MXene-Based Composites as Nanozymes in Biomedicine: A Perspective
Corresponding Author: Rajender S. Varma
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 213
Abstract
MXene-based nanozymes have garnered considerable attention because of their potential environmental and biomedical applications. These materials encompass alluring and manageable catalytic performances and physicochemical features, which make them suitable as (bio)sensors with high selectivity/sensitivity and efficiency. MXene-based structures with suitable electrical conductivity, biocompatibility, large surface area, optical/magnetic properties, and thermal/mechanical features can be applied in designing innovative nanozymes with area-dependent electrocatalytic performances. Despite the advances made, there is still a long way to deploy MXene-based nanozymes, especially in medical and healthcare applications; limitations pertaining the peroxidase-like activity and sensitivity/selectivity may restrict further practical applications of pristine MXenes. Thus, developing an efficient surface engineering tactic is still required to fabricate multifunctional MXene-based nanozymes with excellent activity. To obtain MXene-based nanozymes with unique physicochemical features and high stability, some crucial steps such as hybridization and modification ought to be performed. Notably, (nano)toxicological and long-term biosafety analyses along with clinical translation studies still need to be comprehensively addressed. Although very limited reports exist pertaining to the biomedical potentials of MXene-based nanozymes, the future explorations should transition toward the extensive research and detailed analyses to realize additional potentials of these structures in biomedicine with a focus on clinical and industrial aspects. In this perspective, therapeutic, diagnostic, and theranostic applications of MXene-based nanozymes are deliberated with a focus on future perspectives toward more successful clinical translational studies. The current state-of-the-art biomedical advances in the use of MXene-based nanozymes, as well as their developmental challenges and future prospects are also highlighted. In view of the fascinating properties of MXene-based nanozymes, these materials can open significant new opportunities in the future of bio- and nanomedicine.
Highlights:
1 The development of nanozymes with lower manufacturing cost, higher catalytic stability, and ease of modification than natural enzymes ought to be a priority for scientific research.
2 MXene-based nanozymes have attracted considerable attention in the field of bio- and nanomedicine due to their unique catalytic and physicochemical properties.
3 Due to the fascinating properties of MXene-based nanozymes, these materials can open up considerable new horizons in the future of bio- and nanomedicine.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Das, J.L. Franco, N. Logan, P. Balasubramanian, M.I. Kim et al., Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 13, 193 (2021). https://doi.org/10.1007/s40820-40021-00717-40820
- R. Zhao, H. Liu, Y. Li, M. Guo, X.D. Zhang, Catalytic nanozyme for radiation protection. Bioconj. Chem. 32, 411–429 (2021). https://doi.org/10.1021/acs.bioconjchem.0c00648
- Y. Yanling, T. Zhongmin, L. Han, S. Jianlin, Emerging two-dimensional material nanozymes for theranostic nanomedicine. Biophys. Rep. 7, 159–172 (2021). https://doi.org/10.52601/bpr.2021.210011
- N. Stasyuk, O. Smutok, O. Demkiv, T. Prokopiv, G. Gayda et al., Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: a review. Sensors 20, 4509 (2020). https://doi.org/10.3390/s20164509
- Y. Yang, D. Zhu, Y. Liu, B. Jiang, W. Jiang et al., Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale 12, 13548–13557 (2020). https://doi.org/10.1039/D0NR02800B
- X. Zhang, D. Wu, X. Zhou, Y. Yu, J. Liu et al., Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Anal. Chem. 121, 115668 (2019). https://doi.org/10.1016/j.trac.2019.115668
- C. Hong, X. Meng, J. He, K. Fan, X. Yan, Nanozyme: a promising tool from clinical diagnosis and environmental monitoring to wastewater treatment. Particuology 71, 90–107 (2022). https://doi.org/10.1016/j.partic.2022.02.001
- X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14, 95 (2022). https://doi.org/10.1007/s40820-40022-00828-40822
- Y. Jiang, X. Zhao, J. Huang, J. Li, P.K. Upputuri et al., Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 11, 1857 (2020). https://doi.org/10.1038/s41467-020-15730-x
- L. Feng, B. Liu, R. Xie, D. Wang, C. Qian et al., An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater. 31(5), 2006216 (2021). https://doi.org/10.1002/adfm.202006216
- D. Zhu, Z. Zheng, G. Luo, M. Suo, X. Li et al., Single injection and multiple treatments: an injectable nanozyme hydrogel as AIEgen reservoir and release controller for efficient tumor therapy. NanoToday 37, 101091 (2021). https://doi.org/10.1016/j.nantod.2021.101091
- A. Iqbal, J. Kwon, M.K. Kim, C.M. Koo, MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater. Today Adv. 9, 100124 (2021). https://doi.org/10.1016/j.mtadv.2020.100124
- S. Iravani, R.S. Varma, MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Mater. Adv. 2(9), 2906–2917 (2021). https://doi.org/10.1039/D1MA00189B
