MXenes for Bioinspired Soft Actuators: Advancements in Angle-Independent Structural Colors and Beyond
Corresponding Author: Rajender S. Varma
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 142
Abstract
Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics, biomedical devices, and biomimetic systems. These actuators mimic the natural movements of living organisms, aiming to attain enhanced flexibility, adaptability, and versatility. On the other hand, angle-independent structural color has been achieved through innovative design strategies and engineering approaches. By carefully controlling the size, shape, and arrangement of nanostructures, researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle. One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical, electrical, and optical properties. The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities. Overcoming material compatibility issues, improving color reproducibility, scalability, durability, power supply efficiency, and cost-effectiveness will play vital roles in advancing these technologies. This perspective appraises the development of bioinspired MXene-centered soft actuators with angle-independent structural color in soft robotics.
Highlights:
1 MXene-based soft actuators with angle-independent structural colors have the potential to contribute to various fields, including display technologies, camouflage systems, sensors, and beyond.
2 Bioinspiration has paved the way for developing advanced structural colored soft actuators for biomimetic soft robots.
3 This perspective appraises the development of bioinspired MXene-based soft actuators with angle-independent structural color and beyond in soft robotics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Pilz da Cunha, M.G. Debije, A.P.H.J. Schenning, Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 49, 6568–6578 (2020). https://doi.org/10.1039/d0cs00363h
- L. Shang, W. Zhang, K. Xu, Y. Zhao, Bio-inspired intelligent structural color materials. Mater. Horiz. 6, 945–958 (2019). https://doi.org/10.1039/C9MH00101H
- J. Ma, Y. Yang, C. Valenzuela, X. Zhang, L. Wang et al., Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem. Int. Ed. 61, e202116219 (2022). https://doi.org/10.1002/anie.202116219
- S. Iravani, R.S. Varma, Bioinspired and biomimetic MXene-based structures with fascinating properties: recent advances. Mater. Adv. 3, 4783–4796 (2022). https://doi.org/10.1039/D2MA00151A
- H. Galinski, G. Favraud, H. Dong, J.S.T. Gongora, G. Favaro et al., Scalable, ultra-resistant structural colors based on network metamaterials. Light Sci. Appl. 6, e16233 (2017). https://doi.org/10.1038/lsa.2016.233
- Z. Xuan, J. Li, Q. Liu, F. Yi, S. Wang et al., Artificial structural colors and applications. Innovation 2, 100081 (2021). https://doi.org/10.1016/j.xinn.2021.100081
- Y. Zhao, Y. Zhao, S. Hu, J. Lv, Y. Ying et al., Artificial structural color pixels: a review. Materials 10, 944 (2017). https://doi.org/10.3390/ma10080944
- S.D. Rezaei, Z. Dong, J.Y. Chan, J. Trisno, R.J. Ng, Q. Ruan, C.W. Qiu, N.A. Mortensen, J.K. Yang, Nanophotonic structural colors. ACS Photonics 8, 18–33 (2021). https://doi.org/10.1021/acsphotonics.0c00947
- V. Shukla, The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater. Adv. 1, 3104–3121 (2020). https://doi.org/10.1039/D0MA00548G
- L. Verger, V. Natu, M. Carey, M.W. Barsoum, MXenes: an introduction of their synthesis, select properties, and applications. Trends Chem. 1, 656–669 (2019). https://doi.org/10.1016/j.trechm.2019.04.006
- X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
- A. Ahmed, S. Sharma, B. Adak, M.M. Hossain, A.M. LaChance et al., Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4, e12295 (2022). https://doi.org/10.1002/inf2.12295
- Z. Chen, H. Wang, Y. Cao, Y. Chen, O. Akkus et al., Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots. Matter 6, 3803–3837 (2023). https://doi.org/10.1016/j.matt.2023.08.011
- Y. Wang, T. Guo, Z. Tian, L. Shi, S.C. Barman et al., MXenes for soft robotics. Matter 6, 2807–2833 (2023). https://doi.org/10.1016/j.matt.2023.07.013
- Z.-H. Tang, W.-B. Zhu, Y.-Q. Mao, Z.-C. Zhu, Y.-Q. Li et al., Multiresponsive Ti3C2Tx MXene-based actuators enabled by dual-mechanism synergism for soft robotics. ACS Appl. Mater. Interfaces 14, 21474–21485 (2022). https://doi.org/10.1021/acsami.2c03157
- D. An, Z. Wang, L. Qin, Y. Wu, S. Lu et al., Preparation of MXene/EP coating for promising anticorrosion and superlow friction properties. Prog. Org. Coat. 183, 107779 (2023). https://doi.org/10.1016/j.porgcoat.2023.107779
