 (2022). https://doi.org/10.1021/accountsmr.2c00087
- A. Velasco Santiago, Y.K. Ryu, A. Bosca, A. Ladrón-de-Guevara, E. Hunt et al., Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustain. Energy Fuels 5, 1235–1254 (2021). https://doi.org/10.1039/D0SE01849J
- K. Sun, S. Cui, X. Gao, X. Liu, T. Lu et al., Graphene oxide assisted triple network hydrogel electrolyte with high mechanical and temperature stability for self-healing supercapacitor. J. Energy Storage 61, 106658 (2023). https://doi.org/10.1016/j.est.2023.106658
- M. Qiao, C. Tang, G. He, K. Qiu, R. Binions et al., Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites. J. Mater. Chem. B 4, 12658–12666 (2016). https://doi.org/10.1039/C6TA04578B
- S. Wang, N. Liu, J. Su, L. Li, F. Long et al., Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11, 2066–2074 (2017). https://doi.org/10.1021/acsnano.6b08262
- T. Kim, E.P. Samuel, C. Park, Y.-I. Kim, A. Aldalbahi et al., Wearable fabric supercapacitors using supersonically sprayed reduced graphene and tin oxide. J. Alloys Compd. 856, 157902 (2021). https://doi.org/10.1016/j.jallcom.2020.157902
- H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang et al., Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable mxene and electrochemically exfoliated graphene. Adv. Energy Mater. 7, 1601847 (2017). https://doi.org/10.1002/aenm.201601847
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel. ACS Nano 12, 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
- Q. Li, J. Wen, C. Liu, Y. Jia, Y. Wu et al., Graphene-nanop-based self-healing hydrogel in preventing postoperative recurrence of breast cancer. ACS Biomater. Sci. Eng. 5, 768–779 (2019). https://doi.org/10.1021/acsbiomaterials.8b01475
- X. Chang, Q. Wu, Y. Wu, X. Xi, J. Cao et al., Multifunctional au modified Ti3C2-MXene for photothermal/enzyme dynamic/immune synergistic therapy. Nano Lett. 22, 8321–8330 (2022). https://doi.org/10.1021/acs.nanolett.2c03260
- Y. Qi, Z. Qian, W. Yuan, Z. Li, Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy. J. Mater. Chem. B 9, 9734–9743 (2021). https://doi.org/10.1039/D1TB01753E
- G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang et al., interfaces, surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 9, 40077–40086 (2017). https://doi.org/10.1021/acsami.7b13421
- K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides, (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
- X. Zhu, W. Zhang, G. Lu, H. Zhao, L. Wang, Ultrahigh mechanical strength and robust room-temperature self-healing properties of a polyurethane–graphene oxide network resulting from multiple dynamic bonds. ACS Nano 16, 16724–16735 (2022). https://doi.org/10.1021/acsnano.2c06264
- C. Wang, N. Liu, R. Allen, J.B.H. Tok, Y. Wu et al., A Rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv. Mater. 25, 5785–5790 (2013). https://doi.org/10.1002/adma.201302962
- R.N. Dong, X. Zhao, B.L. Guo, P.X. Ma, Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl. Mater. Interfaces 8, 17138–17150 (2016). https://doi.org/10.1021/acsami.6b04911
- X. Jing, H.-Y. Mi, B.N. Napiwocki, X.-F. Peng, L.-S. Turng, Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 125, 557–570 (2017). https://doi.org/10.1016/j.carbon.2017.09.071
- X. Zhao, H. Wu, B.L. Guo, R.N. Dong, Y.S. Qiu et al., Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.011
- V.K.A. Devi, R. Shyam, A. Palaniappan, A.K. Jaiswal, T.-H. Oh et al., Self-healing hydrogels: preparation, mechanism and advancement in biomedical applications. Polymers 13, 3782 (2021). https://doi.org/10.3390/polym13213782
- J. Song, Y. Kim, K. Kang, S. Lee, M. Shin et al., Stretchable and self-healable graphene– polymer conductive composite for wearable EMG sensor. Polymers 14, 3766 (2022). https://doi.org/10.3390/polym14183766
- E. D’Elia, S. Barg, N. Ni, V.G. Rocha, E. Saiz, Self-healing graphene-based composites with sensing capabilities. Adv. Mater. 27, 4788–4794 (2015). https://doi.org/10.1002/adma.201501653
