Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion
Corresponding Author: Ryan F. Donnelly
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 93
Abstract
Transdermal microneedle (MN) patches are a promising tool used to transport a wide variety of active compounds into the skin. To serve as a substitute for common hypodermic needles, MNs must pierce the human stratum corneum (~ 10 to 20 µm), without rupturing or bending during penetration. This ensures that the cargo is released at the predetermined place and time. Therefore, the ability of MN patches to sufficiently pierce the skin is a crucial requirement. In the current review, the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared. This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice. Factors that affect insertion (e.g., geometry, material composition and cross-linking of MNs), along with recent advancements in developed strategies (e.g., insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography) to improve the skin penetration are highlighted to provide a backdrop for future research.
Highlights:
1 Factors affecting microneedle insertion into skin are reviewed.
2 The use of artificial and computational skin models for the simulation of needle insertion is summarized.
3 Skin structures and models, as well as mechanical analyses, used to determine transdermal microneedle ability to insert into skin are highlighted in the review.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Jamaledin, P. Makvandi, C.K.Y. Yiu, T. Agarwal, R. Vecchione et al., Engineered microneedle patches for controlled release of active compounds: recent advances in release profile tuning. Adv. Ther. 3, 2000171 (2020). https://doi.org/10.1002/adtp.202000171
- A. Patzelt, W.C. Mak, S. Jung, F. Knorr, M.C. Meinke et al., Do nanoparticles have a future in dermal drug delivery? J. Control. Release 246, 174–182 (2017). https://doi.org/10.1016/j.jconrel.2016.09.015
- R. Jamaledin, C. Di Natale, V. Onesto, Z.B. Taraghdari, E.N. Zare et al., Progress in microneedle-mediated protein delivery. J. Clin. Med. 9, 542 (2020). https://doi.org/10.3390/jcm9020542
- Z. Baghban-Taraghdari, R. Imani, F. Mohabatpour, A review on bioengineering approaches to insulin delivery: a pharmaceutical and engineering perspective. Macromol. Biosci. 19, 1800458 (2019). https://doi.org/10.1002/mabi.201800458
- M. Battisti, R. Vecchione, C. Casale, F.A. Pennacchio, V. Lettera et al., Non-invasive production of multi-compartmental biodegradable polymer microneedles for controlled intradermal drug release of labile molecules. Front. Bioeng. Biotechnol. 7, 296 (2019). https://doi.org/10.3389/fbioe.2019.00296
- R. Jamaledin, C.K.Y. Yiu, E.N. Zare, L. Niu, R. Vecchione et al., Advances in antimicrobial microneedle patches for combating infections. Adv. Mater. 32, 2002129 (2020). https://doi.org/10.1002/adma.202002129
- Y.H. Feng, X.P. Zhang, Y.Y. Hao, G.Y. Ren, X.D. Guo, Simulation study of the pH sensitive directed self-assembly of rheins for sustained drug release hydrogel. Colloids Surf. B: Biointerfaces 195, 111260 (2020). https://doi.org/10.1016/j.colsurfb.2020.111260
- S. Bhatnagar, K. Dave, V.V.K. Venuganti, Microneedles in the clinic. J. Control. Release 260, 164–182 (2017). https://doi.org/10.1016/j.jconrel.2017.05.029
- X. Jin, D.D. Zhu, B.Z. Chen, M. Ashfaq, X.D. Guo, Insulin delivery systems combined with microneedle technology. Adv. Drug Deliv. Rev. 127, 119–137 (2018). https://doi.org/10.1016/j.addr.2018.03.011
- M. Leone, J. Mönkäre, J.A. Bouwstra, G. Kersten, Dissolving microneedle patches for dermal vaccination. Pharm. Res. 34, 2223–2240 (2017). https://doi.org/10.1007/s11095-017-2223-2
- Y. Zhang, P. Feng, J. Yu, J. Yang, J. Zhao et al., ROS-responsive microneedle patch for acne vulgaris treatment. Adv. Ther. 1, 1870006 (2018). https://doi.org/10.1002/adtp.201870006
- R. Ali, P. Mehta, M.S. Arshad, I. Kucuk, M.W. Chang et al., Transdermal microneedles—a materials perspective. AAPS PharmSciTech 21, 12 (2020). https://doi.org/10.1208/s12249-019-1560-3
- S. Dharadhar, A. Majumdar, S. Dhoble, V. Patravale, Microneedles for transdermal drug delivery: a systematic review. Drug Dev. Ind. Pharm. 45, 188–201 (2019). https://doi.org/10.1080/03639045.2018.1539497
- T. Waghule, G. Singhvi, S.K. Dubey, M.M. Pandey, G. Gupta et al., Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 109, 1249–1258 (2019). https://doi.org/10.1016/j.biopha.2018.10.078
- C. Pan, K. Chen, L. Jiang, Z. Chen, L. Ren et al., Magnetization-induced self-assembly method: Micro-needle array fabrication. J. Mater. Process. Technol. 227, 251–258 (2016). https://doi.org/10.1016/j.jmatprotec.2015.08.025
- K. Moussi, A. Bukhamsin, T. Hidalgo, J. Kosel, Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. Adv. Eng. Mater. 22, 1901358 (2020). https://doi.org/10.1002/adem.201901358
- B.Z. Chen, M. Ashfaq, D.D. Zhu, X.P. Zhang, X.D. Guo, Controlled delivery of insulin using rapidly separating microneedles fabricated from genipin-crosslinked gelatin. Macromol. Rapid Commun. (2018). https://doi.org/10.1002/marc.201800075
- E.L. Zoudani, M. Soltani, A new computational method of modeling and evaluation of dissolving microneedle for drug delivery applications: Extension to theoretical modeling of a novel design of microneedle (array in array) for efficient drug delivery. Eur. J. Pharm. Sci. 150, 105339 (2020). https://doi.org/10.1016/j.ejps.2020.105339
- S.P. Davis, M.R. Prausnitz, M.G. Allen, Fabrication and characterization of laser micromachined hollow microneedles, in: TRANSDUCERS 2003—12th International Conference on Solid-State Sensors, Actuators Microsystems (Digest of Technical Papers, Institute of Electrical and Electronics Engineers Inc., 2003), pp. 1435–1438. doi: https://doi.org/10.1109/SENSOR.2003.1217045
- M.N. Abser, M. Gaffar, M.S. Islam, Mechanical feasibility analysis of process optimized silicon microneedle for biomedical applications, in: ICECE 2010—6th International Conference on Electrical and Computer Engineering (2010), pp. 222–225. doi: https://doi.org/10.1109/ICELCE.2010.5700668
- P. Aggarwal, C.R. Johnston, Geometrical effects in mechanical characterizing of microneedle for biomedical applications. Sens. Actuat. B: Chem. 102, 226–234 (2004). https://doi.org/10.1016/j.snb.2004.04.024
- B. Al-Qallaf, D.B. Das, A. Davidson, Transdermal drug delivery by coated microneedles: geometry effects on drug concentration in blood. Asia-Pacific J. Chem. Eng. 4, 845–857 (2009). https://doi.org/10.1002/apj.353
- M. Kirkby, A.R.J. Hutton, R.F. Donnelly, Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: current status and future considerations. Pharm. Res. (2020). https://doi.org/10.1007/s11095-020-02844-6
- D.L. Ellison, Physiology of Pain. Crit. Care Nurs. Clin. N. Am. 29, 397–406 (2017). https://doi.org/10.1016/j.cnc.2017.08.001
- M.S. Gold, G.F. Gebhart, Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010). https://doi.org/10.1038/nm.2235
- A.I. Basbaum, D.M. Bautista, G. Scherrer, D. Julius, Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009). https://doi.org/10.1016/j.cell.2009.09.028
- C.E. Steeds, The anatomy and physiology of pain. Surgery (Oxford) 34, 55–59 (2016). https://doi.org/10.1016/j.mpsur.2015.11.005
- S. Bourne, A.G. Machado, S.J. Nagel, Basic anatomy and physiology of pain pathways. Neurosurg. Clin. North Am. 25, 629–638 (2014). https://doi.org/10.1016/j.nec.2014.06.001
- M.J. Hudspith, Anatomy, physiology and pharmacology of pain. Anaesth. Intensive Care Med. 20, 419–425 (2019). https://doi.org/10.1016/j.mpaic.2019.05.008
- D. Ignatavicius, M.L. Workman, Assessment and care of patients with pain, in Medical-Surgical Nursing: Patient-Centered Collaborative Care, 8th ed. (Elsevier, St Louis, MO, 2016). doi: https://doi.org/10.1016/j.ejps.2008.06.016
- H.S. Gill, D.D. Denson, B.A. Burris, M.R. Prausnitz, Effect of microneedle design on pain in human volunteers. Clin. J. Pain 24, 585–594 (2008). https://doi.org/10.1097/AJP.0b013e31816778f9
- J. Gupta, D.D. Denson, E.I. Felner, M.R. Prausnitz, Rapid local anesthesia in human subjects using minimally invasive microneedles. Clin. J. Pain 28, 129 (2012). https://doi.org/10.1097/AJP.0b013e318225dbe9
- J. Gupta, S.S. Park, B. Bondy, E.I. Felner, M.R. Prausnitz, Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials 32, 6823–6831 (2011). https://doi.org/10.1016/j.biomaterials.2011.05.061
- M.I. Haq, E. Smith, D.N. John, M. Kalavala, C. Edwards et al., Clinical administration of microneedles: Skin puncture, pain and sensation. Biomed. Microdevices 11, 35–47 (2009). https://doi.org/10.1007/s10544-008-9208-1
- S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra et al., Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92, 502–504 (2001). https://doi.org/10.1213/00000539-200102000-00041
- B. Sezgin, B. Ozel, H. Bulam, K. Guney, S. Tuncer et al., The effect of microneedle thickness on pain during minimally invasive facial procedures: A clinical study. Aesthetic Surg. J. 34, 757–765 (2014). https://doi.org/10.1177/1090820X14532941
- C. Griffiths, J. Barker, T.O. Bleiker, R. Chalmers, D. Creamer, Rook’s Textbook of Dermatology (Wiley, Hoboken, 2016).
- M.D. Shoulders, R.T. Raines, Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009). https://doi.org/10.1146/annurev.biochem.77.032207.120833
- J.M. Benítez, F.J. Montáns, The mechanical behavior of skin: Structures and models for the finite element analysis. Comput. Struct. 190, 75–107 (2017). https://doi.org/10.1016/j.compstruc.2017.05.003
- J. Kim, S. Park, G. Nam, Y. Choi, S. Woo et al., Bioinspired microneedle insertion for deep and precise skin penetration with low force: Why the application of mechanophysical stimuli should be considered. J. Mech. Behav. Biomed. Mater. 78, 480–490 (2018). https://doi.org/10.1016/j.jmbbm.2017.12.006
- J.G. Murphy, Evolution of anisotropy in soft tissue. Proc. R. Soc. A Math. Phys. Eng. Sci. 470, 20130548 (2014)
- T. Walimbe, A. Panitch, Proteoglycans in biomedicine: resurgence of an underexploited class of ECM molecules. Front. Pharmacol. 10, 1661 (2020)
- W. Montagna, The Structure and Function of Skin (Elsevier, Amsterdam, 2012).
- M.B. Murphrey, J.H. Miao, P.M. Zito, Histology, stratum corneum, in: StatPearls [Internet] (StatPearls Publishing, 2020)
- Y. Har-Shai, I. Zilinsky, R. Ogawa, C. Huang, Bio-mechanical stimulation of skin fibroblasts. Mesenchymal Cell Act. by Biomech. Stimul. Its Clin. Prospect. 35 (2016)
- A.M. Zöllner, M.A. Holland, K.S. Honda, A.K. Gosain, E. Kuhl, Growth on demand: reviewing the mechanobiology of stretched skin. J. Mech. Behav. Biomed. Mater. 28, 495–509 (2013). https://doi.org/10.1016/j.jmbbm.2013.03.018
- F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, K. Schenke-Layland, Skin tissue engineering—in vivo and in vitro applications. Adv. Drug Deliv. Rev. 63, 352–366 (2011). https://doi.org/10.1016/j.addr.2011.01.005
- Y. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, Berlin, 2013).
- L.B. Sandberg, Elastin structure in health and disease. in: International Review of Connective Tissue Research (Elsevier, 1976), pp. 159–210. doi: https://doi.org/10.1016/B978-0-12-363707-9.50010-1
- F. Xu, T. Lu, Introduction to Skin Biothermomechanics and Thermal Pain (Springer, Berlin, 2011).