- R. Giménez, B. Serrano, V. San-Miguel, J.C. Cabanelas, Recent advances in MXene/epoxy composites: trends and prospects. Polymers 14, 1170 (2022). https://doi.org/10.3390/polym14061170
- M.P. Bilibana, Electrochemical properties of MXenes and applications. Adv. Sens. Energy Mater. 2, 100080 (2023). https://doi.org/10.1016/j.asems.2023.100080
- P.G. Grützmacher, S. Suarez, A. Tolosa, C. Gachot, G. Song et al., Superior wear-resistance of Ti3C2Tx multilayer coatings. ACS Nano 15, 8216–8224 (2021). https://doi.org/10.1021/acsnano.1c01555
- X. Miao, Z. Li, S. Liu, J. Wang, S. Yang, MXenes in tribology: current status and perspectives. Adv. Powder Mater. 2, 100092 (2023). https://doi.org/10.1016/j.apmate.2022.100092
- W. Lian, Y. Mai, C. Liu, L. Zhang, S. Li et al., Two-dimensional Ti3C2 coating as an emerging protective solid-lubricant for tribology. Ceram. Int. 44, 20154–20162 (2018). https://doi.org/10.1016/j.ceramint.2018.07.309
- A. Rosenkranz, M. Marian, Combining surface textures and MXene coatings—towards enhanced wear-resistance and durability. Surf. Topogr. Metrol. Prop. 10, 033001 (2022). https://doi.org/10.1088/2051-672x/ac7f4a
- M. Yang, Y. Xu, X. Zhang, H.K. Bisoyi, P. Xue et al., Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv. Funct. Mater. 32, 2270152 (2022). https://doi.org/10.1002/adfm.202270152
- T. Zhao, H. Liu, L. Yuan, X. Tian, X. Xue et al., A multi-responsive MXene-based actuator with integrated sensing function. Adv. Mater. Interfaces 9, 2101948 (2022). https://doi.org/10.1002/admi.202101948
- S. Ma, P. Xue, Y. Tang, R. Bi, X. Xu et al., Responsive soft actuators with MXene nanomaterials. Respon. Mater. (2023). https://doi.org/10.1002/rpm.20230026
- P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60, 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
- S. Iravani, Role of MXenes in advancing soft robotics. Soft Matter 19, 6196–6212 (2023). https://doi.org/10.1039/d3sm00756a
- J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14, 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
- S. Ma, P. Xue, C. Valenzuela, X. Zhang, Y. Chen et al., Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309899
- P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
- V. Hwang, A.B. Stephenson, S. Barkley, S. Brandt, M. Xiao et al., Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering. Proc. Natl. Acad. Sci. U.S.A. 118, e2015551118 (2021). https://doi.org/10.1073/pnas.2015551118
- Z. Chen, Z. Wang, Z. Gu, Bioinspired and biomimetic nanomedicines. Acc. Chem. Res. 52, 1255–1264 (2019). https://doi.org/10.1021/acs.accounts.9b00079
- A.D. Khalid, N. Ur-Rehman, G.H. Tariq, S. Ullah, S.A. Buzdar et al., Functional bioinspired nanocomposites for anticancer activity with generation of reactive oxygen species. Chemosphere 310, 136885 (2023). https://doi.org/10.1016/j.chemosphere.2022.136885
- R.R. Naik, S. Singamaneni, Introduction: bioinspired and biomimetic materials. Chem. Rev. 117, 12581–12583 (2017). https://doi.org/10.1021/acs.chemrev.7b00552
- S.V. Patwardhan, J.R.H. Manning, M. Chiacchia, Bioinspired synthesis as a potential green method for the preparation of nanomaterials: opportunities and challenges. Curr. Opin. Green Sustain. Chem. 12, 110–116 (2018). https://doi.org/10.1016/j.cogsc.2018.08.004
- Z. Zhang, Z. Chen, L. Sun, X. Zhang, Y. Zhao, Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 12, 1579–1584 (2019). https://doi.org/10.1007/s12274-019-2395-7
- L. Cai, Y. Wang, L. Sun, J. Guo, Y. Zhao, Bio-inspired multi-responsive structural color hydrogel with constant volume and wide viewing angles. Adv. Opt. Mater. 9, 2100831 (2021). https://doi.org/10.1002/adom.202100831
- Y. Feng, J. Sun, L. Xu, W. Hong, Angle-independent structurally colored materials with superhydrophobicity and self-healing capability. Adv. Mater. Interfaces 8, 2001950 (2021). https://doi.org/10.1002/admi.202001950
- J. Chen, H.-M. Liu, H. Ren, Y.-F. Zhang, H.-Y. Hou et al., Semitransparent organic solar cells with viewing-angle-independent Janus structural colors. Adv. Opt. Mater. 11, 2201848 (2023). https://doi.org/10.1002/adom.202201848
- J. Zhou, P. Han, M. Liu, H. Zhou, Y. Zhang et al., Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed. 56, 10462–10466 (2017). https://doi.org/10.1002/anie.201705462
- J. Mu, G. Wang, H. Yan, H. Li, X. Wang et al., Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 9, 590 (2018). https://doi.org/10.1038/s41467-018-03032-2