- S. Iravani, R.S. Varma, MXenes for cancer therapy and diagnosis: recent advances and current challenges. ACS Biomater. Sci. Eng. 7(6), 1900–1913 (2021). https://doi.org/10.1021/acsbiomaterials.0c01763
- H. Yuan, S. Yu, D. Jang, M. Kim, H. Hong et al., Palladium nanops decorated MXene for plasmon-enhanced photocatalysis. J. Ind. Eng. Chem. 108, 501–507 (2022). https://doi.org/10.1016/j.jiec.2022.01.030
- H. Zhang, M. Li, C. Zhu, Q. Tang, P. Kang et al., Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram. Int. 46, 81–88 (2020). https://doi.org/10.1016/j.ceramint.2019.08.236
- K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30(52), 1804779 (2018). https://doi.org/10.1002/adma.201804779
- J. Yin, S. Pan, X. Guo, Y. Gao, D. Zhu et al., Nb2C MXene-functionalized scafolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett. 13, 30 (2021). https://doi.org/10.1007/s40820-40020-00547-40826
- X. Zang, J. Wang, Y. Qin, T. Wang, C. He et al., Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 12, 77 (2020). https://doi.org/10.1007/s40820-40020-40415-40825
- W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14, 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
- M. Huang, Z. Gu, J. Zhang, D. Zhang, H. Zhang et al., MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. J. Mater. Chem. B 9, 5195–5220 (2021). https://doi.org/10.1039/D1TB00410G
- X. Wu, P. Ma, Y. Sun, F. Du, D. Song et al., Application of MXene in electrochemical sensors: a review. Electroanalysis 33, 1827–1851 (2021). https://doi.org/10.1002/elan.202100192
- S.K. Bhardwaj, H. Singh, M. Khatri, K.H. Kim, N. Bhardwaj, Advances in MXenes-based optical biosensors: a review. Biosens. Bioelectron. 202, 113995 (2022). https://doi.org/10.1016/j.bios.2022.113995
- K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30(47), 2000842 (2020). https://doi.org/10.1002/adfm.202000842
- M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49(18), 6666–6693 (2020). https://doi.org/10.1039/D0CS00175A
- I. Ihsanullah, MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chem. Eng. J. 388, 124340 (2020). https://doi.org/10.1016/j.cej.2020.124340
- M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Green-synthesized nanocatalysts and nanomaterials for water treatment: current challenges and future perspectives. J. Hazard. Mater. 401, 123401 (2021). https://doi.org/10.1016/j.jhazmat.2020.123401
- M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Carbon-based sustainable nanomaterials for water treatment: state-of-art and future perspectives. Chemosphere 263, 128005 (2021). https://doi.org/10.1016/j.chemosphere.2020.128005
- M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohyd. Polym. 251, 116986 (2021). https://doi.org/10.1016/j.carbpol.2020.116986
- Z. Liu, M. Zhao, H. Lin, C. Dai, C. Ren et al., 2D magnetic titanium carbide MXene for cancer theranostics. J. Mater. Chem. B 6(21), 3541–3548 (2018). https://doi.org/10.1039/C8TB00754C
- O. Kwon, Y. Choi, J. Kang, J.H. Kim, E. Choi et al., A comprehensive review of MXene-based water-treatment membranes and technologies: recent progress and perspectives. Desalination 522, 115448 (2022). https://doi.org/10.1016/j.desal.2021.115448
- Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13(8), 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
- G.J. Soufi, P. Iravani, A. Hekmatnia, E. Mostafavi, M. Khatami et al., MXenes and MXene-based materials with cancer diagnostic applications: challenges and opportunities. Comments Inorg. Chem. 42, 174–207 (2022). https://doi.org/10.1080/02603594.2021.1990890
- K. Li, T.H. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9(34), 1901687 (2019). https://doi.org/10.1002/aenm.201901687
- X. Zhu, L. Lin, R. Wu, Y. Zhu, Y. Sheng et al., Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens. Bioelectron. 179, 113062 (2021). https://doi.org/10.1016/j.bios.2021.113062
- B. Liu, Y. Wang, Y. Chen, L. Guo, G. Wei, Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J. Mater. Chem. B 8(44), 10065–10086 (2020). https://doi.org/10.1039/D0TB02051F
- A. Madhavan, R. Sindhu, P. Binod, R.K. Sukumaran, A. Pandey, Strategies for design of improved biocatalysts for industrial applications. Bioresour. Technol. 245, 1304–1313 (2017). https://doi.org/10.1016/j.biortech.2017.05.031
- F. Rigoldi, S. Donini, A. Redaelli, E. Parisini, A. Gautieri, Review: engineering of thermostable enzymes for industrial applications. APL Bioeng. 2, 0115010 (2018). https://doi.org/10.1063/1.4997367
- H. Lechner, N. Ferruz, B. Hocker, Strategies for designing non-natural enzymes and binders. Curr. Opin. Chem. Biol. 47, 67–76 (2018). https://doi.org/10.1016/j.cbpa.2018.07.022
- Y.Y. Huang, J.S. Ren, X.G. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
- H. Wei, E.K. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
- J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes(II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
- L. Yu, J. Chang, X. Zhuang, H. Li, T. Hou et al., Two-dimensional cobalt-doped Ti3C2 MXene nanozyme-mediated homogeneous electrochemical strategy for pesticides assay based on in situ generation of electroactive substances. Anal. Chem. 94, 3669–3676 (2022). https://doi.org/10.1021/acs.analchem.1c05300
