Wetting of MXenes and Beyond
Corresponding Author: Massoud Malaki
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 116
Abstract
MXenes are a class of 2D nanomaterials with exceptional tailor-made properties such as mechano-ceramic nature, rich chemistry, and hydrophilicity, to name a few. However, one of the most challenging issues in any composite/hybrid system is the interfacial wetting. Having a superior integrity of a given composite system is a direct consequence of the proper wettability. While wetting is a fundamental feature, dictating many physical and chemical attributes, most of the common nanomaterials possesses poor affinity due to hydrophobic nature, making them hard to be easily dispersed in a given composite. Thanks to low contact angle, MXenes can offer themselves as an ideal candidate for manufacturing different nano-hybrid structures. Herein this review, it is aimed to particularly study the wettability of MXenes. In terms of the layout of the present study, MXenes are first briefly introduced, and then, the wettability phenomenon is discussed in detail. Upon reviewing the sporadic research efforts conducted to date, a particular attention is paid on the current challenges and research pitfalls to light up the future perspectives. It is strongly believed that taking the advantage of MXene’s rich hydrophilic surface may have a revolutionizing role in the fabrication of advanced materials with exceptional features.
Highlights:
1 The wetting behavior of 2D materials, MXenes in particular, is presented.
2 Owing to rich chemistry, MXenes have great potentials to be employed in various composite/hybrid systems.
3 Hydrophilicity and superior physical properties make the MXenes a great reinforcing agent.S
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Malaki, R.S. Varma, Mechanotribological aspects of MXene-reinforced nanocomposites. Adv. Mater. 32(38), 2003154 (2020). https://doi.org/10.1002/adma.202003154
- B. Anasori, M. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- Z. Shi, R. Khaledialidusti, M. Malaki, H. Zhang, MXene-based materials for solar cell applications. Nanomaterials 11(12), 3170 (2021). https://doi.org/10.3390/nano11123170
- Z. Aghayar, M. Malaki, Y. Zhang, Mxene-based ink design for printed applications. Nanomaterials 12, 4346 (2022). https://doi.org/10.3390/nano12234346
- M. Malaki, X. Jiang, H. Wang, R. Podila, H. Zhang et al., MXenes: from past to future perspectives. Chem. Eng. J. 463, 142351 (2023). https://doi.org/10.1016/j.cej.2023.142351
- M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv. Healthc. Mater. 8(1), 1801137 (2018). https://doi.org/10.1002/adhm.201801137
- S. Iravani, R.S. Varma, MXene-based composites as nanozymes in biomedicine: a perspective. Nano-Micro Lett. 14, 213 (2022). https://doi.org/10.1007/s40820-022-00958-7
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
- M. Malaki, A.F. Tehrani, B. Niroumand, M. Gupta, Wettability in metal matrix composites. Metals 11(7), 1034 (2021). https://doi.org/10.3390/met11071034
- J. Hashim, L. Looney, M.S.J. Hashmi, The wettability of SiC ps by molten aluminium alloy. J. Mater. Proc. Technol. 119(1), 324–328 (2001). https://doi.org/10.1016/S0924-0136(01)00975-X
- R. Raj, S.C. Maroo, E.N. Wang, Wettability of graphene. Nano Lett. 13(4), 1509–1515 (2013). https://doi.org/10.1021/nl304647t
- B. Singh, N. Ali, A. Chakravorty, I. Sulania, S. Ghosh et al., Wetting behavior of MoS2 thin films. Mater. Res. Express 6(9), 096424 (2019). https://doi.org/10.1088/2053-1591/ab2e5a
- V. Laurent, C. Rado, N. Eustathopoulos, Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng. A 205(1), 1–8 (1996). https://doi.org/10.1016/0921-5093(95)09896-8
- K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
- A.S. Zeraati, S.A. Mirkhani, P. Sun, M. Naguib, P.V. Braun et al., Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13(6), 3572–3580 (2021). https://doi.org/10.1039/D0NR06671K