- Y. Wang, H. Cui, Q. Zhao, X. Du, Chameleon-inspired structural-color actuators. Matter 1, 626–638 (2019). https://doi.org/10.1016/j.matt.2019.05.012
- J. Gao, Y. Tang, D. Martella, J. Guo, D.S. Wiersma et al., Stimuli-responsive photonic actuators for integrated biomimetic and intelligent systems. Respon. Mater. 1, 230008 (2023). https://doi.org/10.1002/rpm.20230008
- Z. Liu, H.K. Bisoyi, Y. Huang, M. Wang, H. Yang et al., Thermo- and mechanochromic camouflage and self-healing in biomimetic soft actuators based on liquid crystal elastomers. Angew. Chem. Int. Ed. 61, e202115755 (2022). https://doi.org/10.1002/anie.202115755
- A. Tittl, Tunable structural colors on display. Light Sci. Appl. 11, 155 (2022). https://doi.org/10.1038/s41377-022-00847-z
- X. Li, Y. Yang, C. Valenzuela, X. Zhang, P. Xue et al., Mechanochromic and conductive chiral nematic nanostructured film for bioinspired ionic skins. ACS Nano 17, 12829–12841 (2023). https://doi.org/10.1021/acsnano.3c04199
- X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61, e202211030 (2022). https://doi.org/10.1002/anie.202211030
- Y. Hao, S. Zhang, B. Fang, F. Sun, H. Liu et al., A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications. Chin. J. Mech. Eng. 35, 37 (2022). https://doi.org/10.1186/s10033-022-00707-2
- L. Chang, D. Wang, Z. Huang, C. Wang, J. Torop et al., A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric conversion. Adv. Funct. Mater. 33, 2212341 (2023). https://doi.org/10.1002/adfm.202212341
- L. Xu, F. Xue, H. Zheng, Q. Ji, C. Qiu et al., An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light. Nano Energy 103, 107848 (2022). https://doi.org/10.1016/j.nanoen.2022.107848
- L. Zhang, S. Qu, X. Du, Intelligent soft actuators and flexible devices. Adv. Intell. Syst. 3, 2100173 (2021). https://doi.org/10.1002/aisy.202100173
- M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022). https://doi.org/10.1038/s41578-021-00389-7
- X. Tang, H. Li, T. Ma, Y. Yang, J. Luo et al., A review of soft actuator motion: actuation, design, manufacturing and applications. Actuators 11, 331 (2022). https://doi.org/10.3390/act11110331
- A. Pagoli, F. Chapelle, J.-A. Corrales-Ramon, Y. Mezouar, Y. Lapusta, Review of soft fluidic actuators: classification and materials modeling analysis. Smart Mater. Struct. 31, 013001 (2022). https://doi.org/10.1088/1361-665x/ac383a
- H.S. Kang, S.W. Han, C. Park, S.W. Lee, H. Eoh et al., 3D touchless multiorder reflection structural color sensing display. Sci. Adv. 6, eabb 5769 (2020). https://doi.org/10.1126/sciadv.abb5769
- N. Miyamoto, S. Yamamoto, Angular-independent structural colors of clay dispersions. ACS Omega 7, 6070–6074 (2022). https://doi.org/10.1021/acsomega.1c06448
- F. Meng, Z. Wang, S. Zhang, B. Ju, B. Tang, Bioinspired quasi-amorphous structural color materials toward architectural designs. Cell Rep. Phys. Sci. 2, 100499 (2021). https://doi.org/10.1016/j.xcrp.2021.100499
- L. Xu, H. Zheng, F. Xue, Q. Ji, C. Qiu et al., Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion. Chem. Eng. J. 463, 142392 (2023). https://doi.org/10.1016/j.cej.2023.142392
- M. Xu, L. Li, W. Zhang, Z. Ren, J. Liu et al., MXene-based soft actuators with multiresponse and diverse applications by a simple method. Macromol. Mater. Eng. 308, 2300200 (2023). https://doi.org/10.1002/mame.202300200
- A. Ahmed, M.M. Hossain, B. Adak, S. Mukhopadhyay, Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem. Mater. 32, 10296–10320 (2020). https://doi.org/10.1021/acs.chemmater.0c03392
- F. Bian, L. Sun, L. Cai, Y. Wang, Y. Zhao, Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding. Proc. Natl. Acad. Sci. U.S.A. 117, 22736–22742 (2020). https://doi.org/10.1073/pnas.2011660117
- J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281–1286 (2019). https://doi.org/10.1039/C8TA10574J
- L.P. Hao, A. Hanan, R. Walvekar, M. Khalid, F. Bibi et al., Synergistic integration of MXene and metal-organic frameworks for enhanced electrocatalytic hydrogen evolution in an alkaline environment. Catalysts 13, 802 (2023). https://doi.org/10.3390/catal13050802
- B. Cheng, P. Wu, Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15, 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
- C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu et al., Scalable Synthesis of Ti3C2Tx Mxene. Adv. Engin. Mater. 22, 1901241 (2020). https://doi.org/10.1002/adem.201901241
- M. Yu, X. Feng, Scalable manufacturing of MXene films: moving toward industrialization. Matter 3, 335–336 (2020). https://doi.org/10.1016/j.matt.2020.07.011