- Y. Shi, Z. Liu, R. Liu, R. Wu, J. Zhang, DNA-encoded MXene-Pt nanozyme for enhanced colorimetric sensing of mercury ions. Chem. Eng. J. 442, 136072 (2022). https://doi.org/10.1016/j.cej.2022.136072
- A. Rhouati, M. Berkani, Y. Vasseghian, N. Golzadeh, MXene-based electrochemical sensors for detection of environmental pollutants: a comprehensive review. Chemosphere 291, 132921 (2022). https://doi.org/10.1016/j.chemosphere.2021.132921
- C.A.S. Ballesteros, L.A. Mercante, A.D. Alvarenga, M.H.M. Facure, R. Schneider et al., Recent trends in nanozymes design: from materials and structures to environmental applications. Mater. Chem. Front. 5, 7419–7451 (2021). https://doi.org/10.1039/D1QM00947H
- C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015). https://doi.org/10.1038/nmat4374
- T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
- W. Sun, S. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
- J. Liu, X. Jiang, R. Zhang, Y. Zhang, L. Wu et al., MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 29(6), 1807326 (2019). https://doi.org/10.1002/adfm.201807326
- O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019). https://doi.org/10.1016/j.mtchem.2019.08.010
- P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385 (2016). https://doi.org/10.1039/C6NR02253G
- L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A 3(16), 8361–8368 (2015). https://doi.org/10.1039/C5TA00139K
- N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12, 89 (2020). https://doi.org/10.1007/s40820-40020-00426-40820
- Y. Liu, W. Zhang, W. Zheng, Quantum dots compete at the acme of MXene family for the optimal catalysis. Nano-Micro Lett. 14, 158 (2022). https://doi.org/10.1007/s40820-022-00908-3
- K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov et al., Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017). https://doi.org/10.1038/s41598-017-01714-3
- W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng et al., Functionalized Nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12), 11000–11011 (2016). https://doi.org/10.1021/acsnano.6b05810
- N. Shafiei, M. Nasrollahzadeh, S. Iravani, Green synthesis of silica and silicon nanops and their biomedical and catalytic applications. Comments Inorg. Chem. 41, 317–372 (2021). https://doi.org/10.1080/02603594.2021.1904912
- H. Lin, Y. Chen, J. Shi, Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5(10), 1800518 (2018). https://doi.org/10.1002/advs.201800518
- H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139(45), 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
- H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17(1), 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
- H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene). Adv. Mater. 30(4), 1703284 (2018). https://doi.org/10.1002/adma.201703284
- J. Shi, R. Shu, X. Shi, Y. Li, J. Li et al., Multi-activity cobalt ferrite/MXene nanoenzymes for drug-free phototherapy in bacterial infection treatment. RSC Adv. 12, 11090–11099 (2022). https://doi.org/10.1039/D2RA01133F
- S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 14, 178 (2022). https://doi.org/10.1007/s40820-022-00901-w
- R. Yu, J. Xue, Y. Wang, J. Qiu, X. Huang et al., Novel Ti3C2Tx MXene nanozyme with manageable catalytic activity and application to electrochemical biosensor. J. Nanobiotechnol. 20, 119 (2022). https://doi.org/10.1186/s12951-022-01317-9
- Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 13, 154 (2021). https://doi.org/10.1007/s40820-021-00674-8
- Y. Tao, K. Yi, H. Wang, H.W. Kim, K. Li et al., CRISPR-Cas12a-regulated DNA adsorption and metallization on MXenes as enhanced enzyme mimics for sensitive colorimetric detection of hepatitis B virus DNA. J. Colloid Interface Sci. 613, 406–414 (2022). https://doi.org/10.1016/j.jcis.2022.01.038
- J. Li, X. Cai, Y. Zhang, K. Li, L. Guan et al., MnO2 Nanozyme-loaded MXene for cancer synergistic photothermal-chemodynamic therapy. ChemistrySelect 7, e202201127 (2022). https://doi.org/10.1002/slct.202201127
- Y. Zhu, Z. Wang, R. Zhao, Y. Zhou, L. Feng et al., Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano 16(2), 3105–3118 (2022). https://doi.org/10.1021/acsnano.1c10732
- Z. Hao, Y. Li, X. Liu, T. Jiang, Y. He et al., Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem. Eng. J. 425, 130639 (2021). https://doi.org/10.1016/j.cej.2021.130639
- M. Tang, Y. Shi, L. Lu, J. Li, Z. Zhang et al., Dual active nanozyme-loaded MXene enables hyperthermia-enhanced tumor nanocatalytic therapy. Chem. Eng. J. 449, 137847 (2022). https://doi.org/10.1016/j.cej.2022.137847
- H. Hu, H. Huang, L. Xia, X. Qian, W. Feng et al., Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chem. Eng. J. 440, 135810 (2022). https://doi.org/10.1016/j.cej.2022.135810
- W. Feng, X. Han, H. Hu, M. Chang, L. Ding et al., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12, 2203 (2021). https://doi.org/10.1038/s41467-021-22278-x
- X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14, 22 (2022). https://doi.org/10.1007/s40820-021-00761-w
- C. Liu, W. Yang, X. Min, D. Zhang, X. Fu et al., An enzyme-free electrochemical immunosensor based on quaternary metallic/nonmetallic PdPtBP alloy mesoporous nanops/MXene and conductive CuCl2 nanowires for ultrasensitive assay of kidney injury molecule-1. Sens. Actuat. B Chem. 334, 129585 (2021). https://doi.org/10.1016/j.snb.2021.129585