- P. Jia, Y. Shi, F. Song, Y. Bei, C. Huang et al., Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat, electricity and microwave as temperature and fire warning sensors. Compos. Sci. Technol. 227, 109573 (2022). https://doi.org/10.1016/j.compscitech.2022.109573
- X. Luo, Y. Wu, M. Guo, X. Yang, L. Xie et al., Multi-functional polyurethane composites with self-healing and shape memory properties enhanced by graphene oxide. J. Appl. Polym. Sci. 138, 50827 (2021). https://doi.org/10.1002/app.50827
- S.A. Haddadi, S. Hu, S. Ghaderi, A. Ghanbari, M. Ahmadipour et al., Amino-functionalized MXene nanosheets doped with ce(iii) as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel. ACS Appl. Mater. Interfaces 13, 42074–42093 (2021). https://doi.org/10.1021/acsami.1c13055
- E.B. Çeper, E. Su, O. Okay, O. Güney, Surface modification of graphene oxide for preparing self-healing nanocomposite hydrogels. Polym. Adv. Technol. 33, 2276–2288 (2022). https://doi.org/10.1002/pat.5680
- J.W. Fastier-Wooller, V.T. Dau, T. Dinh, C.-D. Tran, D.V. Dao, Pressure and temperature sensitive e-skin for in situ robotic applications. Mater. Des. 208, 109886 (2021). https://doi.org/10.1016/j.matdes.2021.109886
- B. Shih, D. Shah, J. Li, T.G. Thuruthel, Y.L. Park et al., Electronic skins and machine learning for intelligent soft robots. Sci. Robot 5, eaaz9239 (2020). https://doi.org/10.1126/scirobotics.aaz9239
- J. Zhang, L. Wan, Y. Gao, X. Fang, T. Lu et al., Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 5, 1900285 (2019). https://doi.org/10.1002/aelm.201900285
- Y. Lu, X. Qu, S. Wang, Y. Zhao, Y. Ren et al., Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 15, 4421–4430 (2022). https://doi.org/10.1007/s12274-021-4032-5
- C.E. Shuck, Y. Gogotsi, Taking MXenes from the lab to commercial products. Chem. Eng. J. 401, 125786 (2020). https://doi.org/10.1016/j.cej.2020.125786
- A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6
- C. Korupalli, K.L. You, G. Getachew, A.S. Rasal, W.B. Dirersa et al., Engineering the surface of Ti3C2 MXene nanosheets for high stability and multimodal anticancer therapy. Pharmaceutics 14, 304 (2022). https://doi.org/10.3390/pharmaceutics14020304
- M. Yu, X. Feng, Scalable Manufacturing of MXene films: moving toward industrialization. Matter 3, 335–336 (2020). https://doi.org/10.1016/j.matt.2020.07.011
- S. Iravani, R.S. Varma, Nature-inspired MXene nanocomposites with unique properties and multifunctional potentials. Matter 5, 3574–3576 (2022). https://doi.org/10.1016/j.matt.2022.10.006
References
S. Islam, G. Bhat, Progress and challenges in self-healing composite materials. Mater. Adv. 2, 1896–1926 (2021). https://doi.org/10.1039/D0MA00873G
N.J. Kanu, E. Gupta, U.K. Vates, G.K. Singh, Self-healing composites: a state-of-the-art review. Compos. Part A Appl. Sci. 121, 474–486 (2019). https://doi.org/10.1016/j.compositesa.2019.04.012
N.N.F. Nik Md Noordin Kahar, A.F. Osman, E. Alosime, N. Arsat, N.A. Mohammad Azman et al., The versatility of polymeric materials as self-healing agents for various types of applications: a review. Polymers 13, 1194 (2021). https://doi.org/10.3390/polym13081194
C.E. Diesendruck, N.R. Sottos, J.S. Moore, S.R. White, Biomimetic self-healing. Angew Chem. Int. Ed. 54, 10428–10447 (2015). https://doi.org/10.1002/anie.201500484
M. AbdolahZadeh, S. van der Zwaag, S.J. Garcia, Self-healing corrosion-protective sol–gel coatings based on extrinsic and intrinsic healing approaches, in Self-healing materials. ed. by M.D. Hager, S. van der Zwaag, U.S. Schubert (Springer International Publishing, Cham, 2016), pp.185–218. https://doi.org/10.1007/12_2015_339
J. Xie, P. Yu, Z. Wang, J. Li, Recent advances of self-healing polymer materials via supramolecular forces for biomedical applications. Biomacromol 23, 641–660 (2022). https://doi.org/10.1021/acs.biomac.1c01647