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, e2001093 (2020). https://doi.org/10.1002/adma.202001093
- M. Lalegani Dezaki, M. Bodaghi, A review of recent manufacturing technologies for sustainable soft actuators. Int. J. Precis. Eng. Manuf. Green Technol. 10, 1661–1710 (2023). https://doi.org/10.1007/s40684-023-00533-4
- A. Bhat, S. Anwer, K.S. Bhat, M.I.H. Mohideen, K. Liao et al., Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. NPJ 2D Mater. Appl. 5, 61 (2021). https://doi.org/10.1038/s41699-021-00239-8
- J. Jiang, S. Bai, J. Zou, S. Liu, J.-P. Hsu et al., Improving stability of MXenes. Nano Res. 15, 6551–6567 (2022). https://doi.org/10.1007/s12274-022-4312-8
- P. Xue, C. Valenzuela, S. Ma, X. Zhang, J. Ma et al., Highly conductive MXene/PEDOT: PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33, 2214867 (2023). https://doi.org/10.1002/adfm.202214867
- J. Ma, Z. Cui, Y. Du, J. Zhang, C. Sun et al., Wearable fiber-based supercapacitors enabled by additive-free aqueous MXene inks for self-powering healthcare sensors. Adv. Fiber Mater. 4, 1535–1544 (2022). https://doi.org/10.1007/s42765-022-00187-y
- J. Ma, K. Yang, Y. Jiang, L. Shen, H. Ma et al., Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Rep. Phys. Sci. 3, 100908 (2022). https://doi.org/10.1016/j.xcrp.2022.100908
- Y. Hu, L. Yang, Q. Yan, Q. Ji, L. Chang et al., Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx MXene film driven by natural sunlight fluctuation. ACS Nano 15, 5294–5306 (2021). https://doi.org/10.1021/acsnano.0c10797
- P. Li, N. Su, Z. Wang, J. Qiu, A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 15, 16811–16818 (2021). https://doi.org/10.1021/acsnano.1c07186
- X. Guan, Z. Yang, M. Zhou, L. Yang, R. Peymanfar et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 3, 2200102 (2022). https://doi.org/10.1002/sstr.202200102
- A. Rozmysłowska-Wojciechowska, A. Szuplewska, T. Wojciechowski, S. Poźniak, J. Mitrzak et al., A simple, low-cost and green method for controlling the cytotoxicity of MXenes. Mater Sci. Eng. C Mater. Biol. Appl. 111, 110790 (2020). https://doi.org/10.1016/j.msec.2020.110790
- S. Iravani, MXenes and MXene-based (nano) structures: a perspective on greener synthesis and biomedical prospects. Ceram. Int. 48, 24144–24156 (2022). https://doi.org/10.1016/j.ceramint.2022.05.137
- M. Nie, C. Huang, X. Du, Recent advances in colour-tunable soft actuators. Nanoscale 13, 2780–2791 (2021). https://doi.org/10.1039/d0nr07907c
- H. Meng, X. Yang, Y. Wang, C. Wang, W. Ye et al., Bio-inspired fluorescence color-tunable soft actuators with a self-healing and reconfigurable nature. Mater. Today Chem. 24, 100855 (2022). https://doi.org/10.1016/j.mtchem.2022.100855
- G.P. Awasthi, B. Maharjan, S. Shrestha, D.P. Bhattarai, D. Yoon et al., Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone–MXene electrospun fibers. Colloids Surf. A Physicochem. Eng. Aspects 586, 124282 (2020). https://doi.org/10.1016/j.colsurfa.2019.124282
- Y. Liu, H. Zhou, W. Zhou, S. Meng, C. Qi et al., Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@rGO/mxenes electrode and hydrogel electrolyte. Adv. Energy Mater. 11, 2101329 (2021). https://doi.org/10.1002/aenm.202101329
- S. Sagadevan, W.-C. Oh, Comprehensive utilization and biomedical application of MXenes: a systematic review of cytotoxicity and biocompatibility. J. Drug Deliv. Sci. Technol. 85, 104569 (2023). https://doi.org/10.1016/j.jddst.2023.104569
- K. Chen, Y. Hu, F. Wang, M. Liu, P. Liu et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf. A Physicochem. Eng. Aspects 645, 128897 (2022). https://doi.org/10.1016/j.colsurfa.2022.128897
- H. Li, X. Ru, Y. Song, H. Wang, C. Yang et al., Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 227, 109602 (2022). https://doi.org/10.1016/j.compscitech.2022.109602
- A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
- S. Wu, H. Luo, W. Shen, J. Su, C. Ma et al., Rapidly NIR-responsive electrospun shape memory actuators with MXene/CNCs hybrids. Mater. Lett. 314, 131922 (2022). https://doi.org/10.1016/j.matlet.2022.131922
- S. Luo, Z. Wu, J. Zhao, Z. Luo, Q. Qiu et al., ZIF-67 derivative decorated MXene for a highly integrated flexible self-powered photodetector. ACS Appl. Mater. Interfaces 14, 19725–19735 (2022). https://doi.org/10.1021/acsami.2c03148
- M. Wang, W. Liu, X. Shi, Y. Cong, S. Lin et al., Self-powered and low-temperature resistant MXene-modified electronic-skin for multifunctional sensing. Chem. Commun. 57, 8790–8793 (2021). https://doi.org/10.1039/D1CC02211C