- J.W.Y. Jor, M.D. Parker, A.J. Taberner, M.P. Nash, P.M.F. Nielsen, Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 539–556 (2013). https://doi.org/10.1002/wsbm.1228
- R.H. Nygaard, S. Maynard, P. Schjerling, M. Kjær, K. Qvortrup et al., Acquired localized cutis laxa due to increased elastin turnover. Case Rep. Dermatol. 8, 42–51 (2016). https://doi.org/10.1159/000443696
- J. Gosline, M. Lillie, E. Carrington, P. Guerette, C. Ortlepp et al., Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 357, 121–132 (2002). https://doi.org/10.1098/rstb.2001.1022
- A.J. Schriefl, G. Zeindlinger, D.M. Pierce, P. Regitnig, G.A. Holzapfel, Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface 9, 1275–1286 (2012). https://doi.org/10.1098/rsif.2011.0727
- L. Nuytinck, M. Freund, L. Lagae, G.E. Pierard, T. Hermanns-Le et al., Classical Ehlers–Danlos syndrome caused by a mutation in type I collagen. Am. J. Hum. Genet. 66, 1398–1402 (2000). https://doi.org/10.1086/302859
- V.R. Sherman, Y. Tang, S. Zhao, W. Yang, M.A. Meyers, Structural characterization and viscoelastic constitutive modeling of skin. Acta Biomater. 53, 460–469 (2017). https://doi.org/10.1016/j.actbio.2017.02.011
- S.H. Hussain, B. Limthongkul, T.R. Humphreys, The biomechanical properties of the skin. Dermatol. Surg. 39, 193–203 (2013). https://doi.org/10.1111/dsu.12095
- J.T.J. Huang, C.E. Bolton, B.E. Miller, R. Tal-Singer, R.A. Rabinovich et al., Age-dependent elastin degradation is enhanced in chronic obstructive pulmonary disease. Eur. Respir. J. 48, 1215–1218 (2016). https://doi.org/10.1183/13993003.01125-2016
- V. Marcos-Garcés, P. Molina-Aguilar, C. Bea-Serrano, V. García-sssBustos, J. Benavent-Seguí et al., Age-related dermal collagen changes during development, maturation and ageing—a morphometric and comparative study. J. Anat. 225, 98–108 (2014). https://doi.org/10.1111/joa.12186
- M. Tronnier, Cutaneous disorders characterized by elastolysis or loss of elastic tissue. JDDG J. Der Dtsch. Dermatologischen Gesellschaft. 16, 183–191 (2018). https://doi.org/10.1111/ddg.13430
- E. Berardesca, J. de Rigal, J.L. Leveque, H.I. Maibach, In vivo biophysical characterization of skin physiological differences in races. Dermatology 182, 89–93 (1991). https://doi.org/10.1159/000247752
- M.F. Leyva-Mendivil, A. Page, N.W. Bressloff, G. Limbert, A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J. Mech. Behav. Biomed. Mater. 49, 197–219 (2015). https://doi.org/10.1016/j.jmbbm.2015.05.010
- P.P. Purslow, T.J. Wess, D.W. Hukins, Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J. Exp. Biol. 201, 135–142 (1998)
- K.D. Butz, A.J. Griebel, T. Novak, K. Harris, A. Kornokovich et al., Prestress as an optimal biomechanical parameter for needle penetration. J. Biomech. 45, 1176–1179 (2012). https://doi.org/10.1016/j.jbiomech.2012.01.049
- M.T. Hoang, K.B. Ita, D.A. Bair, Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics 7, 379–396 (2015). https://doi.org/10.3390/pharmaceutics7040379
- E. Larrañeta, M.T.C. McCrudden, A.J. Courtenay, R.F. Donnelly, Microneedles: a new frontier in nanomedicine delivery. Pharm. Res. 33, 1055–1073 (2016). https://doi.org/10.1007/s11095-016-1885-5
- J. Gupta, H.S. Gill, S.N. Andrews, M.R. Prausnitz, Kinetics of skin resealing after insertion of microneedles in human subjects. J. Control. Release 154, 148–155 (2011). https://doi.org/10.1016/j.jconrel.2011.05.021
- G.K. Menon, K.R. Feingold, P.M. Elias, Lamellar body secretory response to barrier disruption. J. Invest. Dermatol. 98, 279–289 (1992). https://doi.org/10.1111/1523-1747.ep12497866
- C. Curdy, A. Naik, Y.N. Kalia, I. Alberti, R.H. Guy, Non-invasive assessment of the effect of formulation excipients on stratum corneum barrier function in vivo. Int. J. Pharm. 271, 251–256 (2004). https://doi.org/10.1016/j.ijpharm.2003.11.016
- L. Daugimont, N. Baron, G. Vandermeulen, N. Pavselj, D. Miklavcic et al., Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J. Membr. Biol. 236, 117–125 (2010). https://doi.org/10.1007/s00232-010-9283-0
- N.N. Aung, T. Ngawhirunpat, T. Rojanarata, P. Patrojanasophon, P. Opanasopit et al., HPMC/PVP Dissolving microneedles: a promising delivery platform to promote trans-epidermal delivery of alpha-arbutin for skin lightening. AAPS PharmSciTech 21, 25 (2020). https://doi.org/10.1208/s12249-019-1599-1
- G. Kang, S. Kim, H. Yang, M. Jang, L. Chiang et al., Combinatorial application of dissolving microneedle patch and cream for improvement of skin wrinkles, dermal density, elasticity, and hydration. J. Cosmet. Dermatol. 18, 1083–1091 (2019). https://doi.org/10.1111/jocd.12807
- R. Al-Kasasbeh, A.J. Brady, A.J. Courtenay, E. Larrañeta, M.T.C. McCrudden et al., Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv. Transl. Res. 10, 690–705 (2020). https://doi.org/10.1007/s13346-020-00727-2
- E.M. Vicente-Perez, E. Larrañeta, M.T.C. McCrudden, A. Kissenpfennig, S. Hegarty et al., Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. Eur. J. Pharm. Biopharm. 117, 400–407 (2017). https://doi.org/10.1016/j.ejpb.2017.04.029
- A.P. Sgouros, G. Kalosakas, K. Papagelis, C. Galiotis, Compressive response and buckling of graphene nanoribbons. Sci. Rep. 8, 9593 (2018). https://doi.org/10.1038/s41598-018-27808-0
- M.R. Maschmann, Q. Zhang, R. Wheeler, F. Du, L. Dai et al., In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl. Mater. Interfaces 3, 648–653 (2011). https://doi.org/10.1021/am101262g
- F.P. Beer, Mechanics of Materials (McGraw-Hill, New York, 2012).
- E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald, Bulk micromachined titanium microneedles. J. Microelectromech. Syst. 16, 289–295 (2007). https://doi.org/10.1109/JMEMS.2007.892909
- J.-H. Park, M.R. Prausnitz, Analysis of mechanical failure of polymer microneedles by axial force. J. Korean Phys. Soc. 56, 1223–1227 (2010). https://doi.org/10.3938/jkps.56.1223
- S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. 37, 1155–1163 (2004). https://doi.org/10.1016/j.jbiomech.2003.12.010
- J.H. Park, M.G. Allen, M.R. Prausnitz, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control Release 104, 51–66 (2005). https://doi.org/10.1016/j.jconrel.2005.02.002
- E. Forvi, M. Soncini, M. Bedoni, F. Rizzo, M. Casella et al., A method to determine the margin of safety for microneedles arrays, in: Proceedings of the World Congress on Engineering (2010)
- Y.K. Demir, Z. Akan, O. Kerimoglu, Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS ONE 8, e77289 (2013). https://doi.org/10.1371/journal.pone.0077289
- S.C. Park, M.J. Kim, S.-K. Baek, J.-H. Park, S.-O. Choi, Spray-formed layered polymer microneedles for controlled biphasic drug delivery. Polymers 11, 369 (2019). https://doi.org/10.3390/polym11020369
- S. Lin, G. Quan, A. Hou, P. Yang, T. Peng et al., Strategy for hypertrophic scar therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Control Release 306, 69–82 (2019). https://doi.org/10.1016/j.jconrel.2019.05.038
- K. Saraswathy, G. Agarwal, A. Srivastava, Hyaluronic acid microneedles-laden collagen cryogel plugs for ocular drug delivery. J. Appl. Polym. Sci. 137, 49285 (2020). https://doi.org/10.1002/app.49285
- E. Larrañeta, R.E.M. Lutton, A.D. Woolfson, R.F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater. Sci. Eng. R Reports 104, 1–32 (2016). https://doi.org/10.1016/j.mser.2016.03.001
- A.C. Anselmo, Y. Gokarn, S. Mitragotri, Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18, 19–40 (2019). https://doi.org/10.1038/nrd.2018.183
- E. Abd, S.A. Yousef, M.N. Pastore, K. Telaprolu, Y.H. Mohammed et al., Skin models for the testing of transdermal drugs. Clin. Pharmacol. Adv. Appl. 8, 163 (2016). https://doi.org/10.2147/CPAA.S64788
- G.E. Flaten, Z. Palac, A. Engesland, J. Filipović-Grčić, Ž Vanić et al., In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci. 75, 10–24 (2015). https://doi.org/10.1016/j.ejps.2015.02.018
- L.Y. Dong, Y. Li, Z. Li, N. Xu, P. Liu et al., Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl. Mater. Interfaces 10, 9247–9256 (2018). https://doi.org/10.1021/acsami.7b18293
- H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566 (2016). https://doi.org/10.1038/nnano.2016.38
- W. Li, R.N. Terry, J. Tang, M.R. Feng, S.P. Schwendeman et al., Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3, 220 (2019). https://doi.org/10.1038/s41551-018-0337-4
- H. Todo, Transdermal permeation of drugs in various animal species. Pharmaceutics 9, 33 (2017). https://doi.org/10.3390/pharmaceutics9030033
- J.C.J. Wei, G.A. Edwards, D.J. Martin, H. Huang, M.L. Crichton et al., Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. Sci. Rep. 7, 15885 (2017). https://doi.org/10.1038/s41598-017-15830-7
- E. Larraneta, J. Moore, E.M. Vicente-Perez, P. Gonzalez-Vazquez, R. Lutton et al., A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 472, 65–73 (2014). https://doi.org/10.1016/j.ijpharm.2014.05.042
- A.D. Permana, M. Mir, E. Utomo, R.F. Donnelly, Bacterially sensitive nanoparticle-based dissolving microneedles of doxycycline for enhanced treatment of bacterial biofilm skin infection: A proof of concept study. Int. J. Pharm. X. 2, 100047 (2020). https://doi.org/10.1016/j.ijpx.2020.100047
- A.D. Permana, A.J. Paredes, F. Volpe-Zanutto, Q.K. Anjani, E. Utomo et al., Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur. J. Pharm. Biopharm. 154, 50–61 (2020). https://doi.org/10.1016/j.ejpb.2020.06.025
- M.-C. Chen, M.-H. Ling, K.-W. Wang, Z.-W. Lin, B.-H. Lai et al., Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery. Biomacromol 16, 1598–1607 (2015). https://doi.org/10.1021/acs.biomac.5b00185
- A. Arora, I. Hakim, J. Baxter, R. Rathnasingham, R. Srinivasan et al., Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc. Natl. Acad. Sci. 104, 4255–4260 (2007). https://doi.org/10.1073/pnas.0700182104
- D.F.S. Fonseca, P.C. Costa, I.F. Almeida, P. Dias-Pereira, I. Correia-Sá et al., Swellable gelatin methacryloyl microneedles for extraction of interstitial skin fluid toward minimally invasive monitoring of urea. Macromol. Biosci. 20, 2000195 (2020). https://doi.org/10.1002/mabi.202000195
- V.V.T. Padil, J.Y. Cheong, K. Akshaykumar, R. Torres-Mendieta, E.N. Zareh et al., Electrospun fibers from natural carbohydrate polymers and their multidimensional applications. ACS Appl. Polym. Mater. 247, 116705 (2020). https://doi.org/10.1016/j.carbpol.2020.116705
- T. Salzano, Biodegradable Polymeric Microneedle Patches for Transdermal and Controlled Drug Delivery. Thesis (2016)
- M. Shabani, K. Jahani, M. Di Paola, M.H. Sadeghi, Frequency domain identification of the fractional Kelvin-Voigt’s parameters for viscoelastic materials. Mech. Mater. 137, 103099 (2019). https://doi.org/10.1016/J.MECHMAT.2019.103099
- S. Aoyagi, H. Izumi, M. Fukuda, Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens. Actuat. A Phys. 143, 20–28 (2008). https://doi.org/10.1016/j.sna.2007.06.007
- I. Xenikakis, M. Tzimtzimis, K. Tsongas, D. Andreadis, E. Demiri et al., Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur. J. Pharm. Sci. 137, 104976 (2019). https://doi.org/10.1016/j.ejps.2019.104976
- X.Q. Kong, P. Zhou, C.W. Wu, Numerical simulation of microneedles’ insertion into skin. Comput. Methods Biomech. Biomed. Eng. 14, 827–835 (2011). https://doi.org/10.1080/10255842.2010.497144
- M.F. Leyva-Mendivil, J. Lengiewicz, A. Page, N.W. Bressloff, G. Limbert, Skin microstructure is a key contributor to its friction behaviour. Tribol. Lett. 65, 12 (2016). https://doi.org/10.1007/s11249-016-0794-4
- E.Z. Loizidou, N.A. Williams, D.A. Barrow, M.J. Eaton, J. McCrory et al., Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses. Eur. J. Pharm. Biopharm. 89, 224–231 (2015). https://doi.org/10.1016/j.ejpb.2014.11.023