D.G. Bekas, K. Tsirka, D. Baltzis, A.S. Paipetis, Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos. B Eng. 87, 92–119 (2016). https://doi.org/10.1016/j.compositesb.2015.09.057
S. Wang, M.W. Urban, Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020). https://doi.org/10.1038/s41578-020-0202-4
X. Lin, F. Li, Y. Bing, T. Fei, S. Liu et al., Biocompatible multifunctional E-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 13, 200 (2021). https://doi.org/10.1007/s40820-021-00701-8
J. He, Z. Zhang, Y. Yang, F. Ren, J. Li et al., Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 13, 80 (2021). https://doi.org/10.1007/s40820-020-00585-0
R.V.S.P. Sanka, B. Krishnakumar, Y. Leterrier, S. Pandey, S. Rana et al., Soft self-healing nanocomposites. Front. Mater. 6, 137 (2019). https://doi.org/10.3389/fmats.2019.00137
L. Zhai, A. Narkar, K. Ahn, Self-healing polymers with nanomaterials and nanostructures. Nano Today 30, 100826 (2020). https://doi.org/10.1016/j.nantod.2019.100826
J. Zhu, G.S. Xiao, X.X. Zuo, Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries. Nano-Micro Lett. 12, 120 (2020). https://doi.org/10.1007/s40820-020-00453-x
A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao et al., Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12, 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
P. Iravani, S. Iravani, R.S. Varma, MXene-chitosan composites and their biomedical potentials. Micromachines 13, 1383 (2022). https://doi.org/10.3390/mi13091383
S. Iravani, R.S. Varma, MXenes for cancer therapy and diagnosis: recent advances and current challenges. ACS Biomater. Sci. Eng. 7, 1900–1913 (2021). https://doi.org/10.1021/acsbiomaterials.0c01763
S. Iravani, R.S. Varma, MXenes in photomedicine: advances and prospects. Chem. Commun. 58, 7336–7350 (2022). https://doi.org/10.1039/D2CC01694J
S. Iravani, R.S. Varma, Bioinspired and biomimetic MXene-based structures with fascinating properties: recent advances. Mater. Adv. 3, 4783–4796 (2022). https://doi.org/10.1039/D2MA00151A
E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14, 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
A. Shafiee, S. Iravani, R.S. Varma, Graphene and graphene oxide with anticancer applications: challenges and future perspectives. MedComm 3, e118 (2022). https://doi.org/10.1002/mco2.118
D. Lai, X. Chen, G. Wang, X. Xu, Y. Wang, Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 188, 513–522 (2022). https://doi.org/10.1016/j.carbon.2021.12.047
S. Iravani, R.S. Varma, MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Mater. Adv. 2, 2906–2917 (2021). https://doi.org/10.1039/D1MA00189B
S. Iravani, MXenes and MXene-based, (nano)structures: a perspective on greener synthesis and biomedical prospects. Ceram. Int. 48, 24144–24156 (2022). https://doi.org/10.1016/j.ceramint.2022.05.137
P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13, 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
Y. Gogotsi, Q. Huang, MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021). https://doi.org/10.1021/acsnano.1c03161
C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu et al., Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020). https://doi.org/10.1002/adem.201901241
C.E. Shuck, K. Ventura-Martinez, A. Goad, S. Uzun, M. Shekhirev et al., Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28, 326–338 (2021). https://doi.org/10.1021/acs.chas.1c00051
S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over mxenes-based materials. Nano-Micro Lett. 14, 178 (2022). https://doi.org/10.1007/s40820-022-00901-w
S. Iravani, R.S. Varma, MXene-based composites as nanozymes in biomedicine: a perspective. Nano-Micro Lett. 14, 213 (2022). https://doi.org/10.1007/s40820-022-00958-7
I. Ihsanullah, MXenes, (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. J. Chem. Eng. 388, 124340 (2020). https://doi.org/10.1016/j.cej.2020.124340
I. Ihsanullah, MXenes as next-generation materials for the photocatalytic degradation of pharmaceuticals in water. J. Environ. Chem. Eng. 10, 107381 (2022). https://doi.org/10.1016/j.jece.2022.107381