- X. Xi, J. Wang, Y. Wang, H. Xiong, M. Chen et al., Preparation of Au/Pt/Ti3C2Cl2 nanoflakes with self-reducing method for colorimetric detection of glutathione and intracellular sensing of hydrogen peroxide. Carbon 197, 476–484 (2022). https://doi.org/10.1016/j.carbon.2022.06.068
- Z. Jin, G. Xu, Y. Niu, X. Ding, Y. Han et al., Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J. Mater. Chem. B 8(16), 3513–3518 (2020). https://doi.org/10.1039/C9TB02478F
- M. Li, X. Peng, Y. Han, L. Fan, Z. Liu et al., Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem. J. 166, 106238 (2021). https://doi.org/10.1016/j.microc.2021.106238
- D. Chen, S. Shao, W. Zhang, J. Zhao, M. Lian, Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection. Anal. Chim. Acta 1197, 339520 (2022). https://doi.org/10.1016/j.aca.2022.339520
- H. Ouyang, J. Xian, S. Luo, L. Zhang, W. Wang et al., Emitter–quencher pair of single atomic Co sites and monolayer titanium carbide MXenes for luminol chemiluminescent reactions. ACS Appl. Mater. Interfaces 13(51), 60945–60954 (2021). https://doi.org/10.1021/acsami.1c20489
- G.K. Nasrallah, M. Al-Asmakh, K. Rasool, K.A. Mahmoud, Ecotoxicological assessment of Ti3C2Tx (MXene) using a Zebrafish embryo model. Environ. Sci. Nano 5, 1002–1011 (2018). https://doi.org/10.1039/C7EN01239J
- N. Dwivedi, C. Dhand, P. Kumar, A.K. Srivastava, Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Mater. Adv. 2(9), 2892–2905 (2021). https://doi.org/10.1039/D1MA00003A
- X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020). https://doi.org/10.1016/j.physrep.2019.12.006
- S.K. Hwang, S.M. Kang, M. Rethinasabapathy, C. Roh, Y.S. Huh, MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 397, 125428 (2020). https://doi.org/10.1016/j.cej.2020.125428
- S. Li, L. Dong, Z. Wei, G. Sheng, K. Du et al., Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu(III) in water. J. Environ. Sci. 96, 127–137 (2020). https://doi.org/10.1016/j.jes.2020.05.001
- A. Champagne, J.C. Charlier, Physical properties of 2D MXenes: from a theoretical perspective. J. Phys. Mater. 3, 032006 (2021). https://doi.org/10.1088/2515-7639/ab97ee
- E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14, 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
- T.A. Tabish, M.Z.I. Pranjol, F. Jabeen, T. Abdullah, A. Latif et al., Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl. Mater. Today 12, 389–401 (2018). https://doi.org/10.1016/j.apmt.2018.07.005
- X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), 1701394 (2018). https://doi.org/10.1002/adhm.201701394
- X. Han, X. Jing, D. Yang, H. Lin, Z. Wang et al., Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 8, 4491–4508 (2018). https://doi.org/10.7150/thno.26291
- H. Alhussain, R. Augustine, E.A. Hussein, I. Gupta, A. Hasan et al., MXene nanosheets may induce toxic effect on the early stage of embryogenesis. J. Biomed. Nanotechnol. 16, 364–372 (2020). https://doi.org/10.1166/jbn.2020.2894
- C. Dai, H. Lin, G. Xu, Z. Liu, R. Wu et al., Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 29, 8637–8652 (2017). https://doi.org/10.1021/acs.chemmater.7b02441
- L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32, 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
- I. Ihsanullah, Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. 12, 72 (2020). https://doi.org/10.1007/s40820-020-0411-9
- H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou et al., Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 12, 1325–1338 (2020). https://doi.org/10.1039/C9NR07616F
- A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao et al., Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12, 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
- L. Wang, P. Hu, Y. Long, Z. Liu, X. He, Recent advances in ternary two-dimensional materials: synthesis, properties and applications. J. Mater. Chem. A 5(44), 22855–22876 (2017). https://doi.org/10.1039/C7TA06971E
- X.J. Zha, X. Zhao, J.H. Pu, L.S. Tang, K. Ke et al., Flexible anti-biofouling mxene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11(40), 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
- T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D Macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
- X. Li, F. Ran, F. Yang, J. Long, L. Shao, Advances in MXene films: synthesis, assembly, and applications. Trans. Tianjin Uni. 27, 217–247 (2021). https://doi.org/10.1007/s12209-021-00282-y
- A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14, 100 (2022). https://doi.org/10.1007/s40820-40022-00845-40821
- A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6
- L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro et al., A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56(7), 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3), 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
- K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
- Z. Xu, G. Liu, H. Ye, W. Jin, Z. Cui, Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J. Membrane Sci. 563, 625–632 (2018). https://doi.org/10.1016/j.memsci.2018.05.044
- M. Mozafari, M. Soroush, Surface functionalization of MXenes. Mater. Adv. 2(22), 7277–7307 (2021). https://doi.org/10.1039/D1MA00625H