- O. Olatunji, D.B. Das, M.J. Garland, L. Belaid, R.F. Donnelly, Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J. Pharm. Sci. 102, 1209–1221 (2013). https://doi.org/10.1002/jps.23439
- E.Z. Loizidou, N.T. Inoue, J. Ashton-Barnett, D.A. Barrow, C.J. Allender, Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur. J. Pharm. Biopharm. 107, 1–6 (2016). https://doi.org/10.1016/j.ejpb.2016.06.023
- O. Olatunji, C.C. Igwe, A.S. Ahmed, D.O.A. Alhassan, G.O. Asieba et al., Microneedles from fish scale biopolymer. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40377
- A. Boonma, R. Narayan, Y.-S. Lee, Analytical modeling and evaluation of microneedles apparatus with deformable soft tissues for biomedical applications. Comput. Aided. Des. Appl. 10, 139–157 (2013). https://doi.org/10.3722/cadaps.2013.139-157
- S. Song, J.D. Kim, J. Bae, S. Chang, S. Kim et al., In vivo optical coherence tomography imaging of dissolution of hyaluronic acid microneedles in human skin (Conference Presentation), in Visualizing and Quantifying Drug Distribution in Tissue. ed. by C.L. Evans, K.F. Chan (SPIE, Bellingham, 2017), p. 17. https://doi.org/10.1117/12.2251772
- M. Pearton, C. Allender, K. Brain, A. Anstey, C. Gateley et al., Gene delivery to the epidermal cells of human skin explants using microfabricated microneedles and hydrogel formulations. Pharm. Res. 25, 407–416 (2008). https://doi.org/10.1007/s11095-007-9360-y
- C.S. Kolli, A.K. Banga, Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm. Res. 25, 104–113 (2008). https://doi.org/10.1007/s11095-007-9350-0
- S.M. Bal, A.C. Kruithof, R. Zwier, E. Dietz, J.A. Bouwstra et al., Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. J. Control. Release 147, 218–224 (2010). https://doi.org/10.1016/j.jconrel.2010.07.104
- M.-T. Tsai, I.-C. Lee, Z.-F. Lee, H.-L. Liu, C.-C. Wang et al., In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography. Biomed. Opt. Express 7, 1865 (2016). https://doi.org/10.1364/boe.7.001865
- Y. Ye, J. Wang, Q. Hu, G.M. Hochu, H. Xin et al., Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 10, 8956–8963 (2016). https://doi.org/10.1021/acsnano.6b04989
- S. Bal, A.C. Kruithof, H. Liebl, M. Tomerius, J. Bouwstra et al., In vivo visualization of microneedle conduits in human skin using laser scanning microscopy. Laser Phys. Lett. 7, 242–246 (2010). https://doi.org/10.1002/lapl.200910134
- F.J. Verbaan, S.M. Bal, D.J. van den Berg, J.A. Dijksman, M. van Hecke et al., Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J. Control. Release 128, 80–88 (2008). https://doi.org/10.1016/j.jconrel.2008.02.009
- I. Abiandu, K. Ita, Transdermal delivery of potassium chloride with solid microneedles. J. Drug Deliv. Sci. Technol. 53, 101216 (2019). https://doi.org/10.1016/j.jddst.2019.101216
- N. El-Sayed, L. Vaut, M. Schneider, Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur. J. Pharm. Biopharm. 154, 166–174 (2020). https://doi.org/10.1016/j.ejpb.2020.07.005
- M.A. Khalil, A.A. Saleh, S.M. Gohar, D.H. Khalil, M. Said, Optical coherence tomography findings in patients with bipolar disorder. J. Affect. Disord. 218, 115–122 (2017). https://doi.org/10.1016/j.jad.2017.04.055
- R.F. Donnelly, R. Majithiya, T.R.R. Singh, D.I.J. Morrow, M.J. Garland et al., Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 28, 41–57 (2011). https://doi.org/10.1007/s11095-010-0169-8
- W. Yu, G. Jiang, Y. Zhang, D. Liu, B. Xu et al., Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats. J. Mater. Chem. B 5, 9507–9513 (2017). https://doi.org/10.1039/C7TB02236K
- A.S. Cordeiro, I.A. Tekko, M.H. Jomaa, L. Vora, E. McAlister et al., Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: application in the development of polymeric drug delivery systems. Pharm. Res. 37, 174 (2020). https://doi.org/10.1007/s11095-020-02887-9
- E. Larrañeta, J. Moore, E.M. Vicente-Pérez, P. González-Vázquez, R. Lutton et al., A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 472, 65–73 (2014). https://doi.org/10.1016/J.IJPHARM.2014.05.042
- G. Wang, N. Fang, Detecting and tracking nonfluorescent nanoparticle probes in live cells, in: Methods Enzymol (Elsevier, 2012), pp. 83–108. doi: https://doi.org/10.1016/B978-0-12-391857-4.00004-5
- L.L. Drey, M.C. Graber, J. Bieschke, Counting unstained, confluent cells by modified bright-field microscopy. Biotechniques 55, 28–33 (2013). https://doi.org/10.2144/000114056
- M. Pearton, V. Saller, S.A. Coulman, C. Gateley, A.V. Anstey et al., Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J. Control. Release 160, 561–569 (2012). https://doi.org/10.1016/j.jconrel.2012.04.005
- Y.A. Gomaa, D.I.J. Morrow, M.J. Garland, R.F. Donnelly, L.K. El-Khordagui et al., Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol. Vitr. 24, 1971–1978 (2010). https://doi.org/10.1016/j.tiv.2010.08.012
- J.S. Kochhar, T.C. Quek, W.J. Soon, J. Choi, S. Zou et al., Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J. Pharm. Sci. 102, 4100–4108 (2013). https://doi.org/10.1002/jps.23724
- S.D. Gittard, B. Chen, H. Xu, A. Ovsianikov, B.N. Chichkov et al., The effects of geometry on skin penetration and failure of polymer microneedles. J. Adhes. Sci. Technol. 27, 227–243 (2013). https://doi.org/10.1080/01694243.2012.705101
- A.R. Johnson, C.L. Caudill, J.R. Tumbleston, C.J. Bloomquist, K.A. Moga et al., Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLOS ONE 11, e0162518 (2016). https://doi.org/10.1371/journal.pone.0162518
- H.-R. Jeong, H.-S. Lee, I.-J. Choi, J.-H. Park, Considerations in the use of microneedles: pain, convenience, anxiety and safety. J. Drug Target 25, 29–40 (2017). https://doi.org/10.1080/1061186X.2016.1200589
- A.R. Johnson, A.T. Procopio, Low cost additive manufacturing of microneedle masters. 3D Print Med 5, 2 (2019). https://doi.org/10.1186/s41205-019-0039-x
- B.Z. Chen, L.Q. Zhang, Y.Y. Xia, X.P. Zhang, X.D. Guo, A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 6, eaba7260 (2020). https://doi.org/10.1126/sciadv.aba7260
- D.V. McAllister, P.M. Wang, S.P. Davis, J.-H.J.-H. Park, P.J. Canatella et al., Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. 100, 13755–13760 (2003). https://doi.org/10.1073/pnas.2331316100
- H.S. Gill, M.R. Prausnitz, Coated microneedles for transdermal delivery. J. Control. Release 117, 227–237 (2007). https://doi.org/10.1016/j.jconrel.2006.10.017
- A. Davidson, B. Al-Qallaf, D.B. Das, Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chem. Eng. Res. Des. 86, 1196–1206 (2008). https://doi.org/10.1016/j.cherd.2008.06.002
- C. Wang, Y. Ye, G.M. Hochu, H. Sadeghifar, Z. Gu, Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16, 2334–2340 (2016). https://doi.org/10.1021/acs.nanolett.5b05030
- Y. Li, X. Hu, Z. Dong, Y. Chen, W. Zhao et al., Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur. J. Pharm. Sci. 151, 105361 (2020). https://doi.org/10.1016/j.ejps.2020.105361
- Technavio, Transdermal Drug Delivery Market, 2019.
- A.M. Römgens, D.L. Bader, J.A. Bouwstra, C.W.J. Oomens, Predicting the optimal geometry of microneedles and their array for dermal vaccination using a computational model. Comput. Methods Biomech. Biomed. Eng. 19, 1599–1609 (2016). https://doi.org/10.1080/10255842.2016.1173684
- B. Ahn, Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 18, 143–149 (2020). https://doi.org/10.1007/s12555-019-0220-8
- A.L. Teo, C. Shearwood, K.C. Ng, J. Lu, S. Moochhala, Transdermal microneedles for drug delivery applications. Mater. Sci. Eng. B 132, 151–154 (2006). https://doi.org/10.1016/J.MSEB.2006.02.008
- J.A. Mikszta, J.B. Alarcon, J.M. Brittingham, D.E. Sutter, R.J. Pettis et al., Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8, 415–419 (2002). https://doi.org/10.1038/nm0402-415
- G. Yan, K.S. Warner, J. Zhang, S. Sharma, B.K. Gale, Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm. 391, 7–12 (2010). https://doi.org/10.1016/j.ijpharm.2010.02.007
- Y.H. Zhang, S.A. Campbell, S. Karthikeyan, Finite element analysis of hollow out-of-plane HfO2 microneedles for transdermal drug delivery applications. Biomed. Microdevices 20, 1–7 (2018). https://doi.org/10.1007/s10544-018-0262-z
- P. Khanna, K. Luongo, J.A. Strom, S. Bhansali, Axial and shear fracture strength evaluation of silicon microneedles. Microsyst. Technol. 16, 973–978 (2010). https://doi.org/10.1007/s00542-010-1070-4
- P. Khanna, B.R. Flam, B. Osborn, J.A. Strom, S. Bhansali, Skin penetration and fracture strength testing of silicon dioxide microneedles. Sens. Actuat. A Phys. 170, 180–186 (2011). https://doi.org/10.1016/j.sna.2010.09.024
- H.E. Zainal-Abidin, P.C. Ooi, T.Y. Tiong, N. Marsi, A. Ismardi et al., Stress and deformation of optimally shaped silicon microneedles for transdermal drug delivery. J. Pharm. Sci. 109, 2485–2492 (2020). https://doi.org/10.1016/j.xphs.2020.04.019
- C. O’Mahony, Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed. Microdevices 16, 333–343 (2014). https://doi.org/10.1007/s10544-014-9836-6
- S. Pradeep-Narayanan, S. Raghavan, Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol. 93, 407–422 (2017). https://doi.org/10.1007/s00170-016-9698-6
- N. Bouras, M.A. Madjoubi, M. Kolli, S. Benterki, M. Hamidouche, Thermal and mechanical characterization of borosilicate glass. Phys. Procedia. 2, 1135–1140 (2009). https://doi.org/10.1016/j.phpro.2009.11.074
- P.M. Wang, M. Cornwell, J. Hill, M.R. Prausnitz, Precise microinjection into skin using hollow microneedles. J. Invest. Dermatol. 126, 1080–1087 (2006). https://doi.org/10.1038/sj.jid.5700150
- G. Wypych, PGA poly(glycolic acid), in: Handbook of Polymers (Elsevier, 2016), pp. 419–421. doi: https://doi.org/10.1016/B978-1-895198-92-8.50128-2
- S.H. Choi, T.G. Park, Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers. J. Biomater. Sci. Polym. Ed. 13, 1163–1173 (2002). https://doi.org/10.1163/156856202320813864
- B. Tavsanli, O. Okay, Mechanically strong hyaluronic acid hydrogels with an interpenetrating network structure. Eur. Polym. J. 94, 185–195 (2017). https://doi.org/10.1016/j.eurpolymj.2017.07.009
- P. Gentile, V. Chiono, I. Carmagnola, P.V. Hatton, An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15, 3640–3659 (2014). https://doi.org/10.3390/ijms15033640
- T. Michinobu, M. Bito, M. Tanimura, Y. Katayama, E. Masai et al., Mechanical properties of poly(l-lactide) films controlled by blending with polyesters of lignin-derived stable metabolic intermediate. 2-pyrone-4,6-dicarboxylic acid (PDC). Polym. J. 41, 843–848 (2009). https://doi.org/10.1295/polymj.PJ2009133
- S.D. Gittard, R.J. Narayan, Applications of microneedle technology to transdermal drug delivery, in Toxicology of the Skin. ed. by N.A. Monteiro-Riviere (CRC Press, Boca Raton, 2010), p. 307
- S. Kalra, A. Singh, M. Gupta, V. Chadha, Ormocer: An aesthetic direct restorative material; an in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent. Contemp. Clin. Dent. 3, 48 (2012). https://doi.org/10.4103/0976-237x.94546
- S. Bystrova, R. Luttge, Micromolding for ceramic microneedle arrays. Microelectron. Eng. 88, 1681–1684 (2011). https://doi.org/10.1016/j.mee.2010.12.067
- M. Verhoeven, S. Bystrova, L. Winnubst, H. Qureshi, T.D. De Gruijl et al., Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model, in: Microelectronic Engineering (Elsevier, 2012), pp. 659–662. doi: https://doi.org/10.1016/j.mee.2012.07.022
- M.A. Boks, W.W.J. Unger, S. Engels, M. Ambrosini, Y. Van Kooyk et al., Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int. J. Pharm. 491, 375–383 (2015). https://doi.org/10.1016/j.ijpharm.2015.06.025
- K. van der Maaden, R. Luttge, P.J. Vos, J. Bouwstra, G. Kersten, I. Ploemen, Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv. Transl. Res. 5, 397–406 (2015). https://doi.org/10.1007/s13346-015-0238-y
- R. Pignatello, Biomaterials: Applications for Nanomedicine, 1st edn. (InTech, Rijeka, 2011).