A. Iqbal, J. Kwon, M.-K. Kim, C.M. Koo, MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater. Today Adv. 9, 100124 (2021). https://doi.org/10.1016/j.mtadv.2020.100124
S. Iravani, R.S. Varma, Smart MXene quantum dot-based nanosystems for biomedical applications. Nanomaterials 12, 1200 (2022). https://doi.org/10.3390/nano12071200
H. Wang, Z. Cui, S.-A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14, 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
G. Ge, Y.-Z. Zhang, W. Zhang, W. Yuan, J.K. El-Demellawi et al., Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano 15, 2698–2706 (2021). https://doi.org/10.1021/acsnano.0c07998
K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang et al., Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Appl. Mater. Interfaces 12, 45306–45314 (2020). https://doi.org/10.1021/acsami.0c13653
J.N. Ma, Y.L. Zhang, Y.Q. Liu, D.D. Han, J.W. Mao et al., Heterogeneous self-healing assembly of MXene and graphene oxide enables producing free-standing and self-reparable soft electronics and robots. Sci. Bull. 67, 501–511 (2022). https://doi.org/10.1016/j.scib.2021.11.015
S. Iravani, R.S. Varma, MXenes in cancer nanotheranostics. Nanomaterials 12, 3360 (2022). https://doi.org/10.3390/nano12193360
M. Khatami, S. Iravani, MXenes and MXene-based materials for the removal of water pollutants: challenges and opportunities. Comments Inorg. Chem. 41, 213–248 (2021). https://doi.org/10.1080/02603594.2021.1922396
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
Y. Dall’Agnese, P. Rozier, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitance of two-dimensional titanium carbide, (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.036
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10, 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14, 100 (2022). https://doi.org/10.1007/s40820-022-00845-1
Y. Liu, W. Zhang, W. Zheng, Quantum dots compete at the acme of MXene family for the optimal catalysis. Nano-Micro Lett. 14, 158 (2022). https://doi.org/10.1007/s40820-022-00908-3
Y. Zhang, K. Chen, Y. Li, J. Lan, B. Yan et al., High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor. ACS Appl. Mater. Interfaces 11, 47350–47357 (2019). https://doi.org/10.1021/acsami.9b16078
X. Li, Z. Xue, W. Sun, J. Chu, Q. Wang et al., Bio-inspired self-healing MXene/polyurethane coating with superior active/passive anticorrosion performance for Mg alloy. Chem. Eng. J. 454, 140187 (2023). https://doi.org/10.1016/j.cej.2022.140187
S. Sagadevan, M. Mehmood Shahid, Z. Yiqiang, W.-C. Oh, T. Soga et al., Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnol. Rev. 10, 605–635 (2021). https://doi.org/10.1515/ntrev-2021-0043
L. Tang, J. Tan, H. Nong, B. Liu, H.-M. Cheng, Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2, 36–47 (2021). https://doi.org/10.1021/accountsmr.0c00063
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(1581), 15 (2021). https://doi.org/10.1126/science.abf1581
K. Chen, Y. Hu, F. Wang, M. Liu, P. Liu et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf. A Physicochem. Eng. Asp. 645, 128897 (2022). https://doi.org/10.1016/j.colsurfa.2022.128897
J. Wang, T. Dai, Y. Zhou, A. Mohamed, G. Yuan et al., Adhesive and high-sensitivity modified Ti3C2TX(MXene)-based organohydrogels with wide work temperature range for wearable sensors. J. Colloid Interface Sci. 613, 94–102 (2022). https://doi.org/10.1016/j.jcis.2022.01.021
M. Qin, W. Yuan, X. Zhang, Y. Cheng, M. Xu et al., Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf. B 214, 112482 (2022). https://doi.org/10.1016/j.colsurfb.2022.112482
X. Wu, H. Liao, D. Ma, M. Chao, Y. Wang et al., A wearable, self-adhesive, long-lastingly moist and healable epidermal sensor assembled from conductive MXene nanocomposites. J. Mater. Chem. C 8, 1788–1795 (2020). https://doi.org/10.1039/C9TC05575D
