MXene-Graphene Composites: A Perspective on Biomedical Potentials
Corresponding Author: Siavash Iravani
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 130
Abstract
MXenes, transition metal carbides and nitrides with graphene-like structures, have received considerable attention since their first discovery. On the other hand, Graphene has been extensively used in biomedical and medicinal applications. MXene and graphene, both as promising candidates of two-dimensional materials, have shown to possess high potential in future biomedical applications due to their unique physicochemical properties such as superior electrical conductivity, high biocompatibility, large surface area, optical and magnetic features, and extraordinary thermal and mechanical properties. These special structural, functional, and biological characteristics suggest that the hybrid/composite structure of MXene and graphene would be able to meet many unmet needs in different fields; particularly in medicine and biomedical engineering, where high-performance mechanical, electrical, thermal, magnetic, and optical requirements are necessary. However, the hybridization and surface functionalization should be further explored to obtain biocompatible composites/platforms with unique physicochemical properties, high stability, and multifunctionality. In addition, toxicological and long-term biosafety assessments and clinical translation evaluations should be given high priority in research. Although very limited studies have revealed the excellent potentials of MXene/graphene in biomedicine, the next steps should be toward the extensive research and detailed analysis in optimizing the properties and improving their functionality with a clinical and industrial outlook. Herein, different synthesis/fabrication methods and performances of MXene/graphene composites are discussed for potential biomedical applications. The potential toxicological effects of these composites on human cells and tissues are also covered, and future perspectives toward more successful translational applications are presented. The current state-of-the-art biotechnological advances in the use of MXene-Graphene composites, as well as their developmental challenges and future prospects are also deliberated. Due to the superior properties and multifunctionality of MXene-graphene composites, these hybrid structures can open up considerable new horizons in future of healthcare and medicine.
Highlights:
1 MXene/graphene composites possess high potential in future biomedical applications.
2 The hybridization and surface functionalization of MXene-graphene composites should be further explored to improve the biocompatibility, high stability, and multifunctionality.
3 The synthesis methods, performances, potential toxicologies, as well as future perspectives of MXene/graphene composites are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Saeidi-Javash, Y. Du, M. Zeng, B.C. Wyatt, B. Zhang et al., All-printed MXene-graphene nanosheet-based bimodal sensors for simultaneous strain and temperature sensing. ACS Appl. Electron. Mater. 3(5), 2341–2348 (2021). https://doi.org/10.1021/acsaelm.1c00218
- C. Ma, M.G. Ma, C. Si, X.X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31(22), 2009524 (2021). https://doi.org/10.1002/adfm.202009524
- X. Li, Y. Lu, Q. Liu, Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: progress and prospects. Talanta 235, 122726 (2021). https://doi.org/10.1016/j.talanta.2021.122726
- D. Tu, W. Yang, Y. Li, Y. Zhou, L. Shi et al., Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors. J. Mater. Chem. C 9(34), 11104–11114 (2021). https://doi.org/10.1039/D1TC02884G
- Y. Yao, L. Lan, X. Liu, Y. Ying, J. Ping, Spontaneous growth and regulation of noble metal nanops on flexible biomimetic MXene paper for bioelectronics. Biosens. Bioelectron. 148, 111799 (2020). https://doi.org/10.1016/j.bios.2019.111799
- N.S. Shaikh, S.B. Ubale, V.J. Mane, J.S. Shaikh, V.C. Lokhande et al., Novel electrodes for supercapacitor: conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. J. Alloys Compd. 893, 161998 (2022). https://doi.org/10.1016/j.jallcom.2021.161998