- R.J. Napier, A.J. Shimmin, Ceramic-on-ceramic bearings in total hip arthroplasty: “The future is now.” Semin. Arthroplasty 27, 235–238 (2016). https://doi.org/10.1053/j.sart.2017.03.001
- B. Cai, W. Xia, S. Bredenberg, H. Engqvist, Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J. Mater. Chem. B 2, 5992–5998 (2014). https://doi.org/10.1039/C4TB00764F
- H. Vallhov, W. Xia, H. Engqvist, A. Scheynius, Bioceramic microneedle arrays are able to deliver OVA to dendritic cells in human skin. J. Mater. Chem. B 6, 6808–6816 (2018). https://doi.org/10.1039/c8tb01476k
- W. Yu, G. Jiang, D. Liu, L. Li, Z. Tong et al., Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater. Sci. Eng. C 73, 425–428 (2017). https://doi.org/10.1016/j.msec.2016.12.111
- Y.-C.C. Kim, J.-H.H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
- T. Miyano, Y. Tobinaga, T. Kanno, Y. Matsuzaki, H. Takeda et al., Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices 7, 185–188 (2005). https://doi.org/10.1007/s10544-005-3024-7
- G. Li, A. Badkar, S. Nema, C.S. Kolli, A.K. Banga, In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int. J. Pharm. 368, 109–115 (2009). https://doi.org/10.1016/j.ijpharm.2008.10.008
- R.F. Donnelly, D.I.J. Morrow, T.R.R. Singh, K. Migalska, P.A. McCarron et al., Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev. Ind. Pharm. 35, 1242–1254 (2009). https://doi.org/10.1080/03639040902882280
- R.F. Donnelly, T.R.R. Singh, D.I.J. Morrow, D.A. Woolfson, Microneedle-Mediated Transdermal and Intradermal Drug Delivery, 1st edn. (Wiley, Sussex, 2012).
- X. Hong, L. Wei, F. Wu, Z. Wu, L. Chen et al., Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Devel. Ther. 7, 945–952 (2013). https://doi.org/10.2147/DDDT.S44401
- M. Wang, L. Hu, C. Xu, Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 17, 1373–1387 (2017). https://doi.org/10.1039/C7LC00016B
- G. Bonfante, H. Lee, L. Bao, J. Park, N. Takama et al., Comparison of polymers to enhance mechanical properties of microneedles for bio-medical applications. Micro Nano Syst. Lett. 8, 13 (2020). https://doi.org/10.1186/s40486-020-00113-0
- S.F. Chou, K.A. Woodrow, Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J. Mech. Behav. Biomed. Mater. 65, 724–733 (2017). https://doi.org/10.1016/j.jmbbm.2016.09.004
- L. Yan, A.P. Raphael, X. Zhu, B. Wang, W. Chen et al., Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin. Adv. Heal. Mater. 3, 555–564 (2014). https://doi.org/10.1002/adhm.201300312
- W.K. Raja, S. MacCorkle, I.M. Diwan, A. Abdurrob, J. Lu et al., Transdermal delivery devices: fabrication, mechanics and drug release from silk. Small 9, 3704–3713 (2013). https://doi.org/10.1002/smll.201202075
- L. Yan, A.P. Raphael, X. Zhu, B. Wang, W. Chen et al., Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin. Adv. Healthc. Mater. 3, 555–564 (2014). https://doi.org/10.1002/adhm.201300312
- M.T.C. Mc-Crudden, E. Larrañeta, A. Clark, C. Jarrahian, A. Rein-Weston et al., Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J. Control. Release 292, 119–129 (2018). https://doi.org/10.1016/j.jconrel.2018.11.002
- Z. Luo, W. Sun, J. Fang, K. Lee, S. Li et al., Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv. Healthc. Mater. 8, 1801054 (2019). https://doi.org/10.1002/adhm.201801054
- X. Zhou, Z. Luo, A. Baidya, H. Kim, C. Wang et al., Biodegradable β-cyclodextrin conjugated gelatin methacryloyl microneedle for delivery of water-insoluble drug. Adv. Healthc. Mater. 9, 2000527 (2020). https://doi.org/10.1002/adhm.202000527
- E. Larrañeta, R.E.M. Lutton, A.J. Brady, E.M. Vicente-Pérez, A.D. Woolfson et al., Microwave-assisted preparation of hydrogel-forming microneedle arrays for transdermal drug delivery applications. Macromol. Mater. Eng. 300, 586–595 (2015). https://doi.org/10.1002/mame.201500016
- T.R. Raj-Singh, M.J. Garland, K. Migalska, E.C. Salvador, R. Shaikh et al., Influence of a pore-forming agent on swelling, network parameters, and permeability of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: Application in transdermal delivery systems. J. Appl. Polym. Sci. 125, 2680–2694 (2012). https://doi.org/10.1002/app.36524
- M.S. Gerstel, V.A. Place, Drug Delivery Device, 3964482 (1971)
- S. Lee, S. Fakhraei-Lahiji, J. Jang, M. Jang, H. Jung, Micro-pillar integrated dissolving microneedles for enhanced transdermal drug delivery. Pharmaceutics 11, 402 (2019). https://doi.org/10.3390/pharmaceutics11080402
- M.-C. Chen, H.-A. Chan, M.-H. Ling, L.-C. Su, Implantable polymeric microneedles with phototriggerable properties as a patient-controlled transdermal analgesia system. J. Mater. Chem. B 5, 496–503 (2017). https://doi.org/10.1039/C6TB02718K
- M.C. Chen, K.Y. Lai, M.H. Ling, C.W. Lin, Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater. (2018). https://doi.org/10.1016/j.actbio.2017.11.004
- M.-C. Chen, S.-F. Huang, K.-Y. Lai, M.-H. Ling, Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 34, 3077–3086 (2013). https://doi.org/10.1016/j.biomaterials.2012.12.041
- J.M. Mazzara, L.J. Ochyl, J.K.Y. Hong, J.J. Moon, M.R. Prausnitz et al., Self-healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches. Bioeng. Transl. Med. 4, 116–128 (2019). https://doi.org/10.1002/btm2.10103
- H. Jun, M.H. Ahn, I.J. Choi, S.K. Baek, J.H. Park et al., Immediate separation of microneedle tips from base array during skin insertion for instantaneous drug delivery. RSC Adv. 8, 17786–17796 (2018). https://doi.org/10.1039/c8ra02334d
- I.J. Choi, A. Kang, M.H. Ahn, H. Jun, S.K. Baek et al., Insertion-responsive microneedles for rapid intradermal delivery of canine influenza vaccine. J. Control. Release 286, 460–466 (2018). https://doi.org/10.1016/j.jconrel.2018.08.017
- I.J. Choi, W. Na, A. Kang, M.H. Ahn, M. Yeom et al., Patchless administration of canine influenza vaccine on dog’s ear using insertion-responsive microneedles (IRMN) without removal of hair and its in vivo efficacy evaluation. Eur. J. Pharm. Biopharm. 153, 150–157 (2020). https://doi.org/10.1016/j.ejpb.2020.06.006
- Y.H. Chen, K.Y. Lai, Y.H. Chiu, Y.W. Wu, A.L. Shiau et al., Implantable microneedles with an immune-boosting function for effective intradermal influenza vaccination. Acta Biomater. (2019). https://doi.org/10.1016/j.actbio.2019.07.048
- D. Chen, C. Wang, W. Chen, Y. Chen, J.X.J. Zhang, PVDF-Nafion nanomembranes coated microneedles for in vivo transcutaneous implantable glucose sensing. Biosens. Bioelectron. 74, 1047–1052 (2015). https://doi.org/10.1016/j.bios.2015.07.036
- S. Kim, H. Yang, J. Eum, Y. Ma, S. Fakhraei-Lahiji et al., Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity. Biomaterials 232, 119733 (2020). https://doi.org/10.1016/j.biomaterials.2019.119733
- M. Carlotti, V. Mattoli, Functional materials for two-photon polymerization in microfabrication. Small 15, 1902687 (2019). https://doi.org/10.1002/smll.201902687
- D.M. Zuev, A.K. Nguyen, V.I. Putlyaev, R.J. Narayan, 3D printing and bioprinting using multiphoton lithography. Bioprinting 20, e00090 (2020). https://doi.org/10.1016/j.bprint.2020.e00090
- I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis et al., Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 2302–2311 (2012). https://doi.org/10.1021/nn204454c
- C. Plamadeala, S.R. Gosain, S. Purkhart, B. Buchegger, W. Baumgartner et al., Three-dimensional photonic structures fabricated by two-photon polymerization for microfluidics and microneedles. in: International Conference on Transparent Optical Networks. 2018-July, 2018–2021 (2018). doi: https://doi.org/10.1109/ICTON.2018.8473647
- M. Suzuki, T. Takahashi, S. Aoyagi, 3D laser lithographic fabrication of hollow microneedle mimicking mosquitos and its characterisation. Int. J. Nanotechnol. 15, 157–173 (2018). https://doi.org/10.1504/IJNT.2018.089545
- A.D.R. Li, K.B. Putra, L. Chen, J.S. Montgomery, A. Shih, Mosquito proboscis-inspired needle insertion to reduce tissue deformation and organ displacement. Sci. Rep. 10, 1–14 (2020). https://doi.org/10.1038/s41598-020-68596-w
- S.D. Gittard, A. Ovsianikov, B.N. Chichkov, A. Doraiswamy, R.J. Narayan, Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin. Drug Deliv. 7, 513–533 (2010). https://doi.org/10.1517/17425241003628171
- M. Kavaldzhiev, J.E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale et al., Biocompatible 3D printed magnetic micro needles. Biomed. Phys. Eng. Express 3, 25005 (2017). https://doi.org/10.1088/2057-1976/aa5ccb
- E.D. Lemma, F. Rizzi, T. Dattoma, B. Spagnolo, L. Sileo et al., Mechanical properties tunability of three-dimensional polymeric structures in two-photon lithography. IEEE Trans. Nanotechnol. 16, 23–31 (2016). https://doi.org/10.1109/TNANO.2016.2625820
- C.N. LaFratta, O. Simoska, I. Pelse, S. Weng, M. Ingram, A convenient direct laser writing system for the creation of microfluidic masters. Microfluid. Nanofluidics 19, 419–426 (2015). https://doi.org/10.1007/s10404-015-1574-4
- A. Aksit, D.N. Arteaga, M. Arriaga, X. Wang, H. Watanabe et al., In-vitro perforation of the round window membrane via direct 3-D printed microneedles. Biomed. Microdevices 20, 47 (2018). https://doi.org/10.1007/s10544-018-0287-3
- D. Ricci, M.M. Nava, T. Zandrini, G. Cerullo, M.T. Raimondi et al., Scaling-up techniques for the nanofabrication of cell culture substrates via two-photon polymerization for industrial-scale expansion of stem cells. Materials 10, 66 (2017). https://doi.org/10.3390/ma10010066
- R.F. Donnelly, Clinical Translation and Industrial Development of Microneedle-based Products, in Microneedles Drug Vaccine Delivery, 1st edn., ed. by R.F. Donnelly, T.R.R. Singh (Wiley, Chichester, 2018), pp. 307–322
