Structure, Performance, and Application of BiFeO3 Nanomaterials
Corresponding Author: Ya Yang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 81
Abstract
Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity, ferromagnetism, and ferroelasticity, which can promise a broad application in multifunctional, low-power consumption, environmentally friendly devices. Bismuth ferrite (BiFeO3, BFO) exhibits both (anti)ferromagnetic and ferroelectric properties at room temperature. Thus, it has played an increasingly important role in multiferroic system. In this review, we systematically discussed the developments of BFO nanomaterials including morphology, structures, properties, and potential applications in multiferroic devices with novel functions. Even the opportunities and challenges were all analyzed and summarized. We hope this review can act as an updating and encourage more researchers to push on the development of BFO nanomaterials in the future.
Highlights:
1 The development of bismuth ferrite as a multiferroic nanomaterial is summarized.
2 The morphology, structures, and properties of bismuth ferrite and its potential applications in multiferroic devices with novel functions are presented and discussed.
3 Some perspectives and issues needed to be solved are described.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009). https://doi.org/10.1002/adma.200802849
- S.-W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007). https://doi.org/10.1038/nmat1804
- N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004). https://doi.org/10.1038/nature02572
- R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007). https://doi.org/10.1038/nmat1805
- J.F. Scott, Multiferroic memories. Nat. Mater. 6, 256–257 (2007). https://doi.org/10.1038/nmat1868
- S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012). https://doi.org/10.1126/science.1214143
- J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003). https://doi.org/10.1126/science.1080615
- N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005). https://doi.org/10.1126/science.1113357
- J.C. Yang, Q. He, P. Yu, Y.H. Chu, BiFeO3 thin films: a playground for exploring electric-field control of multifunctionalities. Ann. Rev. Mater. Res. 45, 249–275 (2015). https://doi.org/10.1146/annurev-matsci-070214-020837
- M. Valant, A.-K. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater. 19, 5431–5436 (2007). https://doi.org/10.1021/cm071730
- J. Ma, J. Hu, Z. Li, C.-W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011). https://doi.org/10.1002/adma.201003636
- A.M. Ionescu, Ferroelectric devices show potential. Nat. Nanotechnol. 7, 83–85 (2012). https://doi.org/10.1038/nnano.2012.10
- M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song et al., High-performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27, 6976–6982 (2015). https://doi.org/10.1002/adma.201502424
- J.F. Scott, F.D. Morrison, M. Miyake, P. Zubko, Nano-ferroelectric materials and devices. Ferroelectrics 336, 237–245 (2006). https://doi.org/10.1080/00150190600697699
- N.A. Spaldin, Fundamental size limits in ferroelectricity. Science 304, 1606–1607 (2004). https://doi.org/10.1126/science.1099822
- J. Lv, J. Wu, W. Wu, Enhanced electrical properties of quenched (1 − x)Bi1−ySmyFeO3–xBiScO3 lead-free ceramics. J. Phys. Chem. C 119, 21105–21115 (2015). https://doi.org/10.1021/acs.jpcc.5b07249
- D. Ricinschi, K.-Y. Yun, M. Okuyama, A mechanism for the 150 µC cm−2 polarization of BiFeO3 films based on first-principles calculations and new structural data. J. Phys.: Condens. Matter. 18, 97–105 (2006). https://doi.org/10.1088/0953-8984/18/6/L03