- Z. Li, H. Zhang, J. Han, Y. Chen, H. Lin et al., Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv. Mater. 30(25), 1706981 (2018). https://doi.org/10.1002/adma.201706981
- G. Liu, J. Zou, Q. Tang, X. Yang, Y.W. Zhang et al., Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 9(46), 40077–40086 (2017). https://doi.org/10.1021/acsami.7b13421
- N. Driscoll, A.G. Richardson, K. Maleski, B. Anasori, O. Adewole et al., Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12(10), 10419–10429 (2018). https://doi.org/10.1021/acsnano.8b06014
- W.Y. Wang, Z.D. Hood, X.Y. Zhang, I.N. Ivanov, Z.H. Bao et al., Construction of 2D BiVO4-CdS-Ti3C2Tx heterostructures for enhanced photo-redox activities. ChemCatChem 12, 3496–3503 (2020). https://doi.org/10.1002/cctc.202000448
- Q. Zhong, Y. Li, G. Zhang, Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem. Eng. J. 409, 128099 (2021). https://doi.org/10.1016/j.cej.2020.128099
- W. Chen, B. Han, Y. Xie, S. Liang, H. Deng et al., Ultrathin Co–Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 391, 123519 (2020). https://doi.org/10.1016/j.cej.2019.123519
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
- S.K. Sharma, A. Kumar, G. Sharma, D.V.N. Vo, A. García-Peñas et al., MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: a review. Chemosphere 291, 132923 (2022). https://doi.org/10.1016/j.chemosphere.2021.132923
References
B. Das, J.L. Franco, N. Logan, P. Balasubramanian, M.I. Kim et al., Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 13, 193 (2021). https://doi.org/10.1007/s40820-40021-00717-40820
R. Zhao, H. Liu, Y. Li, M. Guo, X.D. Zhang, Catalytic nanozyme for radiation protection. Bioconj. Chem. 32, 411–429 (2021). https://doi.org/10.1021/acs.bioconjchem.0c00648
Y. Yanling, T. Zhongmin, L. Han, S. Jianlin, Emerging two-dimensional material nanozymes for theranostic nanomedicine. Biophys. Rep. 7, 159–172 (2021). https://doi.org/10.52601/bpr.2021.210011
N. Stasyuk, O. Smutok, O. Demkiv, T. Prokopiv, G. Gayda et al., Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: a review. Sensors 20, 4509 (2020). https://doi.org/10.3390/s20164509
Y. Yang, D. Zhu, Y. Liu, B. Jiang, W. Jiang et al., Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale 12, 13548–13557 (2020). https://doi.org/10.1039/D0NR02800B
X. Zhang, D. Wu, X. Zhou, Y. Yu, J. Liu et al., Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Anal. Chem. 121, 115668 (2019). https://doi.org/10.1016/j.trac.2019.115668
C. Hong, X. Meng, J. He, K. Fan, X. Yan, Nanozyme: a promising tool from clinical diagnosis and environmental monitoring to wastewater treatment. Particuology 71, 90–107 (2022). https://doi.org/10.1016/j.partic.2022.02.001
X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14, 95 (2022). https://doi.org/10.1007/s40820-40022-00828-40822
Y. Jiang, X. Zhao, J. Huang, J. Li, P.K. Upputuri et al., Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 11, 1857 (2020). https://doi.org/10.1038/s41467-020-15730-x
L. Feng, B. Liu, R. Xie, D. Wang, C. Qian et al., An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater. 31(5), 2006216 (2021). https://doi.org/10.1002/adfm.202006216
D. Zhu, Z. Zheng, G. Luo, M. Suo, X. Li et al., Single injection and multiple treatments: an injectable nanozyme hydrogel as AIEgen reservoir and release controller for efficient tumor therapy. NanoToday 37, 101091 (2021). https://doi.org/10.1016/j.nantod.2021.101091
A. Iqbal, J. Kwon, M.K. Kim, C.M. Koo, MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater. Today Adv. 9, 100124 (2021). https://doi.org/10.1016/j.mtadv.2020.100124
S. Iravani, R.S. Varma, MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Mater. Adv. 2(9), 2906–2917 (2021). https://doi.org/10.1039/D1MA00189B
S. Iravani, R.S. Varma, MXenes for cancer therapy and diagnosis: recent advances and current challenges. ACS Biomater. Sci. Eng. 7(6), 1900–1913 (2021). https://doi.org/10.1021/acsbiomaterials.0c01763
H. Yuan, S. Yu, D. Jang, M. Kim, H. Hong et al., Palladium nanops decorated MXene for plasmon-enhanced photocatalysis. J. Ind. Eng. Chem. 108, 501–507 (2022). https://doi.org/10.1016/j.jiec.2022.01.030
H. Zhang, M. Li, C. Zhu, Q. Tang, P. Kang et al., Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram. Int. 46, 81–88 (2020). https://doi.org/10.1016/j.ceramint.2019.08.236
K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30(52), 1804779 (2018). https://doi.org/10.1002/adma.201804779
J. Yin, S. Pan, X. Guo, Y. Gao, D. Zhu et al., Nb2C MXene-functionalized scafolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett. 13, 30 (2021). https://doi.org/10.1007/s40820-40020-00547-40826
X. Zang, J. Wang, Y. Qin, T. Wang, C. He et al., Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 12, 77 (2020). https://doi.org/10.1007/s40820-40020-40415-40825
W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14, 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
M. Huang, Z. Gu, J. Zhang, D. Zhang, H. Zhang et al., MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. J. Mater. Chem. B 9, 5195–5220 (2021). https://doi.org/10.1039/D1TB00410G
X. Wu, P. Ma, Y. Sun, F. Du, D. Song et al., Application of MXene in electrochemical sensors: a review. Electroanalysis 33, 1827–1851 (2021). https://doi.org/10.1002/elan.202100192