- J.C. Birchall, R. Clemo, A. Anstey, D.N. John, Microneedles in clinical practice–an exploratory study into the opinions of healthcare professionals and the public. Pharm. Res. 28, 95–106 (2011). https://doi.org/10.1007/s11095-010-0101-2
- E.M. Vicente-Pérez, H.L. Quinn, E. McAlister, S. O’Neill, L.-A. Hanna et al., The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo. Pharm. Res. 33, 1–10 (2016). https://doi.org/10.1007/s11095-016-2032-z
References
R. Jamaledin, P. Makvandi, C.K.Y. Yiu, T. Agarwal, R. Vecchione et al., Engineered microneedle patches for controlled release of active compounds: recent advances in release profile tuning. Adv. Ther. 3, 2000171 (2020). https://doi.org/10.1002/adtp.202000171
A. Patzelt, W.C. Mak, S. Jung, F. Knorr, M.C. Meinke et al., Do nanoparticles have a future in dermal drug delivery? J. Control. Release 246, 174–182 (2017). https://doi.org/10.1016/j.jconrel.2016.09.015
R. Jamaledin, C. Di Natale, V. Onesto, Z.B. Taraghdari, E.N. Zare et al., Progress in microneedle-mediated protein delivery. J. Clin. Med. 9, 542 (2020). https://doi.org/10.3390/jcm9020542
Z. Baghban-Taraghdari, R. Imani, F. Mohabatpour, A review on bioengineering approaches to insulin delivery: a pharmaceutical and engineering perspective. Macromol. Biosci. 19, 1800458 (2019). https://doi.org/10.1002/mabi.201800458
M. Battisti, R. Vecchione, C. Casale, F.A. Pennacchio, V. Lettera et al., Non-invasive production of multi-compartmental biodegradable polymer microneedles for controlled intradermal drug release of labile molecules. Front. Bioeng. Biotechnol. 7, 296 (2019). https://doi.org/10.3389/fbioe.2019.00296
R. Jamaledin, C.K.Y. Yiu, E.N. Zare, L. Niu, R. Vecchione et al., Advances in antimicrobial microneedle patches for combating infections. Adv. Mater. 32, 2002129 (2020). https://doi.org/10.1002/adma.202002129
Y.H. Feng, X.P. Zhang, Y.Y. Hao, G.Y. Ren, X.D. Guo, Simulation study of the pH sensitive directed self-assembly of rheins for sustained drug release hydrogel. Colloids Surf. B: Biointerfaces 195, 111260 (2020). https://doi.org/10.1016/j.colsurfb.2020.111260
S. Bhatnagar, K. Dave, V.V.K. Venuganti, Microneedles in the clinic. J. Control. Release 260, 164–182 (2017). https://doi.org/10.1016/j.jconrel.2017.05.029
X. Jin, D.D. Zhu, B.Z. Chen, M. Ashfaq, X.D. Guo, Insulin delivery systems combined with microneedle technology. Adv. Drug Deliv. Rev. 127, 119–137 (2018). https://doi.org/10.1016/j.addr.2018.03.011
M. Leone, J. Mönkäre, J.A. Bouwstra, G. Kersten, Dissolving microneedle patches for dermal vaccination. Pharm. Res. 34, 2223–2240 (2017). https://doi.org/10.1007/s11095-017-2223-2
Y. Zhang, P. Feng, J. Yu, J. Yang, J. Zhao et al., ROS-responsive microneedle patch for acne vulgaris treatment. Adv. Ther. 1, 1870006 (2018). https://doi.org/10.1002/adtp.201870006
R. Ali, P. Mehta, M.S. Arshad, I. Kucuk, M.W. Chang et al., Transdermal microneedles—a materials perspective. AAPS PharmSciTech 21, 12 (2020). https://doi.org/10.1208/s12249-019-1560-3
S. Dharadhar, A. Majumdar, S. Dhoble, V. Patravale, Microneedles for transdermal drug delivery: a systematic review. Drug Dev. Ind. Pharm. 45, 188–201 (2019). https://doi.org/10.1080/03639045.2018.1539497
T. Waghule, G. Singhvi, S.K. Dubey, M.M. Pandey, G. Gupta et al., Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 109, 1249–1258 (2019). https://doi.org/10.1016/j.biopha.2018.10.078
C. Pan, K. Chen, L. Jiang, Z. Chen, L. Ren et al., Magnetization-induced self-assembly method: Micro-needle array fabrication. J. Mater. Process. Technol. 227, 251–258 (2016). https://doi.org/10.1016/j.jmatprotec.2015.08.025
K. Moussi, A. Bukhamsin, T. Hidalgo, J. Kosel, Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. Adv. Eng. Mater. 22, 1901358 (2020). https://doi.org/10.1002/adem.201901358
B.Z. Chen, M. Ashfaq, D.D. Zhu, X.P. Zhang, X.D. Guo, Controlled delivery of insulin using rapidly separating microneedles fabricated from genipin-crosslinked gelatin. Macromol. Rapid Commun. (2018). https://doi.org/10.1002/marc.201800075
E.L. Zoudani, M. Soltani, A new computational method of modeling and evaluation of dissolving microneedle for drug delivery applications: Extension to theoretical modeling of a novel design of microneedle (array in array) for efficient drug delivery. Eur. J. Pharm. Sci. 150, 105339 (2020). https://doi.org/10.1016/j.ejps.2020.105339
S.P. Davis, M.R. Prausnitz, M.G. Allen, Fabrication and characterization of laser micromachined hollow microneedles, in: TRANSDUCERS 2003—12th International Conference on Solid-State Sensors, Actuators Microsystems (Digest of Technical Papers, Institute of Electrical and Electronics Engineers Inc., 2003), pp. 1435–1438. doi: https://doi.org/10.1109/SENSOR.2003.1217045
M.N. Abser, M. Gaffar, M.S. Islam, Mechanical feasibility analysis of process optimized silicon microneedle for biomedical applications, in: ICECE 2010—6th International Conference on Electrical and Computer Engineering (2010), pp. 222–225. doi: https://doi.org/10.1109/ICELCE.2010.5700668
P. Aggarwal, C.R. Johnston, Geometrical effects in mechanical characterizing of microneedle for biomedical applications. Sens. Actuat. B: Chem. 102, 226–234 (2004). https://doi.org/10.1016/j.snb.2004.04.024
B. Al-Qallaf, D.B. Das, A. Davidson, Transdermal drug delivery by coated microneedles: geometry effects on drug concentration in blood. Asia-Pacific J. Chem. Eng. 4, 845–857 (2009). https://doi.org/10.1002/apj.353
M. Kirkby, A.R.J. Hutton, R.F. Donnelly, Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: current status and future considerations. Pharm. Res. (2020). https://doi.org/10.1007/s11095-020-02844-6
D.L. Ellison, Physiology of Pain. Crit. Care Nurs. Clin. N. Am. 29, 397–406 (2017). https://doi.org/10.1016/j.cnc.2017.08.001
M.S. Gold, G.F. Gebhart, Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010). https://doi.org/10.1038/nm.2235
A.I. Basbaum, D.M. Bautista, G. Scherrer, D. Julius, Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009). https://doi.org/10.1016/j.cell.2009.09.028
C.E. Steeds, The anatomy and physiology of pain. Surgery (Oxford) 34, 55–59 (2016). https://doi.org/10.1016/j.mpsur.2015.11.005
S. Bourne, A.G. Machado, S.J. Nagel, Basic anatomy and physiology of pain pathways. Neurosurg. Clin. North Am. 25, 629–638 (2014). https://doi.org/10.1016/j.nec.2014.06.001
M.J. Hudspith, Anatomy, physiology and pharmacology of pain. Anaesth. Intensive Care Med. 20, 419–425 (2019). https://doi.org/10.1016/j.mpaic.2019.05.008
D. Ignatavicius, M.L. Workman, Assessment and care of patients with pain, in Medical-Surgical Nursing: Patient-Centered Collaborative Care, 8th ed. (Elsevier, St Louis, MO, 2016). doi: https://doi.org/10.1016/j.ejps.2008.06.016
H.S. Gill, D.D. Denson, B.A. Burris, M.R. Prausnitz, Effect of microneedle design on pain in human volunteers. Clin. J. Pain 24, 585–594 (2008). https://doi.org/10.1097/AJP.0b013e31816778f9
J. Gupta, D.D. Denson, E.I. Felner, M.R. Prausnitz, Rapid local anesthesia in human subjects using minimally invasive microneedles. Clin. J. Pain 28, 129 (2012). https://doi.org/10.1097/AJP.0b013e318225dbe9
J. Gupta, S.S. Park, B. Bondy, E.I. Felner, M.R. Prausnitz, Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials 32, 6823–6831 (2011). https://doi.org/10.1016/j.biomaterials.2011.05.061
M.I. Haq, E. Smith, D.N. John, M. Kalavala, C. Edwards et al., Clinical administration of microneedles: Skin puncture, pain and sensation. Biomed. Microdevices 11, 35–47 (2009). https://doi.org/10.1007/s10544-008-9208-1
S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra et al., Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92, 502–504 (2001). https://doi.org/10.1213/00000539-200102000-00041
B. Sezgin, B. Ozel, H. Bulam, K. Guney, S. Tuncer et al., The effect of microneedle thickness on pain during minimally invasive facial procedures: A clinical study. Aesthetic Surg. J. 34, 757–765 (2014). https://doi.org/10.1177/1090820X14532941
C. Griffiths, J. Barker, T.O. Bleiker, R. Chalmers, D. Creamer, Rook’s Textbook of Dermatology (Wiley, Hoboken, 2016).
M.D. Shoulders, R.T. Raines, Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009). https://doi.org/10.1146/annurev.biochem.77.032207.120833
J.M. Benítez, F.J. Montáns, The mechanical behavior of skin: Structures and models for the finite element analysis. Comput. Struct. 190, 75–107 (2017). https://doi.org/10.1016/j.compstruc.2017.05.003
J. Kim, S. Park, G. Nam, Y. Choi, S. Woo et al., Bioinspired microneedle insertion for deep and precise skin penetration with low force: Why the application of mechanophysical stimuli should be considered. J. Mech. Behav. Biomed. Mater. 78, 480–490 (2018). https://doi.org/10.1016/j.jmbbm.2017.12.006
J.G. Murphy, Evolution of anisotropy in soft tissue. Proc. R. Soc. A Math. Phys. Eng. Sci. 470, 20130548 (2014)
T. Walimbe, A. Panitch, Proteoglycans in biomedicine: resurgence of an underexploited class of ECM molecules. Front. Pharmacol. 10, 1661 (2020)
W. Montagna, The Structure and Function of Skin (Elsevier, Amsterdam, 2012).
M.B. Murphrey, J.H. Miao, P.M. Zito, Histology, stratum corneum, in: StatPearls [Internet] (StatPearls Publishing, 2020)
Y. Har-Shai, I. Zilinsky, R. Ogawa, C. Huang, Bio-mechanical stimulation of skin fibroblasts. Mesenchymal Cell Act. by Biomech. Stimul. Its Clin. Prospect. 35 (2016)
A.M. Zöllner, M.A. Holland, K.S. Honda, A.K. Gosain, E. Kuhl, Growth on demand: reviewing the mechanobiology of stretched skin. J. Mech. Behav. Biomed. Mater. 28, 495–509 (2013). https://doi.org/10.1016/j.jmbbm.2013.03.018
F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, K. Schenke-Layland, Skin tissue engineering—in vivo and in vitro applications. Adv. Drug Deliv. Rev. 63, 352–366 (2011). https://doi.org/10.1016/j.addr.2011.01.005
Y. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, Berlin, 2013).