- R. Guo, L. You, Y. Zhou, Z.S. Lim, X. Zou, L. Chen, R. Ramesh, J.L. Wang, Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990 (2013). https://doi.org/10.1038/ncomms2990
- J. Qi, N. Ma, Y. Yang, Photovoltaic–pyroelectric coupled effect based nanogenerators for self-powered photodetector system. Adv. Mater. Interfaces 5, 1701189 (2018). https://doi.org/10.1002/admi.201701189
- J. Qi, N. Ma, X.C. Ma, R. Adelung, Y. Yang, Enhanced photocurrent in BiFeO3 materials by coupling temperature and thermo-phototronic effects for self-powered ultraviolet photodetector system. ACS Appl. Mater. Interfaces 10, 13712–13719 (2018). https://doi.org/10.1021/acsami.8b02543
- R. Zhao, N. Ma, J. Qi, Y.K. Mishra, R. Adelung, Y. Yang, Optically controlled abnormal photovoltaic current modulation with temperature in BiFeO3. Adv. Electron. Mater. 5, 1800791 (2019). https://doi.org/10.1002/aelm.201800791
- T. Zheng, J. Wu, Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics. J. Mater. Chem. C 3, 11326–11334 (2015). https://doi.org/10.1039/C5TC02203G
- C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012). https://doi.org/10.1039/c2cp43082g
- L. Chen, W. Ren, W.M. Zhu, Z.G. Ye, P. Shi, X.F. Chen, X.Q. Wu, X. Yao, Improved dielectric and ferroelectric properties in Ti-doped BiFeO3–PbTiO3 thin films prepared by pulsed laser deposition. Thin Solid Films 518, 1637–1640 (2010). https://doi.org/10.1016/j.tsf.2009.11.072
- M.A. Khan, T.P. Comyn, A.J. Bell, Large remanent polarization in ferroelectric BiFeO3–PbTiO3BiFeO3–PbTiO3 thin films on Pt∕SiPt∕Si substrates. Appl. Phys. Lett. 91, 032901 (2007). https://doi.org/10.1063/1.2759256
- F. Yan, T.J. Zhu, M.O. Lai, L. Lu, Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films. Scr. Mater. 63, 780–783 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.013
- J. Bertinshaw, R. Maran, S.J. Callori, V. Ramesh, J. Cheung et al., Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films. Nat. Commun. 7, 12664 (2016). https://doi.org/10.1038/ncomms12664
- Z. Chen, Z. Chen, C.-Y. Kuo, Y. Tang, L.R. Dedon et al., Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nat. Commun. 9, 3764 (2018). https://doi.org/10.1038/s41467-018-06190-5
- C.Y. Kuo, Z. Hu, J.C. Yang, S.C. Liao, Y.L. Huang et al., Single-domain multiferroic BiFeO3 films. Nat. Commun. 7, 12712 (2016). https://doi.org/10.1038/ncomms12712
- H. Wang, Z.R. Liu, H.Y. Yoong, T.R. Paudel, J.X. Xiao et al., Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat. Commun. 9, 3319 (2018). https://doi.org/10.1038/s41467-018-05662-y
- F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 19, 2889–2892 (2007). https://doi.org/10.1002/adma.200602377
- F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Preparation and photoabsorption characterization of BiFeO3 nanowires. Appl. Phys. Lett. 89, 102506 (2006). https://doi.org/10.1063/1.2345825
- S. Li, R. Nechache, I.A.V. Davalos, G. Goupil, L. Nikolova et al., Ultrafast microwave hydrothermal synthesis of BiFeO3 nanoplates. J. Am. Ceram. Soc. 96, 3155–3162 (2013). https://doi.org/10.1111/jace.12473
- Z. Li, Y. Wang, G. Tian, P. Li, L. Zhao et al., High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci. Adv. 3, e1700919 (2017). https://doi.org/10.1126/sciadv.1700919
- J. Ma, J. Ma, Q. Zhang, R. Peng, J. Wang et al., Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat. Nanotechnol. 13, 947–952 (2018). https://doi.org/10.1038/s41565-018-0204-1
- F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer et al., Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation. iScience 4, 236–246 (2018). https://doi.org/10.1016/j.isci.2018.06.003