- A. Lipatov, M. Alhabeb, H. Lu, S. Zhao, M.J. Loes et al., Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 6(4), 1901382 (2020). https://doi.org/10.1002/aelm.201901382
- M. Ghidiu, M.R. Lukatskaya, M. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13(8), 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
- M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33(39), 2103393 (2021). https://doi.org/10.1002/adma.202103393
- A. Munshi, V. Singh, M. Kumar, J. Singh, Effect of nanop size on sessile droplet contact angle. J. Appl. Phys. 103(8), 084315 (2008). https://doi.org/10.1063/1.2912464
- H. Nakae, H. Fujii, K. Sato, Reactive wetting of ceramics by liquid metals. Mater. Transact. JIM 33(4), 400–406 (1992). https://doi.org/10.2320/matertrans1989.33.400
- P. Machata, M. Hofbauerová, Y. Soyka, A. Stepura, D. Truchan et al., Wettability of MXene films. J. Colloid Interface Sci. 622, 759–768 (2022). https://doi.org/10.1016/j.jcis.2022.04.135
- S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and surface free energy of graphene films. Langmuir 25(18), 11078–11081 (2009). https://doi.org/10.1021/la901402f
- L.A. Belyaeva, G.F. Schneider, Wettability of graphene. Surf. Sci. Rep. 75(2), 100482 (2020). https://doi.org/10.1016/j.surfrep.2020.100482
- F. Taherian, V. Marcon, N.F. Vegt, F. Leroy, What is the contact angle of water on graphene? Langmuir 29(5), 1457–1465 (2013). https://doi.org/10.1021/la304645w
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
- Y.J. Shin, Y. Wang, H. Huang, G. Kalon, A.T.S. Wee et al., Surface-energy engineering of graphene. Langmuir 26(6), 3798–3802 (2010). https://doi.org/10.1021/la100231u
- J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari et al., Wetting transparency of graphene. Nat. Mater. 11(3), 217–222 (2012). https://doi.org/10.1038/nmat3228
- C.J. Shih, Q.H. Wang, S. Lin, K.C. Park, Z. Jin et al., Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 109(17), 176101 (2012). https://doi.org/10.1103/PhysRevLett.109.176101
- N. Wei, C. Lv, Z. Xu, Wetting of graphene oxide: a molecular dynamics study. Langmuir 30(12), 3572–3578 (2014). https://doi.org/10.1021/la500513x
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- B. Luan, R. Zhou, Wettability and friction of water on a MoS2 nanosheet. Appl. Phys. Lett. 108(13), 131601 (2016). https://doi.org/10.1063/1.4944840
- P.K. Chow, E. Singh, B.C. Viana, J. Gao, J. Luo et al., Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 9(3), 3023–3031 (2015). https://doi.org/10.1021/nn5072073
- A. Kozbial, X. Gong, H. Liu, L. Li, Understanding the intrinsic water wettability of molybdenum disulfide (MoS2). Langmuir 31(30), 8429–8435 (2015). https://doi.org/10.1021/acs.langmuir.5b02057
- M. Malaki, A.F. Tehrani, B. Niroumand, Fatgiue behavior of metal matrix nanocomposites. Ceram. Int. 46(15), 23326–23336 (2020). https://doi.org/10.1016/j.ceramint.2020.06.246
- L. Yu, L. Lu, X. Zhou, L. Xu, Current understanding of the wettability of MXenes. Adv. Mater. Interfaces 10(2), 2201818 (2022). https://doi.org/10.1002/admi.202201818
- M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7(18), 10843–10857 (2019). https://doi.org/10.1039/C9TA01850F
- K. Zukiene, G. Monastyreckis, S. Kilikevicius, M. Procházka, M. Micusik et al., Wettability of MXene and its interfacial adhesion with epoxy resin. Mater. Chem. Phys. 257, 123820 (2021). https://doi.org/10.1016/j.matchemphys.2020.123820
- L. Lorencova, T. Bertok, E. Dosekova, A. Holazova, D. Paprckova et al., Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim. Acta 235, 471–479 (2017). https://doi.org/10.1016/j.electacta.2017.03.073
- W. Yang, J.J. Liu, L.L. Wang, W. Wang, A.C.Y. Yuen et al., Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability. Compos. B Eng. 188, 107875 (2020). https://doi.org/10.1016/j.compositesb.2020.107875
- J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2020). https://doi.org/10.1002/aelm.201901094