- H. Huang, C. Dong, W. Feng, Y. Wang, B. Huang et al., Biomedical engineering of two-dimensional MXenes. Adv. Drug Deliv. Rev. 184, 114178 (2022). https://doi.org/10.1016/j.addr.2022.114178
- G. Ying, S. Kota, A.D. Dillon, A.T. Fafarman, M.W. Barsoum, Conductive transparent V2CTx (MXene) films. FlatChem 8, 25–30 (2018). https://doi.org/10.1016/j.flatc.2018.03.001
- J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes. Nano Select 2(8), 1480–1508 (2021). https://doi.org/10.1002/nano.202000309
- H. Sharma, S. Mondal, Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int. J. Mol. Sci. 21(17), 6280 (2020). https://doi.org/10.3390/ijms21176280
- G. Lalwani, M. D’Agati, A.M. Khan, B. Sitharaman, Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 105, 109–144 (2016). https://doi.org/10.1016/j.addr.2016.04.028
- K.A. Madurani, S. Suprapto, N.I. Machrita, S.L. Bahar, W. Illiya et al., Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS J. Solid State Sci. Technol. 9, 093013 (2020). https://doi.org/10.1149/2162-8777/abbb6f
- Y. Zhong, Z. Zhen, H. Zhu, Graphene: fundamental research and potential applications. FlatChem 4, 20–32 (2017). https://doi.org/10.1016/j.flatc.2017.06.008
- S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona et al., Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry. Appl. Surf. Sci. 421, 778–782 (2017). https://doi.org/10.1016/j.apsusc.2017.01.035
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- Y.T. Du, X. Kan, F. Yang, L.Y. Gan, U. Schwingenschlögl, MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl. Mater. Interfaces 10(38), 32867–32873 (2018). https://doi.org/10.1021/acsami.8b10729
- Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
- Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5(42), 22113–22119 (2017). https://doi.org/10.1039/C7TA07999K
- L. Jin, P. Wang, W. Cao, N. Song, P. Ding, Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl. Mater. Interfaces 14(1), 1747–1756 (2022). https://doi.org/10.1021/acsami.1c20267
- Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
- K. Raagulan, R. Braveenth, H.J. Jang, Y.S. Lee, C.M. Yang et al., Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric. Materials 11(11), 1803 (2018). https://doi.org/10.3390/ma11101803
- G.R. Berdiyorov, M.E. Madjet, K.A. Mahmoud, First-principles density functional theory calculations of bilayer membranes heterostructures of Ti3C2T2 (MXene)/graphene and AgNPs. Membranes 11(7), 543 (2021). https://doi.org/10.3390/membranes11070543
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
- X. Chen, J. Jiang, G. Yang, C. Li, Y. Li, Bioinspired wood-like coaxial fibers based on MXene@graphene oxide with superior mechanical and electrical properties. Nanoscale 12(41), 21325–21333 (2020). https://doi.org/10.1039/D0NR04928J
- R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current statusand perspectives. Ceram. Int. 45(15), 18167–18188 (2019). https://doi.org/10.1016/j.ceramint.2019.06.114
- X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5(2), 235–258 (2020). https://doi.org/10.1039/C9NH00571D
- L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A 3(16), 8361–8368 (2015). https://doi.org/10.1039/C5TA00139K
- C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015). https://doi.org/10.1038/nmat4374
- P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale Horiz. 8(22), 11385 (2016). https://doi.org/10.1039/C6NR02253G
- T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
- W. Sun, S. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
- O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019). https://doi.org/10.1016/j.mtchem.2019.08.010
- J. Liu, X. Jiang, R. Zhang, Y. Zhang, L. Wu et al., MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 29(6), 1807326 (2019). https://doi.org/10.1002/adfm.201807326
- J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid et al., Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—a review. J. Ind. Eng. Chem. 66, 29–44 (2018). https://doi.org/10.1016/j.jiec.2018.05.028
- J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang et al., Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/C9TA00212J