- G.G. Philip, A. Senthamizhan, T.S. Natarajan, G. Chandrasekaran, H.A. Therese, The effect of gadolinium doping on the structural, magnetic and photoluminescence properties of electrospun bismuth ferrite nanofibers. Ceram. Int. 41, 13361–13365 (2015). https://doi.org/10.1016/j.ceramint.2015.07.122
- J.H. Jeon, H.Y. Joo, Y.M. Kim, D.H. Lee, J.S. Kim, Y.S. Kim, T. Choi, B.H. Park, Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor. Sci. Rep. 6, 23299 (2016). https://doi.org/10.1038/srep23299
- X.Y. Zhang, C.W. Lai, X. Zhao, D.Y. Wang, J.Y. Dai, Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl. Phys. Lett. 87, 143102 (2005). https://doi.org/10.1063/1.2076437
- S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, C.W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114, 2903–2908 (2010). https://doi.org/10.1021/jp910401u
- J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073–1074 (1970). https://doi.org/10.1016/0038-1098(70)90262-0
- J.M. Moreau, C. Michel, R. Gerson, W.J. James, Ferroelectric BiFeO3 X-ray and neutron diffraction study. J. Phys. Chem. Solids 32, 1315–1320 (1971). https://doi.org/10.1016/S0022-3697(71)80189-0
- P. Royen, K. Swars, Das System Wismutoxyd-eisenoxyd im bereich von 0 bis 55 Mol% eisenoxyd. Angew. Chem. Int. Ed. 69, 779 (1957). https://doi.org/10.1002/ange.19570692407
- S.V. Kiselev, G.S. Zhdanov, R.P. Ozerov, Detection of magnetic arrangement in the ferroelectric by means of neutron diffraction study. Dokl. Akad. Nauk SSSR 145, 1255–1258 (1962)
- I. Sosnowska, T. Peterlinneumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15, 4835–4846 (1982). https://doi.org/10.1088/0022-3719/15/23/020
- D. Kan, L. Palova, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20, 1108–1115 (2010). https://doi.org/10.1002/adfm.200902017
- C.-J. Cheng, D. Kan, V. Anbusathaiah, I. Takeuchi, V. Nagarajan, Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010). https://doi.org/10.1063/1.3520642
- B. Xu, D. Wang, J. Iniguez, L. Bellaiche, Finite-temperature properties of rare-earth-substituted BiFeO3 multiferroic solid solutions. Adv. Funct. Mater. 25, 552–558 (2015). https://doi.org/10.1002/adfm.201403811
- T.D. Rao, T. Karthik, S. Asthana, Investigation of structural, magnetic and optical properties of rare earth substituted bismuth ferrite. J. Rare Earth 31, 370–375 (2013). https://doi.org/10.1016/S1002-0721(12)60288-9
- H. Singh, K.L. Yadav, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 41, 9285–9295 (2015). https://doi.org/10.1016/j.ceramint.2015.03.212
- X. Xue, G. Tan, H. Ren, A. Xia, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 39, 6223–6228 (2013). https://doi.org/10.1016/j.ceramint.2015.03.212
- C.R. Foschini, M.A. Ramirez, S.R. Simoes, J.A. Varela, E. Longo, A.Z. Simoes, Piezoresponse force microscopy characterization of rare-earth doped BiFeO3 thin films grown by the soft chemical method. Ceram. Int. 39, 2185–2195 (2013). https://doi.org/10.1016/j.ceramint.2012.08.083
- S. Fujino, M. Murakami, V. Anbusathaiah, S.H. Lim, V. Nagarajan et al., Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett. 92, 202904 (2008). https://doi.org/10.1063/1.2931706
- C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu et al., Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009). https://doi.org/10.1038/nmat2432
- M. Vagadia, A. Ravalia, P.S. Solanki, R.J. Choudhary, D.M. Phase, D.G. Kuberkar, Improvement in resistive switching of Ba-doped BiFeO3 films. Appl. Phys. Lett. 103, 033504 (2013). https://doi.org/10.1063/1.4813551