- Q. Yi, X. Pei, P. Das, H. Qin, S.W. Lee et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 (2022). https://doi.org/10.1016/j.nanoen.2022.107511
- H. Huang, C. Dong, W. Feng, Y. Wang, B. Huang et al., Biomedical engineering of two-dimensional MXenes. Adv. Drug Deliv. Rev. 184, 114178 (2022). https://doi.org/10.1016/j.addr.2022.114178
- H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou et al., Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 12, 1325–1338 (2020). https://doi.org/10.1039/C9NR07616F
- J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes. Nano Sel. 2, 1480–1508 (2021). https://doi.org/10.1002/nano.202000309
References
M. Pilz da Cunha, M.G. Debije, A.P.H.J. Schenning, Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 49, 6568–6578 (2020). https://doi.org/10.1039/d0cs00363h
L. Shang, W. Zhang, K. Xu, Y. Zhao, Bio-inspired intelligent structural color materials. Mater. Horiz. 6, 945–958 (2019). https://doi.org/10.1039/C9MH00101H
J. Ma, Y. Yang, C. Valenzuela, X. Zhang, L. Wang et al., Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds. Angew. Chem. Int. Ed. 61, e202116219 (2022). https://doi.org/10.1002/anie.202116219
S. Iravani, R.S. Varma, Bioinspired and biomimetic MXene-based structures with fascinating properties: recent advances. Mater. Adv. 3, 4783–4796 (2022). https://doi.org/10.1039/D2MA00151A
H. Galinski, G. Favraud, H. Dong, J.S.T. Gongora, G. Favaro et al., Scalable, ultra-resistant structural colors based on network metamaterials. Light Sci. Appl. 6, e16233 (2017). https://doi.org/10.1038/lsa.2016.233
Z. Xuan, J. Li, Q. Liu, F. Yi, S. Wang et al., Artificial structural colors and applications. Innovation 2, 100081 (2021). https://doi.org/10.1016/j.xinn.2021.100081
Y. Zhao, Y. Zhao, S. Hu, J. Lv, Y. Ying et al., Artificial structural color pixels: a review. Materials 10, 944 (2017). https://doi.org/10.3390/ma10080944
S.D. Rezaei, Z. Dong, J.Y. Chan, J. Trisno, R.J. Ng, Q. Ruan, C.W. Qiu, N.A. Mortensen, J.K. Yang, Nanophotonic structural colors. ACS Photonics 8, 18–33 (2021). https://doi.org/10.1021/acsphotonics.0c00947
V. Shukla, The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater. Adv. 1, 3104–3121 (2020). https://doi.org/10.1039/D0MA00548G
L. Verger, V. Natu, M. Carey, M.W. Barsoum, MXenes: an introduction of their synthesis, select properties, and applications. Trends Chem. 1, 656–669 (2019). https://doi.org/10.1016/j.trechm.2019.04.006
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
A. Ahmed, S. Sharma, B. Adak, M.M. Hossain, A.M. LaChance et al., Two-dimensional MXenes: new frontier of wearable and flexible electronics. InfoMat 4, e12295 (2022). https://doi.org/10.1002/inf2.12295
Z. Chen, H. Wang, Y. Cao, Y. Chen, O. Akkus et al., Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots. Matter 6, 3803–3837 (2023). https://doi.org/10.1016/j.matt.2023.08.011
Y. Wang, T. Guo, Z. Tian, L. Shi, S.C. Barman et al., MXenes for soft robotics. Matter 6, 2807–2833 (2023). https://doi.org/10.1016/j.matt.2023.07.013
Z.-H. Tang, W.-B. Zhu, Y.-Q. Mao, Z.-C. Zhu, Y.-Q. Li et al., Multiresponsive Ti3C2Tx MXene-based actuators enabled by dual-mechanism synergism for soft robotics. ACS Appl. Mater. Interfaces 14, 21474–21485 (2022). https://doi.org/10.1021/acsami.2c03157
D. An, Z. Wang, L. Qin, Y. Wu, S. Lu et al., Preparation of MXene/EP coating for promising anticorrosion and superlow friction properties. Prog. Org. Coat. 183, 107779 (2023). https://doi.org/10.1016/j.porgcoat.2023.107779
R. Giménez, B. Serrano, V. San-Miguel, J.C. Cabanelas, Recent advances in MXene/epoxy composites: trends and prospects. Polymers 14, 1170 (2022). https://doi.org/10.3390/polym14061170
M.P. Bilibana, Electrochemical properties of MXenes and applications. Adv. Sens. Energy Mater. 2, 100080 (2023). https://doi.org/10.1016/j.asems.2023.100080
P.G. Grützmacher, S. Suarez, A. Tolosa, C. Gachot, G. Song et al., Superior wear-resistance of Ti3C2Tx multilayer coatings. ACS Nano 15, 8216–8224 (2021). https://doi.org/10.1021/acsnano.1c01555
X. Miao, Z. Li, S. Liu, J. Wang, S. Yang, MXenes in tribology: current status and perspectives. Adv. Powder Mater. 2, 100092 (2023). https://doi.org/10.1016/j.apmate.2022.100092
W. Lian, Y. Mai, C. Liu, L. Zhang, S. Li et al., Two-dimensional Ti3C2 coating as an emerging protective solid-lubricant for tribology. Ceram. Int. 44, 20154–20162 (2018). https://doi.org/10.1016/j.ceramint.2018.07.309
A. Rosenkranz, M. Marian, Combining surface textures and MXene coatings—towards enhanced wear-resistance and durability. Surf. Topogr. Metrol. Prop. 10, 033001 (2022). https://doi.org/10.1088/2051-672x/ac7f4a