S.K. Bhardwaj, H. Singh, M. Khatri, K.H. Kim, N. Bhardwaj, Advances in MXenes-based optical biosensors: a review. Biosens. Bioelectron. 202, 113995 (2022). https://doi.org/10.1016/j.bios.2022.113995
K. Li, M. Liang, H. Wang, X. Wang, Y. Huang et al., 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30(47), 2000842 (2020). https://doi.org/10.1002/adfm.202000842
M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49(18), 6666–6693 (2020). https://doi.org/10.1039/D0CS00175A
I. Ihsanullah, MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chem. Eng. J. 388, 124340 (2020). https://doi.org/10.1016/j.cej.2020.124340
M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Green-synthesized nanocatalysts and nanomaterials for water treatment: current challenges and future perspectives. J. Hazard. Mater. 401, 123401 (2021). https://doi.org/10.1016/j.jhazmat.2020.123401
M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Carbon-based sustainable nanomaterials for water treatment: state-of-art and future perspectives. Chemosphere 263, 128005 (2021). https://doi.org/10.1016/j.chemosphere.2020.128005
M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohyd. Polym. 251, 116986 (2021). https://doi.org/10.1016/j.carbpol.2020.116986
Z. Liu, M. Zhao, H. Lin, C. Dai, C. Ren et al., 2D magnetic titanium carbide MXene for cancer theranostics. J. Mater. Chem. B 6(21), 3541–3548 (2018). https://doi.org/10.1039/C8TB00754C
O. Kwon, Y. Choi, J. Kang, J.H. Kim, E. Choi et al., A comprehensive review of MXene-based water-treatment membranes and technologies: recent progress and perspectives. Desalination 522, 115448 (2022). https://doi.org/10.1016/j.desal.2021.115448
Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13(8), 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
G.J. Soufi, P. Iravani, A. Hekmatnia, E. Mostafavi, M. Khatami et al., MXenes and MXene-based materials with cancer diagnostic applications: challenges and opportunities. Comments Inorg. Chem. 42, 174–207 (2022). https://doi.org/10.1080/02603594.2021.1990890
K. Li, T.H. Chang, Z. Li, H. Yang, F. Fu et al., Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 9(34), 1901687 (2019). https://doi.org/10.1002/aenm.201901687
X. Zhu, L. Lin, R. Wu, Y. Zhu, Y. Sheng et al., Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens. Bioelectron. 179, 113062 (2021). https://doi.org/10.1016/j.bios.2021.113062
B. Liu, Y. Wang, Y. Chen, L. Guo, G. Wei, Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J. Mater. Chem. B 8(44), 10065–10086 (2020). https://doi.org/10.1039/D0TB02051F
A. Madhavan, R. Sindhu, P. Binod, R.K. Sukumaran, A. Pandey, Strategies for design of improved biocatalysts for industrial applications. Bioresour. Technol. 245, 1304–1313 (2017). https://doi.org/10.1016/j.biortech.2017.05.031
F. Rigoldi, S. Donini, A. Redaelli, E. Parisini, A. Gautieri, Review: engineering of thermostable enzymes for industrial applications. APL Bioeng. 2, 0115010 (2018). https://doi.org/10.1063/1.4997367
H. Lechner, N. Ferruz, B. Hocker, Strategies for designing non-natural enzymes and binders. Curr. Opin. Chem. Biol. 47, 67–76 (2018). https://doi.org/10.1016/j.cbpa.2018.07.022
Y.Y. Huang, J.S. Ren, X.G. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
H. Wei, E.K. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes(II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
L. Yu, J. Chang, X. Zhuang, H. Li, T. Hou et al., Two-dimensional cobalt-doped Ti3C2 MXene nanozyme-mediated homogeneous electrochemical strategy for pesticides assay based on in situ generation of electroactive substances. Anal. Chem. 94, 3669–3676 (2022). https://doi.org/10.1021/acs.analchem.1c05300
Y. Shi, Z. Liu, R. Liu, R. Wu, J. Zhang, DNA-encoded MXene-Pt nanozyme for enhanced colorimetric sensing of mercury ions. Chem. Eng. J. 442, 136072 (2022). https://doi.org/10.1016/j.cej.2022.136072
A. Rhouati, M. Berkani, Y. Vasseghian, N. Golzadeh, MXene-based electrochemical sensors for detection of environmental pollutants: a comprehensive review. Chemosphere 291, 132921 (2022). https://doi.org/10.1016/j.chemosphere.2021.132921
C.A.S. Ballesteros, L.A. Mercante, A.D. Alvarenga, M.H.M. Facure, R. Schneider et al., Recent trends in nanozymes design: from materials and structures to environmental applications. Mater. Chem. Front. 5, 7419–7451 (2021). https://doi.org/10.1039/D1QM00947H
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015). https://doi.org/10.1038/nmat4374
T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
W. Sun, S. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
J. Liu, X. Jiang, R. Zhang, Y. Zhang, L. Wu et al., MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 29(6), 1807326 (2019). https://doi.org/10.1002/adfm.201807326
O. Salim, K.A. Mahmoud, K.K. Pant, R.K. Joshi, Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 14, 100191 (2019). https://doi.org/10.1016/j.mtchem.2019.08.010
P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385 (2016). https://doi.org/10.1039/C6NR02253G
L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A 3(16), 8361–8368 (2015). https://doi.org/10.1039/C5TA00139K
N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12, 89 (2020). https://doi.org/10.1007/s40820-40020-00426-40820