L.B. Sandberg, Elastin structure in health and disease. in: International Review of Connective Tissue Research (Elsevier, 1976), pp. 159–210. doi: https://doi.org/10.1016/B978-0-12-363707-9.50010-1
F. Xu, T. Lu, Introduction to Skin Biothermomechanics and Thermal Pain (Springer, Berlin, 2011).
J.W.Y. Jor, M.D. Parker, A.J. Taberner, M.P. Nash, P.M.F. Nielsen, Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 539–556 (2013). https://doi.org/10.1002/wsbm.1228
R.H. Nygaard, S. Maynard, P. Schjerling, M. Kjær, K. Qvortrup et al., Acquired localized cutis laxa due to increased elastin turnover. Case Rep. Dermatol. 8, 42–51 (2016). https://doi.org/10.1159/000443696
J. Gosline, M. Lillie, E. Carrington, P. Guerette, C. Ortlepp et al., Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 357, 121–132 (2002). https://doi.org/10.1098/rstb.2001.1022
A.J. Schriefl, G. Zeindlinger, D.M. Pierce, P. Regitnig, G.A. Holzapfel, Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface 9, 1275–1286 (2012). https://doi.org/10.1098/rsif.2011.0727
L. Nuytinck, M. Freund, L. Lagae, G.E. Pierard, T. Hermanns-Le et al., Classical Ehlers–Danlos syndrome caused by a mutation in type I collagen. Am. J. Hum. Genet. 66, 1398–1402 (2000). https://doi.org/10.1086/302859
V.R. Sherman, Y. Tang, S. Zhao, W. Yang, M.A. Meyers, Structural characterization and viscoelastic constitutive modeling of skin. Acta Biomater. 53, 460–469 (2017). https://doi.org/10.1016/j.actbio.2017.02.011
S.H. Hussain, B. Limthongkul, T.R. Humphreys, The biomechanical properties of the skin. Dermatol. Surg. 39, 193–203 (2013). https://doi.org/10.1111/dsu.12095
J.T.J. Huang, C.E. Bolton, B.E. Miller, R. Tal-Singer, R.A. Rabinovich et al., Age-dependent elastin degradation is enhanced in chronic obstructive pulmonary disease. Eur. Respir. J. 48, 1215–1218 (2016). https://doi.org/10.1183/13993003.01125-2016
V. Marcos-Garcés, P. Molina-Aguilar, C. Bea-Serrano, V. García-sssBustos, J. Benavent-Seguí et al., Age-related dermal collagen changes during development, maturation and ageing—a morphometric and comparative study. J. Anat. 225, 98–108 (2014). https://doi.org/10.1111/joa.12186
M. Tronnier, Cutaneous disorders characterized by elastolysis or loss of elastic tissue. JDDG J. Der Dtsch. Dermatologischen Gesellschaft. 16, 183–191 (2018). https://doi.org/10.1111/ddg.13430
E. Berardesca, J. de Rigal, J.L. Leveque, H.I. Maibach, In vivo biophysical characterization of skin physiological differences in races. Dermatology 182, 89–93 (1991). https://doi.org/10.1159/000247752
M.F. Leyva-Mendivil, A. Page, N.W. Bressloff, G. Limbert, A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J. Mech. Behav. Biomed. Mater. 49, 197–219 (2015). https://doi.org/10.1016/j.jmbbm.2015.05.010
P.P. Purslow, T.J. Wess, D.W. Hukins, Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J. Exp. Biol. 201, 135–142 (1998)
K.D. Butz, A.J. Griebel, T. Novak, K. Harris, A. Kornokovich et al., Prestress as an optimal biomechanical parameter for needle penetration. J. Biomech. 45, 1176–1179 (2012). https://doi.org/10.1016/j.jbiomech.2012.01.049
M.T. Hoang, K.B. Ita, D.A. Bair, Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics 7, 379–396 (2015). https://doi.org/10.3390/pharmaceutics7040379
E. Larrañeta, M.T.C. McCrudden, A.J. Courtenay, R.F. Donnelly, Microneedles: a new frontier in nanomedicine delivery. Pharm. Res. 33, 1055–1073 (2016). https://doi.org/10.1007/s11095-016-1885-5
J. Gupta, H.S. Gill, S.N. Andrews, M.R. Prausnitz, Kinetics of skin resealing after insertion of microneedles in human subjects. J. Control. Release 154, 148–155 (2011). https://doi.org/10.1016/j.jconrel.2011.05.021
G.K. Menon, K.R. Feingold, P.M. Elias, Lamellar body secretory response to barrier disruption. J. Invest. Dermatol. 98, 279–289 (1992). https://doi.org/10.1111/1523-1747.ep12497866
C. Curdy, A. Naik, Y.N. Kalia, I. Alberti, R.H. Guy, Non-invasive assessment of the effect of formulation excipients on stratum corneum barrier function in vivo. Int. J. Pharm. 271, 251–256 (2004). https://doi.org/10.1016/j.ijpharm.2003.11.016
L. Daugimont, N. Baron, G. Vandermeulen, N. Pavselj, D. Miklavcic et al., Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J. Membr. Biol. 236, 117–125 (2010). https://doi.org/10.1007/s00232-010-9283-0
N.N. Aung, T. Ngawhirunpat, T. Rojanarata, P. Patrojanasophon, P. Opanasopit et al., HPMC/PVP Dissolving microneedles: a promising delivery platform to promote trans-epidermal delivery of alpha-arbutin for skin lightening. AAPS PharmSciTech 21, 25 (2020). https://doi.org/10.1208/s12249-019-1599-1
G. Kang, S. Kim, H. Yang, M. Jang, L. Chiang et al., Combinatorial application of dissolving microneedle patch and cream for improvement of skin wrinkles, dermal density, elasticity, and hydration. J. Cosmet. Dermatol. 18, 1083–1091 (2019). https://doi.org/10.1111/jocd.12807
R. Al-Kasasbeh, A.J. Brady, A.J. Courtenay, E. Larrañeta, M.T.C. McCrudden et al., Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv. Transl. Res. 10, 690–705 (2020). https://doi.org/10.1007/s13346-020-00727-2
E.M. Vicente-Perez, E. Larrañeta, M.T.C. McCrudden, A. Kissenpfennig, S. Hegarty et al., Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. Eur. J. Pharm. Biopharm. 117, 400–407 (2017). https://doi.org/10.1016/j.ejpb.2017.04.029
A.P. Sgouros, G. Kalosakas, K. Papagelis, C. Galiotis, Compressive response and buckling of graphene nanoribbons. Sci. Rep. 8, 9593 (2018). https://doi.org/10.1038/s41598-018-27808-0
M.R. Maschmann, Q. Zhang, R. Wheeler, F. Du, L. Dai et al., In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl. Mater. Interfaces 3, 648–653 (2011). https://doi.org/10.1021/am101262g
F.P. Beer, Mechanics of Materials (McGraw-Hill, New York, 2012).
E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald, Bulk micromachined titanium microneedles. J. Microelectromech. Syst. 16, 289–295 (2007). https://doi.org/10.1109/JMEMS.2007.892909
J.-H. Park, M.R. Prausnitz, Analysis of mechanical failure of polymer microneedles by axial force. J. Korean Phys. Soc. 56, 1223–1227 (2010). https://doi.org/10.3938/jkps.56.1223
S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. 37, 1155–1163 (2004). https://doi.org/10.1016/j.jbiomech.2003.12.010
J.H. Park, M.G. Allen, M.R. Prausnitz, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control Release 104, 51–66 (2005). https://doi.org/10.1016/j.jconrel.2005.02.002
E. Forvi, M. Soncini, M. Bedoni, F. Rizzo, M. Casella et al., A method to determine the margin of safety for microneedles arrays, in: Proceedings of the World Congress on Engineering (2010)
Y.K. Demir, Z. Akan, O. Kerimoglu, Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS ONE 8, e77289 (2013). https://doi.org/10.1371/journal.pone.0077289
S.C. Park, M.J. Kim, S.-K. Baek, J.-H. Park, S.-O. Choi, Spray-formed layered polymer microneedles for controlled biphasic drug delivery. Polymers 11, 369 (2019). https://doi.org/10.3390/polym11020369
S. Lin, G. Quan, A. Hou, P. Yang, T. Peng et al., Strategy for hypertrophic scar therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Control Release 306, 69–82 (2019). https://doi.org/10.1016/j.jconrel.2019.05.038
K. Saraswathy, G. Agarwal, A. Srivastava, Hyaluronic acid microneedles-laden collagen cryogel plugs for ocular drug delivery. J. Appl. Polym. Sci. 137, 49285 (2020). https://doi.org/10.1002/app.49285
E. Larrañeta, R.E.M. Lutton, A.D. Woolfson, R.F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater. Sci. Eng. R Reports 104, 1–32 (2016). https://doi.org/10.1016/j.mser.2016.03.001
A.C. Anselmo, Y. Gokarn, S. Mitragotri, Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18, 19–40 (2019). https://doi.org/10.1038/nrd.2018.183
E. Abd, S.A. Yousef, M.N. Pastore, K. Telaprolu, Y.H. Mohammed et al., Skin models for the testing of transdermal drugs. Clin. Pharmacol. Adv. Appl. 8, 163 (2016). https://doi.org/10.2147/CPAA.S64788
G.E. Flaten, Z. Palac, A. Engesland, J. Filipović-Grčić, Ž Vanić et al., In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci. 75, 10–24 (2015). https://doi.org/10.1016/j.ejps.2015.02.018
L.Y. Dong, Y. Li, Z. Li, N. Xu, P. Liu et al., Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl. Mater. Interfaces 10, 9247–9256 (2018). https://doi.org/10.1021/acsami.7b18293
H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566 (2016). https://doi.org/10.1038/nnano.2016.38
W. Li, R.N. Terry, J. Tang, M.R. Feng, S.P. Schwendeman et al., Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3, 220 (2019). https://doi.org/10.1038/s41551-018-0337-4
H. Todo, Transdermal permeation of drugs in various animal species. Pharmaceutics 9, 33 (2017). https://doi.org/10.3390/pharmaceutics9030033
J.C.J. Wei, G.A. Edwards, D.J. Martin, H. Huang, M.L. Crichton et al., Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. Sci. Rep. 7, 15885 (2017). https://doi.org/10.1038/s41598-017-15830-7
E. Larraneta, J. Moore, E.M. Vicente-Perez, P. Gonzalez-Vazquez, R. Lutton et al., A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 472, 65–73 (2014). https://doi.org/10.1016/j.ijpharm.2014.05.042
A.D. Permana, M. Mir, E. Utomo, R.F. Donnelly, Bacterially sensitive nanoparticle-based dissolving microneedles of doxycycline for enhanced treatment of bacterial biofilm skin infection: A proof of concept study. Int. J. Pharm. X. 2, 100047 (2020). https://doi.org/10.1016/j.ijpx.2020.100047
A.D. Permana, A.J. Paredes, F. Volpe-Zanutto, Q.K. Anjani, E. Utomo et al., Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur. J. Pharm. Biopharm. 154, 50–61 (2020). https://doi.org/10.1016/j.ejpb.2020.06.025
M.-C. Chen, M.-H. Ling, K.-W. Wang, Z.-W. Lin, B.-H. Lai et al., Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery. Biomacromol 16, 1598–1607 (2015). https://doi.org/10.1021/acs.biomac.5b00185
A. Arora, I. Hakim, J. Baxter, R. Rathnasingham, R. Srinivasan et al., Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc. Natl. Acad. Sci. 104, 4255–4260 (2007). https://doi.org/10.1073/pnas.0700182104
D.F.S. Fonseca, P.C. Costa, I.F. Almeida, P. Dias-Pereira, I. Correia-Sá et al., Swellable gelatin methacryloyl microneedles for extraction of interstitial skin fluid toward minimally invasive monitoring of urea. Macromol. Biosci. 20, 2000195 (2020). https://doi.org/10.1002/mabi.202000195
V.V.T. Padil, J.Y. Cheong, K. Akshaykumar, R. Torres-Mendieta, E.N. Zareh et al., Electrospun fibers from natural carbohydrate polymers and their multidimensional applications. ACS Appl. Polym. Mater. 247, 116705 (2020). https://doi.org/10.1016/j.carbpol.2020.116705
T. Salzano, Biodegradable Polymeric Microneedle Patches for Transdermal and Controlled Drug Delivery. Thesis (2016)
M. Shabani, K. Jahani, M. Di Paola, M.H. Sadeghi, Frequency domain identification of the fractional Kelvin-Voigt’s parameters for viscoelastic materials. Mech. Mater. 137, 103099 (2019). https://doi.org/10.1016/J.MECHMAT.2019.103099
S. Aoyagi, H. Izumi, M. Fukuda, Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens. Actuat. A Phys. 143, 20–28 (2008). https://doi.org/10.1016/j.sna.2007.06.007
I. Xenikakis, M. Tzimtzimis, K. Tsongas, D. Andreadis, E. Demiri et al., Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur. J. Pharm. Sci. 137, 104976 (2019). https://doi.org/10.1016/j.ejps.2019.104976
X.Q. Kong, P. Zhou, C.W. Wu, Numerical simulation of microneedles’ insertion into skin. Comput. Methods Biomech. Biomed. Eng. 14, 827–835 (2011). https://doi.org/10.1080/10255842.2010.497144
M.F. Leyva-Mendivil, J. Lengiewicz, A. Page, N.W. Bressloff, G. Limbert, Skin microstructure is a key contributor to its friction behaviour. Tribol. Lett. 65, 12 (2016). https://doi.org/10.1007/s11249-016-0794-4