M. Yang, Y. Xu, X. Zhang, H.K. Bisoyi, P. Xue et al., Bioinspired phototropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics. Adv. Funct. Mater. 32, 2270152 (2022). https://doi.org/10.1002/adfm.202270152
T. Zhao, H. Liu, L. Yuan, X. Tian, X. Xue et al., A multi-responsive MXene-based actuator with integrated sensing function. Adv. Mater. Interfaces 9, 2101948 (2022). https://doi.org/10.1002/admi.202101948
S. Ma, P. Xue, Y. Tang, R. Bi, X. Xu et al., Responsive soft actuators with MXene nanomaterials. Respon. Mater. (2023). https://doi.org/10.1002/rpm.20230026
P. Xue, H.K. Bisoyi, Y. Chen, H. Zeng, J. Yang et al., Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60, 3390–3396 (2021). https://doi.org/10.1002/anie.202014533
S. Iravani, Role of MXenes in advancing soft robotics. Soft Matter 19, 6196–6212 (2023). https://doi.org/10.1039/d3sm00756a
J. Cao, Z. Zhou, Q. Song, K. Chen, G. Su et al., Ultrarobust Ti3C2Tx MXene-based soft actuators via bamboo-inspired mesoscale assembly of hybrid nanostructures. ACS Nano 14, 7055–7065 (2020). https://doi.org/10.1021/acsnano.0c01779
S. Ma, P. Xue, C. Valenzuela, X. Zhang, Y. Chen et al., Highly stretchable and conductive MXene-encapsulated liquid metal hydrogels for bioinspired self-sensing soft actuators. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202309899
P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
V. Hwang, A.B. Stephenson, S. Barkley, S. Brandt, M. Xiao et al., Designing angle-independent structural colors using Monte Carlo simulations of multiple scattering. Proc. Natl. Acad. Sci. U.S.A. 118, e2015551118 (2021). https://doi.org/10.1073/pnas.2015551118
Z. Chen, Z. Wang, Z. Gu, Bioinspired and biomimetic nanomedicines. Acc. Chem. Res. 52, 1255–1264 (2019). https://doi.org/10.1021/acs.accounts.9b00079
A.D. Khalid, N. Ur-Rehman, G.H. Tariq, S. Ullah, S.A. Buzdar et al., Functional bioinspired nanocomposites for anticancer activity with generation of reactive oxygen species. Chemosphere 310, 136885 (2023). https://doi.org/10.1016/j.chemosphere.2022.136885
R.R. Naik, S. Singamaneni, Introduction: bioinspired and biomimetic materials. Chem. Rev. 117, 12581–12583 (2017). https://doi.org/10.1021/acs.chemrev.7b00552
S.V. Patwardhan, J.R.H. Manning, M. Chiacchia, Bioinspired synthesis as a potential green method for the preparation of nanomaterials: opportunities and challenges. Curr. Opin. Green Sustain. Chem. 12, 110–116 (2018). https://doi.org/10.1016/j.cogsc.2018.08.004
Z. Zhang, Z. Chen, L. Sun, X. Zhang, Y. Zhao, Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 12, 1579–1584 (2019). https://doi.org/10.1007/s12274-019-2395-7
L. Cai, Y. Wang, L. Sun, J. Guo, Y. Zhao, Bio-inspired multi-responsive structural color hydrogel with constant volume and wide viewing angles. Adv. Opt. Mater. 9, 2100831 (2021). https://doi.org/10.1002/adom.202100831
Y. Feng, J. Sun, L. Xu, W. Hong, Angle-independent structurally colored materials with superhydrophobicity and self-healing capability. Adv. Mater. Interfaces 8, 2001950 (2021). https://doi.org/10.1002/admi.202001950
J. Chen, H.-M. Liu, H. Ren, Y.-F. Zhang, H.-Y. Hou et al., Semitransparent organic solar cells with viewing-angle-independent Janus structural colors. Adv. Opt. Mater. 11, 2201848 (2023). https://doi.org/10.1002/adom.202201848
J. Zhou, P. Han, M. Liu, H. Zhou, Y. Zhang et al., Self-healable organogel nanocomposite with angle-independent structural colors. Angew. Chem. Int. Ed. 56, 10462–10466 (2017). https://doi.org/10.1002/anie.201705462
J. Mu, G. Wang, H. Yan, H. Li, X. Wang et al., Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 9, 590 (2018). https://doi.org/10.1038/s41467-018-03032-2
Y. Wang, H. Cui, Q. Zhao, X. Du, Chameleon-inspired structural-color actuators. Matter 1, 626–638 (2019). https://doi.org/10.1016/j.matt.2019.05.012
J. Gao, Y. Tang, D. Martella, J. Guo, D.S. Wiersma et al., Stimuli-responsive photonic actuators for integrated biomimetic and intelligent systems. Respon. Mater. 1, 230008 (2023). https://doi.org/10.1002/rpm.20230008
Z. Liu, H.K. Bisoyi, Y. Huang, M. Wang, H. Yang et al., Thermo- and mechanochromic camouflage and self-healing in biomimetic soft actuators based on liquid crystal elastomers. Angew. Chem. Int. Ed. 61, e202115755 (2022). https://doi.org/10.1002/anie.202115755
A. Tittl, Tunable structural colors on display. Light Sci. Appl. 11, 155 (2022). https://doi.org/10.1038/s41377-022-00847-z