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro et al., A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56(7), 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
- Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- Z. Fan, Y. Wang, Z. Xie, X. Xu, Y. Yuan et al., A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10(20), 9642–9652 (2018). https://doi.org/10.1039/C8NR01550C
- X. Jin, S.J. Shin, N. Kim, B. Kang, H. Piao et al., Superior role of MXene nanosheet as hybridization matrix over graphene in enhancing interfacial electronic coupling and functionalities of metal oxide. Nano Energy 53, 841–848 (2018). https://doi.org/10.1016/j.nanoen.2018.09.055
- T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo et al., Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J. Alloys Compd. 695, 818–826 (2017). https://doi.org/10.1016/j.jallcom.2016.10.127
- F. Du, H. Tang, L. Pan, T. Zhang, H. Lu et al., Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim. Acta 235, 690–699 (2017). https://doi.org/10.1016/j.electacta.2017.03.153
- M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- K.M. Kang, D.W. Kim, C.E. Ren, K.M. Cho, S.J. Kim et al., Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces 9(51), 44687–44694 (2017). https://doi.org/10.1021/acsami.7b10932
- J. Luo, C. Fang, C. Jin, H. Yuan, O. Sheng et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 6(17), 7794–7806 (2018). https://doi.org/10.1039/C8TA02068J
- S. Wei, Y. Xie, Y. Xing, L. Wang, H. Ye et al., Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J. Membrane Sci. 582, 414–422 (2019). https://doi.org/10.1016/j.memsci.2019.03.085
- R. Bian, S. Xiang, D. Cai, Fast treatment of MXene films with isocyanate to give enhanced stability. ChemNanoMat 6(1), 64–67 (2020). https://doi.org/10.1002/cnma.201900602
- G. Liu, J. Shen, Q. Liu, G. Liu, J. Xiong et al., Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Membrane Sci. 548, 548–558 (2018). https://doi.org/10.1016/j.memsci.2017.11.065
- X. Zhang, J. Xu, H. Wang, J. Zhang, H. Yan et al., Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. Angew. Chem. Int. Ed. 52(16), 4361–4365 (2013). https://doi.org/10.1002/anie.201300285
- H. Zhang, L. Wang, Q. Chen, P. Li, A. Zhou et al., Preparation, mechanical and anti–Friction performance of MXene/polymer composites. Mater. Design 92, 682–689 (2016). https://doi.org/10.1016/j.matdes.2015.12.084
- G. Monastyreckis, L. Mishnaevsky, C. Hatter, A. Aniskevich, Y. Gogotsi et al., Micromechanical modeling of MXene-polymer composites. Carbon 162, 402–409 (2020). https://doi.org/10.1016/j.carbon.2020.02.070
- H. Zhou, F. Wang, Y. Wang, C. Li, C. Shi et al., Study on contact angles and surface energy of MXene films. RSC Adv. 11(10), 5512–5520 (2021). https://doi.org/10.1039/D0RA09125A
- S. Kilikevičius, S. Kvietkaitė, K. Žukienė, M. Omastová, A. Aniskevich et al., Numerical investigation of the mechanical properties of a novel hybrid polymer composite reinforced with graphene and MXene nanosheets. Comput. Mater. Sci. 174, 109497 (2020). https://doi.org/10.1016/j.commatsci.2019.109497
- L. Liu, G. Ying, C. Hu, K. Zhang, F. Ma et al., Functionalization with MXene (Ti3C2) enhances the wettability and shear strength of carbon fiber-epoxy composites. ACS Appl. Nano Mater. 2(9), 5553–5562 (2019). https://doi.org/10.1021/acsanm.9b01127
- J. Yu, H. Chen, H. Huang, M. Zeng, J. Qin et al., Protein-induced decoration of applying MXene directly to UHMWPE fibers and fabrics for improved adhesion properties and electronic textiles. Compos. Sci. Technol. 218, 109158 (2022). https://doi.org/10.1016/j.compscitech.2021.109158
- J. Guo, T. Qiu, C. Yu, Y. Liu, C. Ning et al., Three-dimensional structured MXene/SiO2 for improving the interfacial properties of composites by self-assembly strategy. Polym. Compos. 43(1), 84–93 (2022). https://doi.org/10.1002/pc.26358
- R. Ding, Y. Sun, J. Lee, J.D. Nam, J. Suhr, Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C). Compos. B Eng. 207, 108580 (2021). https://doi.org/10.1016/j.compositesb.2020.108580