E.Z. Loizidou, N.A. Williams, D.A. Barrow, M.J. Eaton, J. McCrory et al., Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses. Eur. J. Pharm. Biopharm. 89, 224–231 (2015). https://doi.org/10.1016/j.ejpb.2014.11.023
O. Olatunji, D.B. Das, M.J. Garland, L. Belaid, R.F. Donnelly, Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J. Pharm. Sci. 102, 1209–1221 (2013). https://doi.org/10.1002/jps.23439
E.Z. Loizidou, N.T. Inoue, J. Ashton-Barnett, D.A. Barrow, C.J. Allender, Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur. J. Pharm. Biopharm. 107, 1–6 (2016). https://doi.org/10.1016/j.ejpb.2016.06.023
O. Olatunji, C.C. Igwe, A.S. Ahmed, D.O.A. Alhassan, G.O. Asieba et al., Microneedles from fish scale biopolymer. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40377
A. Boonma, R. Narayan, Y.-S. Lee, Analytical modeling and evaluation of microneedles apparatus with deformable soft tissues for biomedical applications. Comput. Aided. Des. Appl. 10, 139–157 (2013). https://doi.org/10.3722/cadaps.2013.139-157
S. Song, J.D. Kim, J. Bae, S. Chang, S. Kim et al., In vivo optical coherence tomography imaging of dissolution of hyaluronic acid microneedles in human skin (Conference Presentation), in Visualizing and Quantifying Drug Distribution in Tissue. ed. by C.L. Evans, K.F. Chan (SPIE, Bellingham, 2017), p. 17. https://doi.org/10.1117/12.2251772
M. Pearton, C. Allender, K. Brain, A. Anstey, C. Gateley et al., Gene delivery to the epidermal cells of human skin explants using microfabricated microneedles and hydrogel formulations. Pharm. Res. 25, 407–416 (2008). https://doi.org/10.1007/s11095-007-9360-y
C.S. Kolli, A.K. Banga, Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm. Res. 25, 104–113 (2008). https://doi.org/10.1007/s11095-007-9350-0
S.M. Bal, A.C. Kruithof, R. Zwier, E. Dietz, J.A. Bouwstra et al., Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. J. Control. Release 147, 218–224 (2010). https://doi.org/10.1016/j.jconrel.2010.07.104
M.-T. Tsai, I.-C. Lee, Z.-F. Lee, H.-L. Liu, C.-C. Wang et al., In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography. Biomed. Opt. Express 7, 1865 (2016). https://doi.org/10.1364/boe.7.001865
Y. Ye, J. Wang, Q. Hu, G.M. Hochu, H. Xin et al., Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 10, 8956–8963 (2016). https://doi.org/10.1021/acsnano.6b04989
S. Bal, A.C. Kruithof, H. Liebl, M. Tomerius, J. Bouwstra et al., In vivo visualization of microneedle conduits in human skin using laser scanning microscopy. Laser Phys. Lett. 7, 242–246 (2010). https://doi.org/10.1002/lapl.200910134
F.J. Verbaan, S.M. Bal, D.J. van den Berg, J.A. Dijksman, M. van Hecke et al., Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J. Control. Release 128, 80–88 (2008). https://doi.org/10.1016/j.jconrel.2008.02.009
I. Abiandu, K. Ita, Transdermal delivery of potassium chloride with solid microneedles. J. Drug Deliv. Sci. Technol. 53, 101216 (2019). https://doi.org/10.1016/j.jddst.2019.101216
N. El-Sayed, L. Vaut, M. Schneider, Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur. J. Pharm. Biopharm. 154, 166–174 (2020). https://doi.org/10.1016/j.ejpb.2020.07.005
M.A. Khalil, A.A. Saleh, S.M. Gohar, D.H. Khalil, M. Said, Optical coherence tomography findings in patients with bipolar disorder. J. Affect. Disord. 218, 115–122 (2017). https://doi.org/10.1016/j.jad.2017.04.055
R.F. Donnelly, R. Majithiya, T.R.R. Singh, D.I.J. Morrow, M.J. Garland et al., Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 28, 41–57 (2011). https://doi.org/10.1007/s11095-010-0169-8
W. Yu, G. Jiang, Y. Zhang, D. Liu, B. Xu et al., Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats. J. Mater. Chem. B 5, 9507–9513 (2017). https://doi.org/10.1039/C7TB02236K
A.S. Cordeiro, I.A. Tekko, M.H. Jomaa, L. Vora, E. McAlister et al., Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: application in the development of polymeric drug delivery systems. Pharm. Res. 37, 174 (2020). https://doi.org/10.1007/s11095-020-02887-9
E. Larrañeta, J. Moore, E.M. Vicente-Pérez, P. González-Vázquez, R. Lutton et al., A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 472, 65–73 (2014). https://doi.org/10.1016/J.IJPHARM.2014.05.042
G. Wang, N. Fang, Detecting and tracking nonfluorescent nanoparticle probes in live cells, in: Methods Enzymol (Elsevier, 2012), pp. 83–108. doi: https://doi.org/10.1016/B978-0-12-391857-4.00004-5
L.L. Drey, M.C. Graber, J. Bieschke, Counting unstained, confluent cells by modified bright-field microscopy. Biotechniques 55, 28–33 (2013). https://doi.org/10.2144/000114056
M. Pearton, V. Saller, S.A. Coulman, C. Gateley, A.V. Anstey et al., Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J. Control. Release 160, 561–569 (2012). https://doi.org/10.1016/j.jconrel.2012.04.005
Y.A. Gomaa, D.I.J. Morrow, M.J. Garland, R.F. Donnelly, L.K. El-Khordagui et al., Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol. Vitr. 24, 1971–1978 (2010). https://doi.org/10.1016/j.tiv.2010.08.012
J.S. Kochhar, T.C. Quek, W.J. Soon, J. Choi, S. Zou et al., Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J. Pharm. Sci. 102, 4100–4108 (2013). https://doi.org/10.1002/jps.23724
S.D. Gittard, B. Chen, H. Xu, A. Ovsianikov, B.N. Chichkov et al., The effects of geometry on skin penetration and failure of polymer microneedles. J. Adhes. Sci. Technol. 27, 227–243 (2013). https://doi.org/10.1080/01694243.2012.705101
A.R. Johnson, C.L. Caudill, J.R. Tumbleston, C.J. Bloomquist, K.A. Moga et al., Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLOS ONE 11, e0162518 (2016). https://doi.org/10.1371/journal.pone.0162518
H.-R. Jeong, H.-S. Lee, I.-J. Choi, J.-H. Park, Considerations in the use of microneedles: pain, convenience, anxiety and safety. J. Drug Target 25, 29–40 (2017). https://doi.org/10.1080/1061186X.2016.1200589
A.R. Johnson, A.T. Procopio, Low cost additive manufacturing of microneedle masters. 3D Print Med 5, 2 (2019). https://doi.org/10.1186/s41205-019-0039-x
B.Z. Chen, L.Q. Zhang, Y.Y. Xia, X.P. Zhang, X.D. Guo, A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 6, eaba7260 (2020). https://doi.org/10.1126/sciadv.aba7260
D.V. McAllister, P.M. Wang, S.P. Davis, J.-H.J.-H. Park, P.J. Canatella et al., Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. 100, 13755–13760 (2003). https://doi.org/10.1073/pnas.2331316100
H.S. Gill, M.R. Prausnitz, Coated microneedles for transdermal delivery. J. Control. Release 117, 227–237 (2007). https://doi.org/10.1016/j.jconrel.2006.10.017
A. Davidson, B. Al-Qallaf, D.B. Das, Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chem. Eng. Res. Des. 86, 1196–1206 (2008). https://doi.org/10.1016/j.cherd.2008.06.002
C. Wang, Y. Ye, G.M. Hochu, H. Sadeghifar, Z. Gu, Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16, 2334–2340 (2016). https://doi.org/10.1021/acs.nanolett.5b05030
Y. Li, X. Hu, Z. Dong, Y. Chen, W. Zhao et al., Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur. J. Pharm. Sci. 151, 105361 (2020). https://doi.org/10.1016/j.ejps.2020.105361
Technavio, Transdermal Drug Delivery Market, 2019.
A.M. Römgens, D.L. Bader, J.A. Bouwstra, C.W.J. Oomens, Predicting the optimal geometry of microneedles and their array for dermal vaccination using a computational model. Comput. Methods Biomech. Biomed. Eng. 19, 1599–1609 (2016). https://doi.org/10.1080/10255842.2016.1173684
B. Ahn, Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 18, 143–149 (2020). https://doi.org/10.1007/s12555-019-0220-8
A.L. Teo, C. Shearwood, K.C. Ng, J. Lu, S. Moochhala, Transdermal microneedles for drug delivery applications. Mater. Sci. Eng. B 132, 151–154 (2006). https://doi.org/10.1016/J.MSEB.2006.02.008
J.A. Mikszta, J.B. Alarcon, J.M. Brittingham, D.E. Sutter, R.J. Pettis et al., Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8, 415–419 (2002). https://doi.org/10.1038/nm0402-415
G. Yan, K.S. Warner, J. Zhang, S. Sharma, B.K. Gale, Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm. 391, 7–12 (2010). https://doi.org/10.1016/j.ijpharm.2010.02.007
Y.H. Zhang, S.A. Campbell, S. Karthikeyan, Finite element analysis of hollow out-of-plane HfO2 microneedles for transdermal drug delivery applications. Biomed. Microdevices 20, 1–7 (2018). https://doi.org/10.1007/s10544-018-0262-z
P. Khanna, K. Luongo, J.A. Strom, S. Bhansali, Axial and shear fracture strength evaluation of silicon microneedles. Microsyst. Technol. 16, 973–978 (2010). https://doi.org/10.1007/s00542-010-1070-4
P. Khanna, B.R. Flam, B. Osborn, J.A. Strom, S. Bhansali, Skin penetration and fracture strength testing of silicon dioxide microneedles. Sens. Actuat. A Phys. 170, 180–186 (2011). https://doi.org/10.1016/j.sna.2010.09.024
H.E. Zainal-Abidin, P.C. Ooi, T.Y. Tiong, N. Marsi, A. Ismardi et al., Stress and deformation of optimally shaped silicon microneedles for transdermal drug delivery. J. Pharm. Sci. 109, 2485–2492 (2020). https://doi.org/10.1016/j.xphs.2020.04.019
C. O’Mahony, Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed. Microdevices 16, 333–343 (2014). https://doi.org/10.1007/s10544-014-9836-6
S. Pradeep-Narayanan, S. Raghavan, Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol. 93, 407–422 (2017). https://doi.org/10.1007/s00170-016-9698-6
N. Bouras, M.A. Madjoubi, M. Kolli, S. Benterki, M. Hamidouche, Thermal and mechanical characterization of borosilicate glass. Phys. Procedia. 2, 1135–1140 (2009). https://doi.org/10.1016/j.phpro.2009.11.074
P.M. Wang, M. Cornwell, J. Hill, M.R. Prausnitz, Precise microinjection into skin using hollow microneedles. J. Invest. Dermatol. 126, 1080–1087 (2006). https://doi.org/10.1038/sj.jid.5700150
G. Wypych, PGA poly(glycolic acid), in: Handbook of Polymers (Elsevier, 2016), pp. 419–421. doi: https://doi.org/10.1016/B978-1-895198-92-8.50128-2
S.H. Choi, T.G. Park, Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers. J. Biomater. Sci. Polym. Ed. 13, 1163–1173 (2002). https://doi.org/10.1163/156856202320813864
B. Tavsanli, O. Okay, Mechanically strong hyaluronic acid hydrogels with an interpenetrating network structure. Eur. Polym. J. 94, 185–195 (2017). https://doi.org/10.1016/j.eurpolymj.2017.07.009
P. Gentile, V. Chiono, I. Carmagnola, P.V. Hatton, An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15, 3640–3659 (2014). https://doi.org/10.3390/ijms15033640
T. Michinobu, M. Bito, M. Tanimura, Y. Katayama, E. Masai et al., Mechanical properties of poly(l-lactide) films controlled by blending with polyesters of lignin-derived stable metabolic intermediate. 2-pyrone-4,6-dicarboxylic acid (PDC). Polym. J. 41, 843–848 (2009). https://doi.org/10.1295/polymj.PJ2009133
S.D. Gittard, R.J. Narayan, Applications of microneedle technology to transdermal drug delivery, in Toxicology of the Skin. ed. by N.A. Monteiro-Riviere (CRC Press, Boca Raton, 2010), p. 307
S. Kalra, A. Singh, M. Gupta, V. Chadha, Ormocer: An aesthetic direct restorative material; an in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent. Contemp. Clin. Dent. 3, 48 (2012). https://doi.org/10.4103/0976-237x.94546
S. Bystrova, R. Luttge, Micromolding for ceramic microneedle arrays. Microelectron. Eng. 88, 1681–1684 (2011). https://doi.org/10.1016/j.mee.2010.12.067
M. Verhoeven, S. Bystrova, L. Winnubst, H. Qureshi, T.D. De Gruijl et al., Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model, in: Microelectronic Engineering (Elsevier, 2012), pp. 659–662. doi: https://doi.org/10.1016/j.mee.2012.07.022
M.A. Boks, W.W.J. Unger, S. Engels, M. Ambrosini, Y. Van Kooyk et al., Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int. J. Pharm. 491, 375–383 (2015). https://doi.org/10.1016/j.ijpharm.2015.06.025
K. van der Maaden, R. Luttge, P.J. Vos, J. Bouwstra, G. Kersten, I. Ploemen, Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv. Transl. Res. 5, 397–406 (2015). https://doi.org/10.1007/s13346-015-0238-y