- X. Li, M. Li, Q. Yang, G. Liang, Z. Huang et al., In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv. Energy Mater. 10(36), 2001791 (2020). https://doi.org/10.1002/aenm.202001791
- S. Pei, Q. Wei, K. Huang, H.M. Cheng, W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 9, 145 (2018). https://doi.org/10.1038/s41467-017-02479-z
- F. Liu, Q. Xu, W. Huang, Z. Zhang, G. Xiang et al., Green synthesis of porous graphene and its application for sensitive detection of hydrogen peroxide and 2,4-dichlorophenoxyacetic acid. Electrochim. Acta 295, 615–623 (2019). https://doi.org/10.1016/j.electacta.2018.10.177
- M. Gu, Z. Dai, X. Yan, J. Ma, Y. Niu et al., Comparison of toxicity of Ti3C2 and Nb2C Mxene quantum dots (QDs) to human umbilical vein endothelial cells. J. Appl. Toxicol. 41(5), 745–754 (2021). https://doi.org/10.1002/jat.4085
- Y. Niu, J. Li, J. Gao, X. Ouyang, L. Cai et al., Two-dimensional quantum dots for biological applications. Nano Res. 14, 3820–3839 (2021). https://doi.org/10.1007/s12274-021-3757-5
- F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: synthesis, structures, and applications. Nanotoday 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803
- V.S. Sivasankarapillai, A.K. Somakumar, J. Joseph, S. Nikazar, A. Rahdar et al., Cancer theranostic applications of MXene nanomaterials: recent updates. Nano Struct. Nano Obj. 22, 100457 (2020). https://doi.org/10.1016/j.nanoso.2020.100457
- J. Shao, J. Zhang, C. Jiang, J. Lin, P. Huang, Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 400, 126009 (2020). https://doi.org/10.1016/j.cej.2020.126009
- A. Rafieerad, W. Yan, A. Amiri, S. Dhingra, Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Mater. Des. 196, 109091 (2020). https://doi.org/10.1016/j.matdes.2020.109091
- C. Gokce, C. Gurcan, O. Besbinar, M.A. Unal, A. Yilmazer, Emerging 2D materials for antimicrobial applications in the pre- and post-pandemic era. Nanoscale 14(2), 239–249 (2022). https://doi.org/10.1039/D1NR06476B
- N. Dwivedi, C. Dhand, P. Kumar, A.K. Srivastava, Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene-graphene composites to fight against pandemics. Mater. Adv. 2(9), 2892–2905 (2021). https://doi.org/10.1039/D1MA00003A
- A.A. Shamsabadi, M.S. Gh, B. Anasori, M. Soroush, Antimicrobial Mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. Eng. 6(12), 16586–16596 (2018). https://doi.org/10.1021/acssuschemeng.8b03823
- M. Sametband, I. Kalt, A. Gedanken, R. Sarid, Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl. Mater. Interfaces 6(2), 1228–1235 (2014). https://doi.org/10.1021/am405040z
- X. Peng, Y. Zhang, D. Lu, Y. Guo, S. Guo, Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens. Actuators B Chem. 286, 222–229 (2019). https://doi.org/10.1016/j.snb.2019.01.158
- X. Mi, Z. Su, Y. Fu, S. Li, A. Mo, 3D printing of Ti3C2-MXene-incorporated composite scaffolds for accelerated bone regeneration. Biomed. Mater. 17(3), 035002(2022). https://doi.org/10.1088/1748-605X/ac5ffe
- R. Huang, X. Chen, Y. Dong, X. Zhang, Y. Wei et al., MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio Mater. 3(4), 2125–2131 (2020). https://doi.org/10.1021/acsabm.0c00007
- A. Rafieerad, W. Yan, G.L. Sequiera, N. Sareen, E. Abu-El-Rub et al., Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv. Healthc. Mater. 8(16), 1900569 (2019). https://doi.org/10.1002/adhm.201900569
- J. Liu, W. Lu, X. Lu, L. Zhang, H. Dong et al., Versatile Ti3C2Tx MXene for free-radical scavenging. Nano Res. 15, 2558–2566 (2022). https://doi.org/10.1007/s12274-021-3751-y
- N. Chen, W. Yang, C. Zhang, Perspectives on preparation of two-dimensional MXenes. Sci. Technol. Adv. Mater. 22(1), 917–930 (2021). https://doi.org/10.1080/14686996.2021.1972755
- Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D MXenes. Adv. Mater. 33(39), 2103148 (2021). https://doi.org/10.1002/adma.202103148
- C. Wang, S. Chen, L. Song, Tuning 2D MXenes by surface controlling and interlayer engineering: methods, properties, and synchrotron radiation characterizations. Adv. Funct. Mater. 30(47), 2000869 (2020). https://doi.org/10.1002/adfm.202000869