- J. Shen, G. Liu, Y. Ji, Q. Liu, L. Cheng et al., 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 28(31), 1801511 (2018). https://doi.org/10.1002/adfm.201801511
- N.N. Wang, H. Wang, Y.Y. Wang, Y.H. Wei, J.Y. Si et al., Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 11(43), 40512–40523 (2019). https://doi.org/10.1021/acsami.9b14265
- M. Malaki, A.F. Tehrani, B. Niroumand, A. Abdullah, Ultrasonically stir cast SiO2/A356 metal matrix nanocomposites. Metals 11(12), 2004 (2021). https://doi.org/10.3390/met11122004
- S. Chen, Y. Xiang, C. Peng, J. Jiang, W. Xu et al., Photo-responsive azobenzene-MXene hybrid and its optical modulated electrochemical effects. J. Power Sources 414, 192–200 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.009
- H. Zhou, Y. Wang, F. Wang, H. Deng, Y. Song et al., Water permeability in MXene membranes: process matters. Chinese Chem. Lett. 31(6), 1665–1669 (2020). https://doi.org/10.1016/j.cclet.2019.10.037
References
M. Malaki, R.S. Varma, Mechanotribological aspects of MXene-reinforced nanocomposites. Adv. Mater. 32(38), 2003154 (2020). https://doi.org/10.1002/adma.202003154
B. Anasori, M. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
Z. Shi, R. Khaledialidusti, M. Malaki, H. Zhang, MXene-based materials for solar cell applications. Nanomaterials 11(12), 3170 (2021). https://doi.org/10.3390/nano11123170
Z. Aghayar, M. Malaki, Y. Zhang, Mxene-based ink design for printed applications. Nanomaterials 12, 4346 (2022). https://doi.org/10.3390/nano12234346
M. Malaki, X. Jiang, H. Wang, R. Podila, H. Zhang et al., MXenes: from past to future perspectives. Chem. Eng. J. 463, 142351 (2023). https://doi.org/10.1016/j.cej.2023.142351
M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv. Healthc. Mater. 8(1), 1801137 (2018). https://doi.org/10.1002/adhm.201801137
S. Iravani, R.S. Varma, MXene-based composites as nanozymes in biomedicine: a perspective. Nano-Micro Lett. 14, 213 (2022). https://doi.org/10.1007/s40820-022-00958-7
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
M. Malaki, A.F. Tehrani, B. Niroumand, M. Gupta, Wettability in metal matrix composites. Metals 11(7), 1034 (2021). https://doi.org/10.3390/met11071034
J. Hashim, L. Looney, M.S.J. Hashmi, The wettability of SiC ps by molten aluminium alloy. J. Mater. Proc. Technol. 119(1), 324–328 (2001). https://doi.org/10.1016/S0924-0136(01)00975-X
R. Raj, S.C. Maroo, E.N. Wang, Wettability of graphene. Nano Lett. 13(4), 1509–1515 (2013). https://doi.org/10.1021/nl304647t
B. Singh, N. Ali, A. Chakravorty, I. Sulania, S. Ghosh et al., Wetting behavior of MoS2 thin films. Mater. Res. Express 6(9), 096424 (2019). https://doi.org/10.1088/2053-1591/ab2e5a
V. Laurent, C. Rado, N. Eustathopoulos, Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng. A 205(1), 1–8 (1996). https://doi.org/10.1016/0921-5093(95)09896-8
K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
A.S. Zeraati, S.A. Mirkhani, P. Sun, M. Naguib, P.V. Braun et al., Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13(6), 3572–3580 (2021). https://doi.org/10.1039/D0NR06671K
A. Lipatov, M. Alhabeb, H. Lu, S. Zhao, M.J. Loes et al., Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 6(4), 1901382 (2020). https://doi.org/10.1002/aelm.201901382
M. Ghidiu, M.R. Lukatskaya, M. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13(8), 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33(39), 2103393 (2021). https://doi.org/10.1002/adma.202103393
A. Munshi, V. Singh, M. Kumar, J. Singh, Effect of nanop size on sessile droplet contact angle. J. Appl. Phys. 103(8), 084315 (2008). https://doi.org/10.1063/1.2912464
H. Nakae, H. Fujii, K. Sato, Reactive wetting of ceramics by liquid metals. Mater. Transact. JIM 33(4), 400–406 (1992). https://doi.org/10.2320/matertrans1989.33.400
P. Machata, M. Hofbauerová, Y. Soyka, A. Stepura, D. Truchan et al., Wettability of MXene films. J. Colloid Interface Sci. 622, 759–768 (2022). https://doi.org/10.1016/j.jcis.2022.04.135