X. Li, Y. Yang, C. Valenzuela, X. Zhang, P. Xue et al., Mechanochromic and conductive chiral nematic nanostructured film for bioinspired ionic skins. ACS Nano 17, 12829–12841 (2023). https://doi.org/10.1021/acsnano.3c04199
X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61, e202211030 (2022). https://doi.org/10.1002/anie.202211030
Y. Hao, S. Zhang, B. Fang, F. Sun, H. Liu et al., A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications. Chin. J. Mech. Eng. 35, 37 (2022). https://doi.org/10.1186/s10033-022-00707-2
L. Chang, D. Wang, Z. Huang, C. Wang, J. Torop et al., A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric conversion. Adv. Funct. Mater. 33, 2212341 (2023). https://doi.org/10.1002/adfm.202212341
L. Xu, F. Xue, H. Zheng, Q. Ji, C. Qiu et al., An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light. Nano Energy 103, 107848 (2022). https://doi.org/10.1016/j.nanoen.2022.107848
L. Zhang, S. Qu, X. Du, Intelligent soft actuators and flexible devices. Adv. Intell. Syst. 3, 2100173 (2021). https://doi.org/10.1002/aisy.202100173
M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022). https://doi.org/10.1038/s41578-021-00389-7
X. Tang, H. Li, T. Ma, Y. Yang, J. Luo et al., A review of soft actuator motion: actuation, design, manufacturing and applications. Actuators 11, 331 (2022). https://doi.org/10.3390/act11110331
A. Pagoli, F. Chapelle, J.-A. Corrales-Ramon, Y. Mezouar, Y. Lapusta, Review of soft fluidic actuators: classification and materials modeling analysis. Smart Mater. Struct. 31, 013001 (2022). https://doi.org/10.1088/1361-665x/ac383a
H.S. Kang, S.W. Han, C. Park, S.W. Lee, H. Eoh et al., 3D touchless multiorder reflection structural color sensing display. Sci. Adv. 6, eabb 5769 (2020). https://doi.org/10.1126/sciadv.abb5769
N. Miyamoto, S. Yamamoto, Angular-independent structural colors of clay dispersions. ACS Omega 7, 6070–6074 (2022). https://doi.org/10.1021/acsomega.1c06448
F. Meng, Z. Wang, S. Zhang, B. Ju, B. Tang, Bioinspired quasi-amorphous structural color materials toward architectural designs. Cell Rep. Phys. Sci. 2, 100499 (2021). https://doi.org/10.1016/j.xcrp.2021.100499
L. Xu, H. Zheng, F. Xue, Q. Ji, C. Qiu et al., Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion. Chem. Eng. J. 463, 142392 (2023). https://doi.org/10.1016/j.cej.2023.142392
M. Xu, L. Li, W. Zhang, Z. Ren, J. Liu et al., MXene-based soft actuators with multiresponse and diverse applications by a simple method. Macromol. Mater. Eng. 308, 2300200 (2023). https://doi.org/10.1002/mame.202300200
A. Ahmed, M.M. Hossain, B. Adak, S. Mukhopadhyay, Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem. Mater. 32, 10296–10320 (2020). https://doi.org/10.1021/acs.chemmater.0c03392
F. Bian, L. Sun, L. Cai, Y. Wang, Y. Zhao, Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding. Proc. Natl. Acad. Sci. U.S.A. 117, 22736–22742 (2020). https://doi.org/10.1073/pnas.2011660117
J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7, 1281–1286 (2019). https://doi.org/10.1039/C8TA10574J
L.P. Hao, A. Hanan, R. Walvekar, M. Khalid, F. Bibi et al., Synergistic integration of MXene and metal-organic frameworks for enhanced electrocatalytic hydrogen evolution in an alkaline environment. Catalysts 13, 802 (2023). https://doi.org/10.3390/catal13050802
B. Cheng, P. Wu, Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15, 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
C.E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu et al., Scalable Synthesis of Ti3C2Tx Mxene. Adv. Engin. Mater. 22, 1901241 (2020). https://doi.org/10.1002/adem.201901241
M. Yu, X. Feng, Scalable manufacturing of MXene films: moving toward industrialization. Matter 3, 335–336 (2020). https://doi.org/10.1016/j.matt.2020.07.011
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin et al., Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, e2001093 (2020). https://doi.org/10.1002/adma.202001093
M. Lalegani Dezaki, M. Bodaghi, A review of recent manufacturing technologies for sustainable soft actuators. Int. J. Precis. Eng. Manuf. Green Technol. 10, 1661–1710 (2023). https://doi.org/10.1007/s40684-023-00533-4
A. Bhat, S. Anwer, K.S. Bhat, M.I.H. Mohideen, K. Liao et al., Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. NPJ 2D Mater. Appl. 5, 61 (2021). https://doi.org/10.1038/s41699-021-00239-8
J. Jiang, S. Bai, J. Zou, S. Liu, J.-P. Hsu et al., Improving stability of MXenes. Nano Res. 15, 6551–6567 (2022). https://doi.org/10.1007/s12274-022-4312-8