- Y. Li, Z. Peng, N.J. Holl, M.R. Hassan, J.M. Pappas et al., MXene-graphene field-effect transistor sensing of influenza virus and SARS-CoV-2. ACS Omega 6(10), 6643–6653 (2021). https://doi.org/10.1021/acsomega.0c05421
- H. Gu, Y. Xing, P. Xiong, H. Tang, C. Li et al., Three-dimensional porous Ti3C2Tx MXene-graphene hybrid films for glucose biosensing. ACS Appl. Nano Mater. 2(10), 6537–6545 (2019). https://doi.org/10.1021/acsanm.9b01465
- Y. Yang, Z. Cao, P. He, L. Shi, G. Ding et al., Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 66, 104134 (2019). https://doi.org/10.1016/j.nanoen.2019.104134
- G. Jia, A. Zheng, X. Wang, L. Zhang, L. Li et al., Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor. Sens. Actuators B Chem. 346, 130507 (2021). https://doi.org/10.1016/j.snb.2021.130507
- F. Niu, Z. Qin, L. Min, B. Zhao, Y. Lv et al., Ultralight and hyperelastic nanofiber-reinforced MXene-graphene aerogel for high-performance piezoresistive sensor. Adv. Mater. Technol. 6(11), 2100394 (2021). https://doi.org/10.1002/admt.202100394
- T.A. Tabish, M.Z.I. Pranjol, F. Jabeen, T. Abdullah, A. Latif et al., Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl. Mater. Today 12, 389–401 (2018). https://doi.org/10.1016/j.apmt.2018.07.005
- X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), 1701394 (2018). https://doi.org/10.1002/adhm.201701394
- X. Han, X. Jing, D. Yang, H. Lin, Z. Wang et al., Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 8(16), 4491–4508 (2018). https://doi.org/10.7150/thno.26291
- H. Lin, Y. Chen, J. Shi, Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5(10), 1800518 (2018). https://doi.org/10.1002/advs.201800518
- H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene). Adv. Mater. 30(4), 1703284 (2018). https://doi.org/10.1002/adma.201703284
- X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020). https://doi.org/10.1016/j.physrep.2019.12.006
- S.K. Hwang, S.M. Kang, M. Rethinasabapathy, C. Roh, Y.S. Huh, MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 397, 125428 (2020). https://doi.org/10.1016/j.cej.2020.125428
- S. Li, L. Dong, Z. Wei, G. Sheng, K. Du et al., Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu(III) in water. J. Environ. Sci. 96, 127–137 (2020). https://doi.org/10.1016/j.jes.2020.05.001
- A. Champagne, J.C. Charlier, Physical properties of 2D MXenes: from a theoretical perspective. J. Phys. Mater. 3(3), 032006 (2021). https://doi.org/10.1088/2515-7639/ab97ee
- G.K. Nasrallah, M. Al-Asmakh, K. Rasool, K.A. Mahmoud, Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model. Environ. Sci. Nano 5(4), 1002–1011 (2018). https://doi.org/10.1039/C7EN01239J
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139(45), 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
- K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3), 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
- K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
- C. Dai, H. Lin, G. Xu, Z. Liu, R. Wu et al., Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 29(20), 8637–8652 (2017). https://doi.org/10.1021/acs.chemmater.7b02441
- T.B. Limbu, B. Chitara, J.D. Orlando, M.Y.G. Cervantes, S. Kumari et al., Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity. J. Mater. Chem. C 8(14), 4722–4731 (2020). https://doi.org/10.1039/C9TC06984D
- X.J. Zha, X. Zhao, J.H. Pu, L.S. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11(40), 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
- N.J. Prakash, B. Kandasubramanian, Nanocomposites of MXene for industrial applications. J. Alloys Compd. 862, 158547 (2021). https://doi.org/10.1016/j.jallcom.2020.158547
References
M. Saeidi-Javash, Y. Du, M. Zeng, B.C. Wyatt, B. Zhang et al., All-printed MXene-graphene nanosheet-based bimodal sensors for simultaneous strain and temperature sensing. ACS Appl. Electron. Mater. 3(5), 2341–2348 (2021). https://doi.org/10.1021/acsaelm.1c00218
C. Ma, M.G. Ma, C. Si, X.X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31(22), 2009524 (2021). https://doi.org/10.1002/adfm.202009524
X. Li, Y. Lu, Q. Liu, Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: progress and prospects. Talanta 235, 122726 (2021). https://doi.org/10.1016/j.talanta.2021.122726