Y. Liu, W. Zhang, W. Zheng, Quantum dots compete at the acme of MXene family for the optimal catalysis. Nano-Micro Lett. 14, 158 (2022). https://doi.org/10.1007/s40820-022-00908-3
K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov et al., Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017). https://doi.org/10.1038/s41598-017-01714-3
W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng et al., Functionalized Nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12), 11000–11011 (2016). https://doi.org/10.1021/acsnano.6b05810
N. Shafiei, M. Nasrollahzadeh, S. Iravani, Green synthesis of silica and silicon nanops and their biomedical and catalytic applications. Comments Inorg. Chem. 41, 317–372 (2021). https://doi.org/10.1080/02603594.2021.1904912
H. Lin, Y. Chen, J. Shi, Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5(10), 1800518 (2018). https://doi.org/10.1002/advs.201800518
H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 139(45), 16235–16247 (2017). https://doi.org/10.1021/jacs.7b07818
H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17(1), 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
H. Lin, Y. Wang, S. Gao, Y. Chen, J. Shi, Theranostic 2D tantalum carbide (MXene). Adv. Mater. 30(4), 1703284 (2018). https://doi.org/10.1002/adma.201703284
J. Shi, R. Shu, X. Shi, Y. Li, J. Li et al., Multi-activity cobalt ferrite/MXene nanoenzymes for drug-free phototherapy in bacterial infection treatment. RSC Adv. 12, 11090–11099 (2022). https://doi.org/10.1039/D2RA01133F
S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 14, 178 (2022). https://doi.org/10.1007/s40820-022-00901-w
R. Yu, J. Xue, Y. Wang, J. Qiu, X. Huang et al., Novel Ti3C2Tx MXene nanozyme with manageable catalytic activity and application to electrochemical biosensor. J. Nanobiotechnol. 20, 119 (2022). https://doi.org/10.1186/s12951-022-01317-9
Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 13, 154 (2021). https://doi.org/10.1007/s40820-021-00674-8
Y. Tao, K. Yi, H. Wang, H.W. Kim, K. Li et al., CRISPR-Cas12a-regulated DNA adsorption and metallization on MXenes as enhanced enzyme mimics for sensitive colorimetric detection of hepatitis B virus DNA. J. Colloid Interface Sci. 613, 406–414 (2022). https://doi.org/10.1016/j.jcis.2022.01.038
J. Li, X. Cai, Y. Zhang, K. Li, L. Guan et al., MnO2 Nanozyme-loaded MXene for cancer synergistic photothermal-chemodynamic therapy. ChemistrySelect 7, e202201127 (2022). https://doi.org/10.1002/slct.202201127
Y. Zhu, Z. Wang, R. Zhao, Y. Zhou, L. Feng et al., Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano 16(2), 3105–3118 (2022). https://doi.org/10.1021/acsnano.1c10732
Z. Hao, Y. Li, X. Liu, T. Jiang, Y. He et al., Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem. Eng. J. 425, 130639 (2021). https://doi.org/10.1016/j.cej.2021.130639
M. Tang, Y. Shi, L. Lu, J. Li, Z. Zhang et al., Dual active nanozyme-loaded MXene enables hyperthermia-enhanced tumor nanocatalytic therapy. Chem. Eng. J. 449, 137847 (2022). https://doi.org/10.1016/j.cej.2022.137847
H. Hu, H. Huang, L. Xia, X. Qian, W. Feng et al., Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chem. Eng. J. 440, 135810 (2022). https://doi.org/10.1016/j.cej.2022.135810
W. Feng, X. Han, H. Hu, M. Chang, L. Ding et al., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12, 2203 (2021). https://doi.org/10.1038/s41467-021-22278-x
X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14, 22 (2022). https://doi.org/10.1007/s40820-021-00761-w
C. Liu, W. Yang, X. Min, D. Zhang, X. Fu et al., An enzyme-free electrochemical immunosensor based on quaternary metallic/nonmetallic PdPtBP alloy mesoporous nanops/MXene and conductive CuCl2 nanowires for ultrasensitive assay of kidney injury molecule-1. Sens. Actuat. B Chem. 334, 129585 (2021). https://doi.org/10.1016/j.snb.2021.129585
X. Xi, J. Wang, Y. Wang, H. Xiong, M. Chen et al., Preparation of Au/Pt/Ti3C2Cl2 nanoflakes with self-reducing method for colorimetric detection of glutathione and intracellular sensing of hydrogen peroxide. Carbon 197, 476–484 (2022). https://doi.org/10.1016/j.carbon.2022.06.068
Z. Jin, G. Xu, Y. Niu, X. Ding, Y. Han et al., Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J. Mater. Chem. B 8(16), 3513–3518 (2020). https://doi.org/10.1039/C9TB02478F
M. Li, X. Peng, Y. Han, L. Fan, Z. Liu et al., Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem. J. 166, 106238 (2021). https://doi.org/10.1016/j.microc.2021.106238
D. Chen, S. Shao, W. Zhang, J. Zhao, M. Lian, Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection. Anal. Chim. Acta 1197, 339520 (2022). https://doi.org/10.1016/j.aca.2022.339520
H. Ouyang, J. Xian, S. Luo, L. Zhang, W. Wang et al., Emitter–quencher pair of single atomic Co sites and monolayer titanium carbide MXenes for luminol chemiluminescent reactions. ACS Appl. Mater. Interfaces 13(51), 60945–60954 (2021). https://doi.org/10.1021/acsami.1c20489
G.K. Nasrallah, M. Al-Asmakh, K. Rasool, K.A. Mahmoud, Ecotoxicological assessment of Ti3C2Tx (MXene) using a Zebrafish embryo model. Environ. Sci. Nano 5, 1002–1011 (2018). https://doi.org/10.1039/C7EN01239J
N. Dwivedi, C. Dhand, P. Kumar, A.K. Srivastava, Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Mater. Adv. 2(9), 2892–2905 (2021). https://doi.org/10.1039/D1MA00003A