R. Pignatello, Biomaterials: Applications for Nanomedicine, 1st edn. (InTech, Rijeka, 2011).
R.J. Napier, A.J. Shimmin, Ceramic-on-ceramic bearings in total hip arthroplasty: “The future is now.” Semin. Arthroplasty 27, 235–238 (2016). https://doi.org/10.1053/j.sart.2017.03.001
B. Cai, W. Xia, S. Bredenberg, H. Engqvist, Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J. Mater. Chem. B 2, 5992–5998 (2014). https://doi.org/10.1039/C4TB00764F
H. Vallhov, W. Xia, H. Engqvist, A. Scheynius, Bioceramic microneedle arrays are able to deliver OVA to dendritic cells in human skin. J. Mater. Chem. B 6, 6808–6816 (2018). https://doi.org/10.1039/c8tb01476k
W. Yu, G. Jiang, D. Liu, L. Li, Z. Tong et al., Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater. Sci. Eng. C 73, 425–428 (2017). https://doi.org/10.1016/j.msec.2016.12.111
Y.-C.C. Kim, J.-H.H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
T. Miyano, Y. Tobinaga, T. Kanno, Y. Matsuzaki, H. Takeda et al., Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices 7, 185–188 (2005). https://doi.org/10.1007/s10544-005-3024-7
G. Li, A. Badkar, S. Nema, C.S. Kolli, A.K. Banga, In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int. J. Pharm. 368, 109–115 (2009). https://doi.org/10.1016/j.ijpharm.2008.10.008
R.F. Donnelly, D.I.J. Morrow, T.R.R. Singh, K. Migalska, P.A. McCarron et al., Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev. Ind. Pharm. 35, 1242–1254 (2009). https://doi.org/10.1080/03639040902882280
R.F. Donnelly, T.R.R. Singh, D.I.J. Morrow, D.A. Woolfson, Microneedle-Mediated Transdermal and Intradermal Drug Delivery, 1st edn. (Wiley, Sussex, 2012).
X. Hong, L. Wei, F. Wu, Z. Wu, L. Chen et al., Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Devel. Ther. 7, 945–952 (2013). https://doi.org/10.2147/DDDT.S44401
M. Wang, L. Hu, C. Xu, Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 17, 1373–1387 (2017). https://doi.org/10.1039/C7LC00016B
G. Bonfante, H. Lee, L. Bao, J. Park, N. Takama et al., Comparison of polymers to enhance mechanical properties of microneedles for bio-medical applications. Micro Nano Syst. Lett. 8, 13 (2020). https://doi.org/10.1186/s40486-020-00113-0
S.F. Chou, K.A. Woodrow, Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J. Mech. Behav. Biomed. Mater. 65, 724–733 (2017). https://doi.org/10.1016/j.jmbbm.2016.09.004
L. Yan, A.P. Raphael, X. Zhu, B. Wang, W. Chen et al., Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin. Adv. Heal. Mater. 3, 555–564 (2014). https://doi.org/10.1002/adhm.201300312
W.K. Raja, S. MacCorkle, I.M. Diwan, A. Abdurrob, J. Lu et al., Transdermal delivery devices: fabrication, mechanics and drug release from silk. Small 9, 3704–3713 (2013). https://doi.org/10.1002/smll.201202075
L. Yan, A.P. Raphael, X. Zhu, B. Wang, W. Chen et al., Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin. Adv. Healthc. Mater. 3, 555–564 (2014). https://doi.org/10.1002/adhm.201300312
M.T.C. Mc-Crudden, E. Larrañeta, A. Clark, C. Jarrahian, A. Rein-Weston et al., Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J. Control. Release 292, 119–129 (2018). https://doi.org/10.1016/j.jconrel.2018.11.002
Z. Luo, W. Sun, J. Fang, K. Lee, S. Li et al., Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv. Healthc. Mater. 8, 1801054 (2019). https://doi.org/10.1002/adhm.201801054
X. Zhou, Z. Luo, A. Baidya, H. Kim, C. Wang et al., Biodegradable β-cyclodextrin conjugated gelatin methacryloyl microneedle for delivery of water-insoluble drug. Adv. Healthc. Mater. 9, 2000527 (2020). https://doi.org/10.1002/adhm.202000527
E. Larrañeta, R.E.M. Lutton, A.J. Brady, E.M. Vicente-Pérez, A.D. Woolfson et al., Microwave-assisted preparation of hydrogel-forming microneedle arrays for transdermal drug delivery applications. Macromol. Mater. Eng. 300, 586–595 (2015). https://doi.org/10.1002/mame.201500016
T.R. Raj-Singh, M.J. Garland, K. Migalska, E.C. Salvador, R. Shaikh et al., Influence of a pore-forming agent on swelling, network parameters, and permeability of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: Application in transdermal delivery systems. J. Appl. Polym. Sci. 125, 2680–2694 (2012). https://doi.org/10.1002/app.36524
M.S. Gerstel, V.A. Place, Drug Delivery Device, 3964482 (1971)
S. Lee, S. Fakhraei-Lahiji, J. Jang, M. Jang, H. Jung, Micro-pillar integrated dissolving microneedles for enhanced transdermal drug delivery. Pharmaceutics 11, 402 (2019). https://doi.org/10.3390/pharmaceutics11080402
M.-C. Chen, H.-A. Chan, M.-H. Ling, L.-C. Su, Implantable polymeric microneedles with phototriggerable properties as a patient-controlled transdermal analgesia system. J. Mater. Chem. B 5, 496–503 (2017). https://doi.org/10.1039/C6TB02718K
M.C. Chen, K.Y. Lai, M.H. Ling, C.W. Lin, Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater. (2018). https://doi.org/10.1016/j.actbio.2017.11.004
M.-C. Chen, S.-F. Huang, K.-Y. Lai, M.-H. Ling, Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 34, 3077–3086 (2013). https://doi.org/10.1016/j.biomaterials.2012.12.041
J.M. Mazzara, L.J. Ochyl, J.K.Y. Hong, J.J. Moon, M.R. Prausnitz et al., Self-healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches. Bioeng. Transl. Med. 4, 116–128 (2019). https://doi.org/10.1002/btm2.10103
H. Jun, M.H. Ahn, I.J. Choi, S.K. Baek, J.H. Park et al., Immediate separation of microneedle tips from base array during skin insertion for instantaneous drug delivery. RSC Adv. 8, 17786–17796 (2018). https://doi.org/10.1039/c8ra02334d
I.J. Choi, A. Kang, M.H. Ahn, H. Jun, S.K. Baek et al., Insertion-responsive microneedles for rapid intradermal delivery of canine influenza vaccine. J. Control. Release 286, 460–466 (2018). https://doi.org/10.1016/j.jconrel.2018.08.017
I.J. Choi, W. Na, A. Kang, M.H. Ahn, M. Yeom et al., Patchless administration of canine influenza vaccine on dog’s ear using insertion-responsive microneedles (IRMN) without removal of hair and its in vivo efficacy evaluation. Eur. J. Pharm. Biopharm. 153, 150–157 (2020). https://doi.org/10.1016/j.ejpb.2020.06.006
Y.H. Chen, K.Y. Lai, Y.H. Chiu, Y.W. Wu, A.L. Shiau et al., Implantable microneedles with an immune-boosting function for effective intradermal influenza vaccination. Acta Biomater. (2019). https://doi.org/10.1016/j.actbio.2019.07.048
D. Chen, C. Wang, W. Chen, Y. Chen, J.X.J. Zhang, PVDF-Nafion nanomembranes coated microneedles for in vivo transcutaneous implantable glucose sensing. Biosens. Bioelectron. 74, 1047–1052 (2015). https://doi.org/10.1016/j.bios.2015.07.036
S. Kim, H. Yang, J. Eum, Y. Ma, S. Fakhraei-Lahiji et al., Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity. Biomaterials 232, 119733 (2020). https://doi.org/10.1016/j.biomaterials.2019.119733
M. Carlotti, V. Mattoli, Functional materials for two-photon polymerization in microfabrication. Small 15, 1902687 (2019). https://doi.org/10.1002/smll.201902687
D.M. Zuev, A.K. Nguyen, V.I. Putlyaev, R.J. Narayan, 3D printing and bioprinting using multiphoton lithography. Bioprinting 20, e00090 (2020). https://doi.org/10.1016/j.bprint.2020.e00090
I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis et al., Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 2302–2311 (2012). https://doi.org/10.1021/nn204454c
C. Plamadeala, S.R. Gosain, S. Purkhart, B. Buchegger, W. Baumgartner et al., Three-dimensional photonic structures fabricated by two-photon polymerization for microfluidics and microneedles. in: International Conference on Transparent Optical Networks. 2018-July, 2018–2021 (2018). doi: https://doi.org/10.1109/ICTON.2018.8473647
M. Suzuki, T. Takahashi, S. Aoyagi, 3D laser lithographic fabrication of hollow microneedle mimicking mosquitos and its characterisation. Int. J. Nanotechnol. 15, 157–173 (2018). https://doi.org/10.1504/IJNT.2018.089545
A.D.R. Li, K.B. Putra, L. Chen, J.S. Montgomery, A. Shih, Mosquito proboscis-inspired needle insertion to reduce tissue deformation and organ displacement. Sci. Rep. 10, 1–14 (2020). https://doi.org/10.1038/s41598-020-68596-w
S.D. Gittard, A. Ovsianikov, B.N. Chichkov, A. Doraiswamy, R.J. Narayan, Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin. Drug Deliv. 7, 513–533 (2010). https://doi.org/10.1517/17425241003628171
M. Kavaldzhiev, J.E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale et al., Biocompatible 3D printed magnetic micro needles. Biomed. Phys. Eng. Express 3, 25005 (2017). https://doi.org/10.1088/2057-1976/aa5ccb
E.D. Lemma, F. Rizzi, T. Dattoma, B. Spagnolo, L. Sileo et al., Mechanical properties tunability of three-dimensional polymeric structures in two-photon lithography. IEEE Trans. Nanotechnol. 16, 23–31 (2016). https://doi.org/10.1109/TNANO.2016.2625820
C.N. LaFratta, O. Simoska, I. Pelse, S. Weng, M. Ingram, A convenient direct laser writing system for the creation of microfluidic masters. Microfluid. Nanofluidics 19, 419–426 (2015). https://doi.org/10.1007/s10404-015-1574-4
A. Aksit, D.N. Arteaga, M. Arriaga, X. Wang, H. Watanabe et al., In-vitro perforation of the round window membrane via direct 3-D printed microneedles. Biomed. Microdevices 20, 47 (2018). https://doi.org/10.1007/s10544-018-0287-3
D. Ricci, M.M. Nava, T. Zandrini, G. Cerullo, M.T. Raimondi et al., Scaling-up techniques for the nanofabrication of cell culture substrates via two-photon polymerization for industrial-scale expansion of stem cells. Materials 10, 66 (2017). https://doi.org/10.3390/ma10010066
R.F. Donnelly, Clinical Translation and Industrial Development of Microneedle-based Products, in Microneedles Drug Vaccine Delivery, 1st edn., ed. by R.F. Donnelly, T.R.R. Singh (Wiley, Chichester, 2018), pp. 307–322
J.C. Birchall, R. Clemo, A. Anstey, D.N. John, Microneedles in clinical practice–an exploratory study into the opinions of healthcare professionals and the public. Pharm. Res. 28, 95–106 (2011). https://doi.org/10.1007/s11095-010-0101-2
E.M. Vicente-Pérez, H.L. Quinn, E. McAlister, S. O’Neill, L.-A. Hanna et al., The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo. Pharm. Res. 33, 1–10 (2016). https://doi.org/10.1007/s11095-016-2032-z