D. Tu, W. Yang, Y. Li, Y. Zhou, L. Shi et al., Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors. J. Mater. Chem. C 9(34), 11104–11114 (2021). https://doi.org/10.1039/D1TC02884G
Y. Yao, L. Lan, X. Liu, Y. Ying, J. Ping, Spontaneous growth and regulation of noble metal nanops on flexible biomimetic MXene paper for bioelectronics. Biosens. Bioelectron. 148, 111799 (2020). https://doi.org/10.1016/j.bios.2019.111799
N.S. Shaikh, S.B. Ubale, V.J. Mane, J.S. Shaikh, V.C. Lokhande et al., Novel electrodes for supercapacitor: conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. J. Alloys Compd. 893, 161998 (2022). https://doi.org/10.1016/j.jallcom.2021.161998
H. Huang, C. Dong, W. Feng, Y. Wang, B. Huang et al., Biomedical engineering of two-dimensional MXenes. Adv. Drug Deliv. Rev. 184, 114178 (2022). https://doi.org/10.1016/j.addr.2022.114178
G. Ying, S. Kota, A.D. Dillon, A.T. Fafarman, M.W. Barsoum, Conductive transparent V2CTx (MXene) films. FlatChem 8, 25–30 (2018). https://doi.org/10.1016/j.flatc.2018.03.001
J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes. Nano Select 2(8), 1480–1508 (2021). https://doi.org/10.1002/nano.202000309
H. Sharma, S. Mondal, Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int. J. Mol. Sci. 21(17), 6280 (2020). https://doi.org/10.3390/ijms21176280
G. Lalwani, M. D’Agati, A.M. Khan, B. Sitharaman, Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 105, 109–144 (2016). https://doi.org/10.1016/j.addr.2016.04.028
K.A. Madurani, S. Suprapto, N.I. Machrita, S.L. Bahar, W. Illiya et al., Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS J. Solid State Sci. Technol. 9, 093013 (2020). https://doi.org/10.1149/2162-8777/abbb6f
Y. Zhong, Z. Zhen, H. Zhu, Graphene: fundamental research and potential applications. FlatChem 4, 20–32 (2017). https://doi.org/10.1016/j.flatc.2017.06.008
S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona et al., Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry. Appl. Surf. Sci. 421, 778–782 (2017). https://doi.org/10.1016/j.apsusc.2017.01.035
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
Y.T. Du, X. Kan, F. Yang, L.Y. Gan, U. Schwingenschlögl, MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl. Mater. Interfaces 10(38), 32867–32873 (2018). https://doi.org/10.1021/acsami.8b10729
Y. Li, F. Meng, Y. Mei, H. Wang, Y. Guo et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 391, 123512 (2020). https://doi.org/10.1016/j.cej.2019.123512
Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5(42), 22113–22119 (2017). https://doi.org/10.1039/C7TA07999K
L. Jin, P. Wang, W. Cao, N. Song, P. Ding, Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl. Mater. Interfaces 14(1), 1747–1756 (2022). https://doi.org/10.1021/acsami.1c20267
Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng et al., A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
K. Raagulan, R. Braveenth, H.J. Jang, Y.S. Lee, C.M. Yang et al., Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric. Materials 11(11), 1803 (2018). https://doi.org/10.3390/ma11101803
G.R. Berdiyorov, M.E. Madjet, K.A. Mahmoud, First-principles density functional theory calculations of bilayer membranes heterostructures of Ti3C2T2 (MXene)/graphene and AgNPs. Membranes 11(7), 543 (2021). https://doi.org/10.3390/membranes11070543
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
X. Chen, J. Jiang, G. Yang, C. Li, Y. Li, Bioinspired wood-like coaxial fibers based on MXene@graphene oxide with superior mechanical and electrical properties. Nanoscale 12(41), 21325–21333 (2020). https://doi.org/10.1039/D0NR04928J
R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current statusand perspectives. Ceram. Int. 45(15), 18167–18188 (2019). https://doi.org/10.1016/j.ceramint.2019.06.114
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5(2), 235–258 (2020). https://doi.org/10.1039/C9NH00571D
L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A 3(16), 8361–8368 (2015). https://doi.org/10.1039/C5TA00139K
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015). https://doi.org/10.1038/nmat4374
P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale Horiz. 8(22), 11385 (2016). https://doi.org/10.1039/C6NR02253G