S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and surface free energy of graphene films. Langmuir 25(18), 11078–11081 (2009). https://doi.org/10.1021/la901402f
L.A. Belyaeva, G.F. Schneider, Wettability of graphene. Surf. Sci. Rep. 75(2), 100482 (2020). https://doi.org/10.1016/j.surfrep.2020.100482
F. Taherian, V. Marcon, N.F. Vegt, F. Leroy, What is the contact angle of water on graphene? Langmuir 29(5), 1457–1465 (2013). https://doi.org/10.1021/la304645w
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
Y.J. Shin, Y. Wang, H. Huang, G. Kalon, A.T.S. Wee et al., Surface-energy engineering of graphene. Langmuir 26(6), 3798–3802 (2010). https://doi.org/10.1021/la100231u
J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari et al., Wetting transparency of graphene. Nat. Mater. 11(3), 217–222 (2012). https://doi.org/10.1038/nmat3228
C.J. Shih, Q.H. Wang, S. Lin, K.C. Park, Z. Jin et al., Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 109(17), 176101 (2012). https://doi.org/10.1103/PhysRevLett.109.176101
N. Wei, C. Lv, Z. Xu, Wetting of graphene oxide: a molecular dynamics study. Langmuir 30(12), 3572–3578 (2014). https://doi.org/10.1021/la500513x
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
B. Luan, R. Zhou, Wettability and friction of water on a MoS2 nanosheet. Appl. Phys. Lett. 108(13), 131601 (2016). https://doi.org/10.1063/1.4944840
P.K. Chow, E. Singh, B.C. Viana, J. Gao, J. Luo et al., Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 9(3), 3023–3031 (2015). https://doi.org/10.1021/nn5072073
A. Kozbial, X. Gong, H. Liu, L. Li, Understanding the intrinsic water wettability of molybdenum disulfide (MoS2). Langmuir 31(30), 8429–8435 (2015). https://doi.org/10.1021/acs.langmuir.5b02057
M. Malaki, A.F. Tehrani, B. Niroumand, Fatgiue behavior of metal matrix nanocomposites. Ceram. Int. 46(15), 23326–23336 (2020). https://doi.org/10.1016/j.ceramint.2020.06.246
L. Yu, L. Lu, X. Zhou, L. Xu, Current understanding of the wettability of MXenes. Adv. Mater. Interfaces 10(2), 2201818 (2022). https://doi.org/10.1002/admi.202201818
M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7(18), 10843–10857 (2019). https://doi.org/10.1039/C9TA01850F
K. Zukiene, G. Monastyreckis, S. Kilikevicius, M. Procházka, M. Micusik et al., Wettability of MXene and its interfacial adhesion with epoxy resin. Mater. Chem. Phys. 257, 123820 (2021). https://doi.org/10.1016/j.matchemphys.2020.123820
L. Lorencova, T. Bertok, E. Dosekova, A. Holazova, D. Paprckova et al., Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim. Acta 235, 471–479 (2017). https://doi.org/10.1016/j.electacta.2017.03.073
W. Yang, J.J. Liu, L.L. Wang, W. Wang, A.C.Y. Yuen et al., Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability. Compos. B Eng. 188, 107875 (2020). https://doi.org/10.1016/j.compositesb.2020.107875
J. Liu, Z. Liu, H.B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6(1), 1901094 (2020). https://doi.org/10.1002/aelm.201901094
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro et al., A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56(7), 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
Z. Fan, Y. Wang, Z. Xie, X. Xu, Y. Yuan et al., A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10(20), 9642–9652 (2018). https://doi.org/10.1039/C8NR01550C
X. Jin, S.J. Shin, N. Kim, B. Kang, H. Piao et al., Superior role of MXene nanosheet as hybridization matrix over graphene in enhancing interfacial electronic coupling and functionalities of metal oxide. Nano Energy 53, 841–848 (2018). https://doi.org/10.1016/j.nanoen.2018.09.055
T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo et al., Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J. Alloys Compd. 695, 818–826 (2017). https://doi.org/10.1016/j.jallcom.2016.10.127
F. Du, H. Tang, L. Pan, T. Zhang, H. Lu et al., Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim. Acta 235, 690–699 (2017). https://doi.org/10.1016/j.electacta.2017.03.153