Z. Wang, Y. Liu, D. Zhang, K. Zhang, C. Gao et al., Tough, stretchable and self-healing C-MXenes/PDMS conductive composites as sensitive strain sensors. Compos. Sci. Technol. 216, 109042 (2021). https://doi.org/10.1016/j.compscitech.2021.109042
Z. Wang, K. Zhang, Y. Liu, H. Zhao, C. Gao et al., Modified MXene-doped conductive organosilicon elastomer with high-stretchable, toughness, and self-healable for strain sensors. Compos. Struct. 282, 115071 (2022). https://doi.org/10.1016/j.compstruct.2021.115071
L. Zhang, X. Zhang, H. Zhang, L. Xu, D. Wang et al., Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. J. Chem. Eng. 434, 134751 (2022). https://doi.org/10.1016/j.cej.2022.134751
X. Li, Y. Ma, P. Shen, C. Zhang, J. Yan et al., Self-healing microsupercapacitors with size-dependent 2D MXene. ChemElectroChem 7, 821–829 (2020). https://doi.org/10.1002/celc.201902099
T. Yu, X. Lei, Y. Zhou, H. Chen, Ti3C2Tx MXenes reinforced PAA/CS hydrogels with self-healing function as flexible supercapacitor electrodes. Polym. Adv. Technol. 32, 3167–3179 (2021). https://doi.org/10.1002/pat.5329
J. Yin, K. Wei, J. Zhang, S. Liu, X. Wang et al., MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 3, 100893 (2022). https://doi.org/10.1016/j.xcrp.2022.100893
X. Sun, C. Ma, F. Ma, T. Wang, C. Feng et al., A novel coating with SiO2 anchored on MXene loading tannic acid for self-healing anticorrosive performance. J. Alloys Compd. 928, 167202 (2022). https://doi.org/10.1016/j.jallcom.2022.167202
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
Z. Tan, H. Zhao, F. Sun, L. Ran, L. Yi et al., Fabrication of chitosan/MXene multilayered film based on layer-by-layer assembly: toward enhanced electromagnetic interference shielding and thermal management capacity. Compos. Part A Appl. Sci. 155, 106809 (2022). https://doi.org/10.1016/j.compositesa.2022.106809
W. Wang, X. Bing, Y. Zhou, M. Geng, Y. Zhan et al., Tunable electromagnetic interference shielding ability of MXene/chitosan/silver nanowire sandwich films. Funct. Mater. Lett. 14, 2151041 (2021). https://doi.org/10.1142/S1793604721510413
X. Zheng, H. Zhang, Z. Liu, R. Jiang, X. Zhou, Functional composite electromagnetic shielding materials for aerospace, electronics and wearable fields. Mater. Today Commun. 33, 104498 (2022). https://doi.org/10.1016/j.mtcomm.2022.104498
X. Li, Z. Wu, W. You, L. Yang, R. Che, Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 14, 73 (2022). https://doi.org/10.1007/s40820-022-00811-x
C. Jiao, Z. Deng, P. Min, J. Lai, Q. Gou et al., Photothermal healable, stretchable, and conductive MXene composite films for efficient electromagnetic interference shielding. Carbon 198, 179–187 (2022). https://doi.org/10.1016/j.carbon.2022.07.017
X. Liu, J. Wu, J. He, L. Zhang, Electromagnetic interference shielding effectiveness of titanium carbide sheets. Mater. Lett. 205, 261–263 (2017). https://doi.org/10.1016/j.matlet.2017.06.101
L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. B Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
W. Ma, W. Cai, W. Chen, P. Liu, J. Wang et al., A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. J. Chem. Eng. 426, 130729 (2021). https://doi.org/10.1016/j.cej.2021.130729
H. Li, X. Ru, Y. Song, H. Wang, C. Yang et al., Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 227, 109602 (2022). https://doi.org/10.1016/j.compscitech.2022.109602
S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
S. Kwon, R. Ma, U. Kim, H.R. Choi, S. Baik, Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 68, 118–124 (2014). https://doi.org/10.1016/j.carbon.2013.10.070
J. Liu, G. Song, C. He, H. Wang, Self-healing in tough graphene oxide composite hydrogels. Macromol. Rapid Commun. 34, 1002–1007 (2013). https://doi.org/10.1002/marc.201300242
X. Xiao, T. Xie, Y.-T. Cheng, Self-healable graphene polymer composites. J. Mater. Chem. 20, 3508–3514 (2010). https://doi.org/10.1039/C0JM00307G
S.M.M. Hizam, A.M. Al-Dhahebi, M.S. Mohamed Saheed, Recent advances in graphene-based nanocomposites for ammonia detection. Polymers 14, 5125 (2022). https://doi.org/10.3390/polym14235125