T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
W. Sun, S. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019). https://doi.org/10.1016/j.mtchem.2019.08.010
J. Liu, X. Jiang, R. Zhang, Y. Zhang, L. Wu et al., MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 29(6), 1807326 (2019). https://doi.org/10.1002/adfm.201807326
J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, M. Khalid et al., Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—a review. J. Ind. Eng. Chem. 66, 29–44 (2018). https://doi.org/10.1016/j.jiec.2018.05.028
J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang et al., Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/C9TA00212J
X. Li, M. Li, Q. Yang, G. Liang, Z. Huang et al., In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv. Energy Mater. 10(36), 2001791 (2020). https://doi.org/10.1002/aenm.202001791
S. Pei, Q. Wei, K. Huang, H.M. Cheng, W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun. 9, 145 (2018). https://doi.org/10.1038/s41467-017-02479-z
F. Liu, Q. Xu, W. Huang, Z. Zhang, G. Xiang et al., Green synthesis of porous graphene and its application for sensitive detection of hydrogen peroxide and 2,4-dichlorophenoxyacetic acid. Electrochim. Acta 295, 615–623 (2019). https://doi.org/10.1016/j.electacta.2018.10.177
M. Gu, Z. Dai, X. Yan, J. Ma, Y. Niu et al., Comparison of toxicity of Ti3C2 and Nb2C Mxene quantum dots (QDs) to human umbilical vein endothelial cells. J. Appl. Toxicol. 41(5), 745–754 (2021). https://doi.org/10.1002/jat.4085
Y. Niu, J. Li, J. Gao, X. Ouyang, L. Cai et al., Two-dimensional quantum dots for biological applications. Nano Res. 14, 3820–3839 (2021). https://doi.org/10.1007/s12274-021-3757-5
F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry et al., Porous MXenes: synthesis, structures, and applications. Nanotoday 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803
V.S. Sivasankarapillai, A.K. Somakumar, J. Joseph, S. Nikazar, A. Rahdar et al., Cancer theranostic applications of MXene nanomaterials: recent updates. Nano Struct. Nano Obj. 22, 100457 (2020). https://doi.org/10.1016/j.nanoso.2020.100457
J. Shao, J. Zhang, C. Jiang, J. Lin, P. Huang, Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 400, 126009 (2020). https://doi.org/10.1016/j.cej.2020.126009
A. Rafieerad, W. Yan, A. Amiri, S. Dhingra, Bioactive and trackable MXene quantum dots for subcellular nanomedicine applications. Mater. Des. 196, 109091 (2020). https://doi.org/10.1016/j.matdes.2020.109091
C. Gokce, C. Gurcan, O. Besbinar, M.A. Unal, A. Yilmazer, Emerging 2D materials for antimicrobial applications in the pre- and post-pandemic era. Nanoscale 14(2), 239–249 (2022). https://doi.org/10.1039/D1NR06476B
N. Dwivedi, C. Dhand, P. Kumar, A.K. Srivastava, Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene-graphene composites to fight against pandemics. Mater. Adv. 2(9), 2892–2905 (2021). https://doi.org/10.1039/D1MA00003A
A.A. Shamsabadi, M.S. Gh, B. Anasori, M. Soroush, Antimicrobial Mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. Eng. 6(12), 16586–16596 (2018). https://doi.org/10.1021/acssuschemeng.8b03823
M. Sametband, I. Kalt, A. Gedanken, R. Sarid, Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl. Mater. Interfaces 6(2), 1228–1235 (2014). https://doi.org/10.1021/am405040z
X. Peng, Y. Zhang, D. Lu, Y. Guo, S. Guo, Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens. Actuators B Chem. 286, 222–229 (2019). https://doi.org/10.1016/j.snb.2019.01.158
X. Mi, Z. Su, Y. Fu, S. Li, A. Mo, 3D printing of Ti3C2-MXene-incorporated composite scaffolds for accelerated bone regeneration. Biomed. Mater. 17(3), 035002(2022). https://doi.org/10.1088/1748-605X/ac5ffe
R. Huang, X. Chen, Y. Dong, X. Zhang, Y. Wei et al., MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio Mater. 3(4), 2125–2131 (2020). https://doi.org/10.1021/acsabm.0c00007
A. Rafieerad, W. Yan, G.L. Sequiera, N. Sareen, E. Abu-El-Rub et al., Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv. Healthc. Mater. 8(16), 1900569 (2019). https://doi.org/10.1002/adhm.201900569