M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori et al., Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
K.M. Kang, D.W. Kim, C.E. Ren, K.M. Cho, S.J. Kim et al., Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces 9(51), 44687–44694 (2017). https://doi.org/10.1021/acsami.7b10932
J. Luo, C. Fang, C. Jin, H. Yuan, O. Sheng et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 6(17), 7794–7806 (2018). https://doi.org/10.1039/C8TA02068J
S. Wei, Y. Xie, Y. Xing, L. Wang, H. Ye et al., Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J. Membrane Sci. 582, 414–422 (2019). https://doi.org/10.1016/j.memsci.2019.03.085
R. Bian, S. Xiang, D. Cai, Fast treatment of MXene films with isocyanate to give enhanced stability. ChemNanoMat 6(1), 64–67 (2020). https://doi.org/10.1002/cnma.201900602
G. Liu, J. Shen, Q. Liu, G. Liu, J. Xiong et al., Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Membrane Sci. 548, 548–558 (2018). https://doi.org/10.1016/j.memsci.2017.11.065
X. Zhang, J. Xu, H. Wang, J. Zhang, H. Yan et al., Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. Angew. Chem. Int. Ed. 52(16), 4361–4365 (2013). https://doi.org/10.1002/anie.201300285
H. Zhang, L. Wang, Q. Chen, P. Li, A. Zhou et al., Preparation, mechanical and anti–Friction performance of MXene/polymer composites. Mater. Design 92, 682–689 (2016). https://doi.org/10.1016/j.matdes.2015.12.084
G. Monastyreckis, L. Mishnaevsky, C. Hatter, A. Aniskevich, Y. Gogotsi et al., Micromechanical modeling of MXene-polymer composites. Carbon 162, 402–409 (2020). https://doi.org/10.1016/j.carbon.2020.02.070
H. Zhou, F. Wang, Y. Wang, C. Li, C. Shi et al., Study on contact angles and surface energy of MXene films. RSC Adv. 11(10), 5512–5520 (2021). https://doi.org/10.1039/D0RA09125A
S. Kilikevičius, S. Kvietkaitė, K. Žukienė, M. Omastová, A. Aniskevich et al., Numerical investigation of the mechanical properties of a novel hybrid polymer composite reinforced with graphene and MXene nanosheets. Comput. Mater. Sci. 174, 109497 (2020). https://doi.org/10.1016/j.commatsci.2019.109497
L. Liu, G. Ying, C. Hu, K. Zhang, F. Ma et al., Functionalization with MXene (Ti3C2) enhances the wettability and shear strength of carbon fiber-epoxy composites. ACS Appl. Nano Mater. 2(9), 5553–5562 (2019). https://doi.org/10.1021/acsanm.9b01127
J. Yu, H. Chen, H. Huang, M. Zeng, J. Qin et al., Protein-induced decoration of applying MXene directly to UHMWPE fibers and fabrics for improved adhesion properties and electronic textiles. Compos. Sci. Technol. 218, 109158 (2022). https://doi.org/10.1016/j.compscitech.2021.109158
J. Guo, T. Qiu, C. Yu, Y. Liu, C. Ning et al., Three-dimensional structured MXene/SiO2 for improving the interfacial properties of composites by self-assembly strategy. Polym. Compos. 43(1), 84–93 (2022). https://doi.org/10.1002/pc.26358
R. Ding, Y. Sun, J. Lee, J.D. Nam, J. Suhr, Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C). Compos. B Eng. 207, 108580 (2021). https://doi.org/10.1016/j.compositesb.2020.108580
J. Shen, G. Liu, Y. Ji, Q. Liu, L. Cheng et al., 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 28(31), 1801511 (2018). https://doi.org/10.1002/adfm.201801511
N.N. Wang, H. Wang, Y.Y. Wang, Y.H. Wei, J.Y. Si et al., Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 11(43), 40512–40523 (2019). https://doi.org/10.1021/acsami.9b14265
M. Malaki, A.F. Tehrani, B. Niroumand, A. Abdullah, Ultrasonically stir cast SiO2/A356 metal matrix nanocomposites. Metals 11(12), 2004 (2021). https://doi.org/10.3390/met11122004
S. Chen, Y. Xiang, C. Peng, J. Jiang, W. Xu et al., Photo-responsive azobenzene-MXene hybrid and its optical modulated electrochemical effects. J. Power Sources 414, 192–200 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.009
H. Zhou, Y. Wang, F. Wang, H. Deng, Y. Song et al., Water permeability in MXene membranes: process matters. Chinese Chem. Lett. 31(6), 1665–1669 (2020). https://doi.org/10.1016/j.cclet.2019.10.037