Y. Du, D. Li, L. Liu, G. Gai, Recent achievements of self-healing graphene/polymer composites. Polymers 10, 114 (2018). https://doi.org/10.3390/polym10020114
K. VijayaSekhar, S.G. Acharyya, S. Debroy, V.P.K. Miriyala, A. Acharyya, Self-healing phenomena of graphene: potential and applications. Open Phys. 14, 364–370 (2016). https://doi.org/10.1515/phys-2016-0040
S. Debroy, V. Pavan Kumar Miriyala, K. Vijaya Sekhar, S.G. Acharyya, A. Acharyya, Self healing nature of bilayer graphene. Superlatt. Microstr. 96, 26–35 (2016). https://doi.org/10.1016/j.spmi.2016.05.010
S. Debroy, V.P.K. Miriyala, K.V. Sekhar, S. Ghosh Acharyya, A. Acharyya, Graphene heals thy cracks. Comput. Mater. Sci. 109, 84–89 (2015). https://doi.org/10.1016/j.commatsci.2015.05.025
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014). https://doi.org/10.1016/j.carbon.2013.08.043
C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. chem. 8, 618–624 (2016). https://doi.org/10.1038/nchem.2492
H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14, 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
M. Zhong, Y.-T. Liu, X.-M. Xie, Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J. Mater. Chem. B 3, 4001–4008 (2015). https://doi.org/10.1039/C5TB00075K
X. Dai, Y. Du, J. Yang, D. Wang, J. Gu et al., Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 174, 27–32 (2019). https://doi.org/10.1016/j.compscitech.2019.02.018
L. Huang, N. Yi, Y. Wu, Y. Zhang, Q. Zhang et al., Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv. Mater. 25, 2224–2228 (2013). https://doi.org/10.1002/adma.201204768
S. Thakur, N. Karak, Tuning of sunlight-induced self-cleaning and self-healing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2–reduced graphene oxide nanohybrid. J. Mater. Chem. 3, 12334–12342 (2015). https://doi.org/10.1039/C5TA02162F
S. Wu, J. Li, G. Zhang, Y. Yao, G. Li et al., Ultrafast self-healing nanocomposites via infrared laser and their application in flexible electronics. ACS Appl. Mater. Interfaces 9, 3040–3049 (2017). https://doi.org/10.1021/acsami.6b15476
M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
X.-X. Wang, J.-C. Shu, W.-Q. Cao, M. Zhang, J. Yuan et al., Eco-mimetic nanoarchitecture for green EMI shielding. J. Chem. Eng. 369, 1068–1077 (2019). https://doi.org/10.1016/j.cej.2019.03.164
A.V. Menon, B. Choudhury, G. Madras, S. Bose, ‘Trigger-free’ self-healable electromagnetic shielding material assisted by co-doped graphene nanostructures. J. Chem. Eng. 382, 122816 (2020). https://doi.org/10.1016/j.cej.2019.122816
M.C. Vu, D. Mani, J.-B. Kim, T.-H. Jeong, S. Park et al., Hybrid shell of MXene and reduced graphene oxide assembled on PMMA bead core towards tunable thermoconductive and EMI shielding nanocomposites. Compos. Part A Appl. Sci. 149, 106574 (2021). https://doi.org/10.1016/j.compositesa.2021.106574
H.J. Sim, D.W. Lee, H. Kim, Y. Jang, G.M. Spinks et al., Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon 155, 499–505 (2019). https://doi.org/10.1016/j.carbon.2019.08.073
M. Sang, J. Shin, K. Kim, K.J. Yu, Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 9, 374 (2019). https://doi.org/10.3390/nano9030374
Y. Liu, J. Ding, Q.-Q. Wang, M.-L. Wen, T.-T. Tang et al., Research progress on the biomedical uses of graphene and its derivatives. New Carbon Mater. 36, 779–793 (2021). https://doi.org/10.1016/S1872-5805(21)60073-2
K. Chen, H. Liu, J. Zhou, Y. Sun, K. Yu, Polyurethane blended with silica-nanop-modified graphene as a flexible and superhydrophobic conductive coating with a self-healing ability for sensing applications. ACS Appl. Nano Mater. 5, 615–625 (2022). https://doi.org/10.1021/acsanm.1c03414
P. Niu, N. Bao, H. Zhao, S. Yan, B. Liu et al., Room-temperature self-healing elastomer-graphene composite conducting wires with superior strength for stretchable electronics. Compos. Sci. Technol. 219, 109261 (2022). https://doi.org/10.1016/j.compscitech.2022.109261