P. Xue, C. Valenzuela, S. Ma, X. Zhang, J. Ma et al., Highly conductive MXene/PEDOT: PSS-integrated poly(N-isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33, 2214867 (2023). https://doi.org/10.1002/adfm.202214867
J. Ma, Z. Cui, Y. Du, J. Zhang, C. Sun et al., Wearable fiber-based supercapacitors enabled by additive-free aqueous MXene inks for self-powering healthcare sensors. Adv. Fiber Mater. 4, 1535–1544 (2022). https://doi.org/10.1007/s42765-022-00187-y
J. Ma, K. Yang, Y. Jiang, L. Shen, H. Ma et al., Integrating MXene waste materials into value-added products for smart wearable self-powered healthcare monitoring. Cell Rep. Phys. Sci. 3, 100908 (2022). https://doi.org/10.1016/j.xcrp.2022.100908
Y. Hu, L. Yang, Q. Yan, Q. Ji, L. Chang et al., Self-locomotive soft actuator based on asymmetric microstructural Ti3C2Tx MXene film driven by natural sunlight fluctuation. ACS Nano 15, 5294–5306 (2021). https://doi.org/10.1021/acsnano.0c10797
P. Li, N. Su, Z. Wang, J. Qiu, A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 15, 16811–16818 (2021). https://doi.org/10.1021/acsnano.1c07186
X. Guan, Z. Yang, M. Zhou, L. Yang, R. Peymanfar et al., 2D MXene nanomaterials: synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 3, 2200102 (2022). https://doi.org/10.1002/sstr.202200102
A. Rozmysłowska-Wojciechowska, A. Szuplewska, T. Wojciechowski, S. Poźniak, J. Mitrzak et al., A simple, low-cost and green method for controlling the cytotoxicity of MXenes. Mater Sci. Eng. C Mater. Biol. Appl. 111, 110790 (2020). https://doi.org/10.1016/j.msec.2020.110790
S. Iravani, MXenes and MXene-based (nano) structures: a perspective on greener synthesis and biomedical prospects. Ceram. Int. 48, 24144–24156 (2022). https://doi.org/10.1016/j.ceramint.2022.05.137
M. Nie, C. Huang, X. Du, Recent advances in colour-tunable soft actuators. Nanoscale 13, 2780–2791 (2021). https://doi.org/10.1039/d0nr07907c
H. Meng, X. Yang, Y. Wang, C. Wang, W. Ye et al., Bio-inspired fluorescence color-tunable soft actuators with a self-healing and reconfigurable nature. Mater. Today Chem. 24, 100855 (2022). https://doi.org/10.1016/j.mtchem.2022.100855
G.P. Awasthi, B. Maharjan, S. Shrestha, D.P. Bhattarai, D. Yoon et al., Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone–MXene electrospun fibers. Colloids Surf. A Physicochem. Eng. Aspects 586, 124282 (2020). https://doi.org/10.1016/j.colsurfa.2019.124282
Y. Liu, H. Zhou, W. Zhou, S. Meng, C. Qi et al., Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@rGO/mxenes electrode and hydrogel electrolyte. Adv. Energy Mater. 11, 2101329 (2021). https://doi.org/10.1002/aenm.202101329
S. Sagadevan, W.-C. Oh, Comprehensive utilization and biomedical application of MXenes: a systematic review of cytotoxicity and biocompatibility. J. Drug Deliv. Sci. Technol. 85, 104569 (2023). https://doi.org/10.1016/j.jddst.2023.104569
K. Chen, Y. Hu, F. Wang, M. Liu, P. Liu et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf. A Physicochem. Eng. Aspects 645, 128897 (2022). https://doi.org/10.1016/j.colsurfa.2022.128897
H. Li, X. Ru, Y. Song, H. Wang, C. Yang et al., Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 227, 109602 (2022). https://doi.org/10.1016/j.compscitech.2022.109602
A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
S. Wu, H. Luo, W. Shen, J. Su, C. Ma et al., Rapidly NIR-responsive electrospun shape memory actuators with MXene/CNCs hybrids. Mater. Lett. 314, 131922 (2022). https://doi.org/10.1016/j.matlet.2022.131922
S. Luo, Z. Wu, J. Zhao, Z. Luo, Q. Qiu et al., ZIF-67 derivative decorated MXene for a highly integrated flexible self-powered photodetector. ACS Appl. Mater. Interfaces 14, 19725–19735 (2022). https://doi.org/10.1021/acsami.2c03148
M. Wang, W. Liu, X. Shi, Y. Cong, S. Lin et al., Self-powered and low-temperature resistant MXene-modified electronic-skin for multifunctional sensing. Chem. Commun. 57, 8790–8793 (2021). https://doi.org/10.1039/D1CC02211C
Q. Yi, X. Pei, P. Das, H. Qin, S.W. Lee et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 (2022). https://doi.org/10.1016/j.nanoen.2022.107511
H. Huang, C. Dong, W. Feng, Y. Wang, B. Huang et al., Biomedical engineering of two-dimensional MXenes. Adv. Drug Deliv. Rev. 184, 114178 (2022). https://doi.org/10.1016/j.addr.2022.114178
H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou et al., Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 12, 1325–1338 (2020). https://doi.org/10.1039/C9NR07616F
J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes. Nano Sel. 2, 1480–1508 (2021). https://doi.org/10.1002/nano.202000309