X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren et al., Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 848, 1–58 (2020). https://doi.org/10.1016/j.physrep.2019.12.006
S.K. Hwang, S.M. Kang, M. Rethinasabapathy, C. Roh, Y.S. Huh, MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 397, 125428 (2020). https://doi.org/10.1016/j.cej.2020.125428
S. Li, L. Dong, Z. Wei, G. Sheng, K. Du et al., Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu(III) in water. J. Environ. Sci. 96, 127–137 (2020). https://doi.org/10.1016/j.jes.2020.05.001
A. Champagne, J.C. Charlier, Physical properties of 2D MXenes: from a theoretical perspective. J. Phys. Mater. 3, 032006 (2021). https://doi.org/10.1088/2515-7639/ab97ee
E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14, 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
T.A. Tabish, M.Z.I. Pranjol, F. Jabeen, T. Abdullah, A. Latif et al., Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl. Mater. Today 12, 389–401 (2018). https://doi.org/10.1016/j.apmt.2018.07.005
X. Han, J. Huang, H. Lin, Z. Wang, P. Li et al., 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 7(9), 1701394 (2018). https://doi.org/10.1002/adhm.201701394
X. Han, X. Jing, D. Yang, H. Lin, Z. Wang et al., Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 8, 4491–4508 (2018). https://doi.org/10.7150/thno.26291
H. Alhussain, R. Augustine, E.A. Hussein, I. Gupta, A. Hasan et al., MXene nanosheets may induce toxic effect on the early stage of embryogenesis. J. Biomed. Nanotechnol. 16, 364–372 (2020). https://doi.org/10.1166/jbn.2020.2894
C. Dai, H. Lin, G. Xu, Z. Liu, R. Wu et al., Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 29, 8637–8652 (2017). https://doi.org/10.1021/acs.chemmater.7b02441
L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32, 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
I. Ihsanullah, Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. 12, 72 (2020). https://doi.org/10.1007/s40820-020-0411-9
H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou et al., Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 12, 1325–1338 (2020). https://doi.org/10.1039/C9NR07616F
A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao et al., Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12, 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
L. Wang, P. Hu, Y. Long, Z. Liu, X. He, Recent advances in ternary two-dimensional materials: synthesis, properties and applications. J. Mater. Chem. A 5(44), 22855–22876 (2017). https://doi.org/10.1039/C7TA06971E
X.J. Zha, X. Zhao, J.H. Pu, L.S. Tang, K. Ke et al., Flexible anti-biofouling mxene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11(40), 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
T. Shang, Z. Lin, C. Qi, X. Liu, P. Li et al., 3D Macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29(33), 1903960 (2019). https://doi.org/10.1002/adfm.201903960
X. Li, F. Ran, F. Yang, J. Long, L. Shao, Advances in MXene films: synthesis, assembly, and applications. Trans. Tianjin Uni. 27, 217–247 (2021). https://doi.org/10.1007/s12209-021-00282-y
A. Parihar, A. Singhal, N. Kumar, R. Khan, M.A. Khan et al., Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 14, 100 (2022). https://doi.org/10.1007/s40820-40022-00845-40821
A. Iqbal, J. Hong, T.Y. Ko, C.M. Koo, Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021). https://doi.org/10.1186/s40580-021-00259-6
L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro et al., A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56(7), 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10(3), 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
Z. Xu, G. Liu, H. Ye, W. Jin, Z. Cui, Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J. Membrane Sci. 563, 625–632 (2018). https://doi.org/10.1016/j.memsci.2018.05.044
M. Mozafari, M. Soroush, Surface functionalization of MXenes. Mater. Adv. 2(22), 7277–7307 (2021). https://doi.org/10.1039/D1MA00625H
Z. Li, H. Zhang, J. Han, Y. Chen, H. Lin et al., Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv. Mater. 30(25), 1706981 (2018). https://doi.org/10.1002/adma.201706981
G. Liu, J. Zou, Q. Tang, X. Yang, Y.W. Zhang et al., Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 9(46), 40077–40086 (2017). https://doi.org/10.1021/acsami.7b13421
N. Driscoll, A.G. Richardson, K. Maleski, B. Anasori, O. Adewole et al., Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12(10), 10419–10429 (2018). https://doi.org/10.1021/acsnano.8b06014
W.Y. Wang, Z.D. Hood, X.Y. Zhang, I.N. Ivanov, Z.H. Bao et al., Construction of 2D BiVO4-CdS-Ti3C2Tx heterostructures for enhanced photo-redox activities. ChemCatChem 12, 3496–3503 (2020). https://doi.org/10.1002/cctc.202000448
Q. Zhong, Y. Li, G. Zhang, Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem. Eng. J. 409, 128099 (2021). https://doi.org/10.1016/j.cej.2020.128099
W. Chen, B. Han, Y. Xie, S. Liang, H. Deng et al., Ultrathin Co–Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 391, 123519 (2020). https://doi.org/10.1016/j.cej.2019.123519
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
S.K. Sharma, A. Kumar, G. Sharma, D.V.N. Vo, A. García-Peñas et al., MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: a review. Chemosphere 291, 132923 (2022). https://doi.org/10.1016/j.chemosphere.2021.132923