L.T. Duy, H. Seo, Eco-friendly, self-healing, and stretchable graphene hydrogels functionalized with diol oligomer for wearable sensing applications. Sens. Actuat. B Chem. 321, 128507 (2020). https://doi.org/10.1016/j.snb.2020.128507
C. Zheng, K. Lu, Y. Lu, S. Zhu, Y. Yue et al., A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr. Polym. 250, 116905 (2020). https://doi.org/10.1016/j.carbpol.2020.116905
Y. Zhang, B. Liang, Q. Jiang, Y. Li, Y. Feng et al., Flexible and wearable sensor based on graphene nanocomposite hydrogels. Smart Mater. Struct. 29, 075027 (2020). https://doi.org/10.1088/1361-665X/ab89ff
Q. Tian, W.-R. Yan, Y. Li, D. Ho, Bean pod-inspired ultrasensitive and self-healing pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched structure. ACS Appl. Mater. Interfaces 12, 9710–9717 (2020). https://doi.org/10.1021/acsami.9b18873
Y. Ting, K. Dajiang, H. Weiyi, Y. Yunjie, W. Chaoxia, Room-temperature self-healing graphene/rubber-based supramolecular elastomers utilized by dynamic boroxines and hydrogen bonds for human motion detection. Colloids Surf. A Physicochem. Eng. Asp. 657, 130411 (2023). https://doi.org/10.1016/j.colsurfa.2022.130411
M. El-Kady, Y. Shao, R. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016). https://doi.org/10.1038/natrevmats.2016.33
S. Zhai, Y. Chen, Graphene-based fiber supercapacitors. Acc. Chem. Res. 3, 922–934 (2022). https://doi.org/10.1021/accountsmr.2c00087
A. Velasco Santiago, Y.K. Ryu, A. Bosca, A. Ladrón-de-Guevara, E. Hunt et al., Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustain. Energy Fuels 5, 1235–1254 (2021). https://doi.org/10.1039/D0SE01849J
K. Sun, S. Cui, X. Gao, X. Liu, T. Lu et al., Graphene oxide assisted triple network hydrogel electrolyte with high mechanical and temperature stability for self-healing supercapacitor. J. Energy Storage 61, 106658 (2023). https://doi.org/10.1016/j.est.2023.106658
M. Qiao, C. Tang, G. He, K. Qiu, R. Binions et al., Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites. J. Mater. Chem. B 4, 12658–12666 (2016). https://doi.org/10.1039/C6TA04578B
S. Wang, N. Liu, J. Su, L. Li, F. Long et al., Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11, 2066–2074 (2017). https://doi.org/10.1021/acsnano.6b08262
T. Kim, E.P. Samuel, C. Park, Y.-I. Kim, A. Aldalbahi et al., Wearable fabric supercapacitors using supersonically sprayed reduced graphene and tin oxide. J. Alloys Compd. 856, 157902 (2021). https://doi.org/10.1016/j.jallcom.2020.157902
H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang et al., Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable mxene and electrochemically exfoliated graphene. Adv. Energy Mater. 7, 1601847 (2017). https://doi.org/10.1002/aenm.201601847
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel. ACS Nano 12, 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
Q. Li, J. Wen, C. Liu, Y. Jia, Y. Wu et al., Graphene-nanop-based self-healing hydrogel in preventing postoperative recurrence of breast cancer. ACS Biomater. Sci. Eng. 5, 768–779 (2019). https://doi.org/10.1021/acsbiomaterials.8b01475
X. Chang, Q. Wu, Y. Wu, X. Xi, J. Cao et al., Multifunctional au modified Ti3C2-MXene for photothermal/enzyme dynamic/immune synergistic therapy. Nano Lett. 22, 8321–8330 (2022). https://doi.org/10.1021/acs.nanolett.2c03260
Y. Qi, Z. Qian, W. Yuan, Z. Li, Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy. J. Mater. Chem. B 9, 9734–9743 (2021). https://doi.org/10.1039/D1TB01753E
G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang et al., interfaces, surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 9, 40077–40086 (2017). https://doi.org/10.1021/acsami.7b13421
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides, (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
X. Zhu, W. Zhang, G. Lu, H. Zhao, L. Wang, Ultrahigh mechanical strength and robust room-temperature self-healing properties of a polyurethane–graphene oxide network resulting from multiple dynamic bonds. ACS Nano 16, 16724–16735 (2022). https://doi.org/10.1021/acsnano.2c06264