J. Liu, W. Lu, X. Lu, L. Zhang, H. Dong et al., Versatile Ti3C2Tx MXene for free-radical scavenging. Nano Res. 15, 2558–2566 (2022). https://doi.org/10.1007/s12274-021-3751-y
N. Chen, W. Yang, C. Zhang, Perspectives on preparation of two-dimensional MXenes. Sci. Technol. Adv. Mater. 22(1), 917–930 (2021). https://doi.org/10.1080/14686996.2021.1972755
Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D MXenes. Adv. Mater. 33(39), 2103148 (2021). https://doi.org/10.1002/adma.202103148
C. Wang, S. Chen, L. Song, Tuning 2D MXenes by surface controlling and interlayer engineering: methods, properties, and synchrotron radiation characterizations. Adv. Funct. Mater. 30(47), 2000869 (2020). https://doi.org/10.1002/adfm.202000869
Y. Li, Z. Peng, N.J. Holl, M.R. Hassan, J.M. Pappas et al., MXene-graphene field-effect transistor sensing of influenza virus and SARS-CoV-2. ACS Omega 6(10), 6643–6653 (2021). https://doi.org/10.1021/acsomega.0c05421
H. Gu, Y. Xing, P. Xiong, H. Tang, C. Li et al., Three-dimensional porous Ti3C2Tx MXene-graphene hybrid films for glucose biosensing. ACS Appl. Nano Mater. 2(10), 6537–6545 (2019). https://doi.org/10.1021/acsanm.9b01465
Y. Yang, Z. Cao, P. He, L. Shi, G. Ding et al., Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 66, 104134 (2019). https://doi.org/10.1016/j.nanoen.2019.104134
G. Jia, A. Zheng, X. Wang, L. Zhang, L. Li et al., Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor. Sens. Actuators B Chem. 346, 130507 (2021). https://doi.org/10.1016/j.snb.2021.130507
F. Niu, Z. Qin, L. Min, B. Zhao, Y. Lv et al., Ultralight and hyperelastic nanofiber-reinforced MXene-graphene aerogel for high-performance piezoresistive sensor. Adv. Mater. Technol. 6(11), 2100394 (2021). https://doi.org/10.1002/admt.202100394
T.A. Tabish, M.Z.I. Pranjol, F. Jabeen, T. Abdullah, A. Latif et al., Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl. Mater. Today 12, 389–401 (2018). https://doi.org/10.1016/j.apmt.2018.07.005
X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), 1701394 (2018). https://doi.org/10.1002/adhm.201701394
X. Han, X. Jing, D. Yang, H. Lin, Z. Wang et al., Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 8(16), 4491–4508 (2018). https://doi.org/10.7150/thno.26291
H. Lin, Y. Chen, J. Shi, Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5(10), 1800518 (2018). https://doi.org/10.1002/advs.201800518
H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene). Adv. Mater. 30(4), 1703284 (2018). https://doi.org/10.1002/adma.201703284
X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020). https://doi.org/10.1016/j.physrep.2019.12.006
S.K. Hwang, S.M. Kang, M. Rethinasabapathy, C. Roh, Y.S. Huh, MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 397, 125428 (2020). https://doi.org/10.1016/j.cej.2020.125428
S. Li, L. Dong, Z. Wei, G. Sheng, K. Du et al., Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu(III) in water. J. Environ. Sci. 96, 127–137 (2020). https://doi.org/10.1016/j.jes.2020.05.001
A. Champagne, J.C. Charlier, Physical properties of 2D MXenes: from a theoretical perspective. J. Phys. Mater. 3(3), 032006 (2021). https://doi.org/10.1088/2515-7639/ab97ee
G.K. Nasrallah, M. Al-Asmakh, K. Rasool, K.A. Mahmoud, Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model. Environ. Sci. Nano 5(4), 1002–1011 (2018). https://doi.org/10.1039/C7EN01239J
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139(45), 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3), 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
C. Dai, H. Lin, G. Xu, Z. Liu, R. Wu et al., Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 29(20), 8637–8652 (2017). https://doi.org/10.1021/acs.chemmater.7b02441
T.B. Limbu, B. Chitara, J.D. Orlando, M.Y.G. Cervantes, S. Kumari et al., Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity. J. Mater. Chem. C 8(14), 4722–4731 (2020). https://doi.org/10.1039/C9TC06984D
X.J. Zha, X. Zhao, J.H. Pu, L.S. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11(40), 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
N.J. Prakash, B. Kandasubramanian, Nanocomposites of MXene for industrial applications. J. Alloys Compd. 862, 158547 (2021). https://doi.org/10.1016/j.jallcom.2020.158547