C. Wang, N. Liu, R. Allen, J.B.H. Tok, Y. Wu et al., A Rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv. Mater. 25, 5785–5790 (2013). https://doi.org/10.1002/adma.201302962
R.N. Dong, X. Zhao, B.L. Guo, P.X. Ma, Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl. Mater. Interfaces 8, 17138–17150 (2016). https://doi.org/10.1021/acsami.6b04911
X. Jing, H.-Y. Mi, B.N. Napiwocki, X.-F. Peng, L.-S. Turng, Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 125, 557–570 (2017). https://doi.org/10.1016/j.carbon.2017.09.071
X. Zhao, H. Wu, B.L. Guo, R.N. Dong, Y.S. Qiu et al., Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.011
V.K.A. Devi, R. Shyam, A. Palaniappan, A.K. Jaiswal, T.-H. Oh et al., Self-healing hydrogels: preparation, mechanism and advancement in biomedical applications. Polymers 13, 3782 (2021). https://doi.org/10.3390/polym13213782
J. Song, Y. Kim, K. Kang, S. Lee, M. Shin et al., Stretchable and self-healable graphene– polymer conductive composite for wearable EMG sensor. Polymers 14, 3766 (2022). https://doi.org/10.3390/polym14183766
E. D’Elia, S. Barg, N. Ni, V.G. Rocha, E. Saiz, Self-healing graphene-based composites with sensing capabilities. Adv. Mater. 27, 4788–4794 (2015). https://doi.org/10.1002/adma.201501653
P. Jia, Y. Shi, F. Song, Y. Bei, C. Huang et al., Bio-based and degradable vitrimer-graphene/graphene oxide composites with self-healing ability stimulated by heat, electricity and microwave as temperature and fire warning sensors. Compos. Sci. Technol. 227, 109573 (2022). https://doi.org/10.1016/j.compscitech.2022.109573
X. Luo, Y. Wu, M. Guo, X. Yang, L. Xie et al., Multi-functional polyurethane composites with self-healing and shape memory properties enhanced by graphene oxide. J. Appl. Polym. Sci. 138, 50827 (2021). https://doi.org/10.1002/app.50827
S.A. Haddadi, S. Hu, S. Ghaderi, A. Ghanbari, M. Ahmadipour et al., Amino-functionalized MXene nanosheets doped with ce(iii) as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel. ACS Appl. Mater. Interfaces 13, 42074–42093 (2021). https://doi.org/10.1021/acsami.1c13055
E.B. Çeper, E. Su, O. Okay, O. Güney, Surface modification of graphene oxide for preparing self-healing nanocomposite hydrogels. Polym. Adv. Technol. 33, 2276–2288 (2022). https://doi.org/10.1002/pat.5680
J.W. Fastier-Wooller, V.T. Dau, T. Dinh, C.-D. Tran, D.V. Dao, Pressure and temperature sensitive e-skin for in situ robotic applications. Mater. Des. 208, 109886 (2021). https://doi.org/10.1016/j.matdes.2021.109886
B. Shih, D. Shah, J. Li, T.G. Thuruthel, Y.L. Park et al., Electronic skins and machine learning for intelligent soft robots. Sci. Robot 5, eaaz9239 (2020). https://doi.org/10.1126/scirobotics.aaz9239
J. Zhang, L. Wan, Y. Gao, X. Fang, T. Lu et al., Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv. Electron. Mater. 5, 1900285 (2019). https://doi.org/10.1002/aelm.201900285
Y. Lu, X. Qu, S. Wang, Y. Zhao, Y. Ren et al., Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 15, 4421–4430 (2022). https://doi.org/10.1007/s12274-021-4032-5
C.E. Shuck, Y. Gogotsi, Taking MXenes from the lab to commercial products. Chem. Eng. J. 401, 125786 (2020). https://doi.org/10.1016/j.cej.2020.125786
A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6
C. Korupalli, K.L. You, G. Getachew, A.S. Rasal, W.B. Dirersa et al., Engineering the surface of Ti3C2 MXene nanosheets for high stability and multimodal anticancer therapy. Pharmaceutics 14, 304 (2022). https://doi.org/10.3390/pharmaceutics14020304
M. Yu, X. Feng, Scalable Manufacturing of MXene films: moving toward industrialization. Matter 3, 335–336 (2020). https://doi.org/10.1016/j.matt.2020.07.011
S. Iravani, R.S. Varma, Nature-inspired MXene nanocomposites with unique properties and multifunctional potentials. Matter 5, 3574–3576 (2022). https://doi.org/10.1016/j.matt.2022.10.006