- C. Ostos, O. Raymond, N. Suarez-Almodovar, D. Bueno-Baques, L. Mestres, J.M. Siqueiros, Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering. J. Appl. Phys. 110, 024114 (2011). https://doi.org/10.1063/1.3610428
- A.H. Khan, S. Atiq, M.S. Anwar, S. Naseem, S.K. Abbas, Optimization of magnetodielectric coupling in Mn substituted BiFeO3 for potential memory devices. J. Mater. Sci. 29, 11812–11823 (2018). https://doi.org/10.1007/s10854-018-9281-z
- J.-Z. Huang, Y. Wang, Y. Lin, M. Li, C.W. Nan, Effect of Mn doping on electric and magnetic properties of BiFeO3 thin films by chemical solution deposition. J. Appl. Phys. 106, 063911 (2009). https://doi.org/10.1063/1.3225559
- J.M. Luo, S.P. Lin, Y. Zheng, B. Wang, Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition. Appl. Phys. Lett. 101, 062902 (2012). https://doi.org/10.1063/1.4742897
- B. Dhanalakshmi, K. Pratap, B.P. Rao, P.S.V.S. Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics. J. Alloy. Compd. 676, 193–201 (2016). https://doi.org/10.1016/j.jallcom.2016.03.208
- T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Improved leakage and ferroelectric properties of Mn and Ti codoped BiFeO3 thin films. Appl. Phys. Lett. 94, 112904 (2009). https://doi.org/10.1063/1.3098408
- M. Kumar, K.L. Yadav, Strain-relaxed structure in (001)/(100)-oriented epitaxial PbTiO3 films grown on (100) SrTiO3 substrates by metal organic chemical vapor deposition. Appl. Phys. Lett. 91, 112904 (2007). https://doi.org/10.1063/1.2779239
- Z. Lu, X. Yang, C. Jin, P. Li, J.-G. Wan, J.-M. Liu, Nonvolatile electric-optical memory controlled by conductive filaments in Ti-doped BiFeO3. Adv. Electron. Mater. 4, 1700551 (2018). https://doi.org/10.1002/aelm.201700551
- H. Matsuo, Y. Noguchi, M. Miyayama, Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications. Nat. Commun. 8, 207 (2017). https://doi.org/10.1038/s41467-017-00245-9
- J. Zhuang, H. Wu, W. Ren, Z.-G. Ye, Local polar structure and multiferroic properties of (1 − x)Bi0.9Dy0.1FeO3 − xPbTiO3 solid solution. J. Appl. Phys. 116, 066809 (2014). https://doi.org/10.1063/1.4891345
- X. Zhang, Y. Sui, X. Wang, R. Xie, Structure–property relationship of GdCrO3-modified BiFeO3 ceramics. J. Alloy. Compd. 610, 382–387 (2014). https://doi.org/10.1016/j.jallcom.2014.05.050
- M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855–862 (2000). https://doi.org/10.1063/1.371953
- M. Azuma, S. Niitaka, N. Hayashi, K. Oka, M. Takano, H. Funakubo, Y. Shimakawa, Rhombohedral–tetragonal phase boundary with high Curie temperature in (1 − x) BiCoO3–xBiFeO3 solid solution. Jpn. J. Appl. Phys. 47, 7579–7581 (2008). https://doi.org/10.1143/JJAP.47.7579
- W. Saenrang, B.A. Davidson, F. Maccherozzi, J.P. Podkaminer, J. Irwin et al., Deterministic and robust room-temperature exchange coupling in monodomain multiferroic BiFeO3 heterostructures. Nat. Commun. 8, 1583 (2017). https://doi.org/10.1038/s41467-017-01581-6
- R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He et al., A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977–980 (2009). https://doi.org/10.1126/science.1177046
- D. Sando, Y.R. Yang, E. Bousquet, C. Carretero, V. Garcia et al., Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat. Commun. 7, 10718 (2016). https://doi.org/10.1038/ncomms10718
- D. Sando, A. Barthelemy, M. Bibes, BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys.: Condens. Mater. 26, 47 (2014). https://doi.org/10.1088/0953-8984/26/47/473201
- Y. Yang, C.M. Schlepuetz, C. Adamo, D.G. Schlom, R. Clarke, Untilting BiFeO3: the influence of substrate boundary conditions in ultra-thin BiFeO3 on SrTiO3. APL Mater. 1, 052102 (2013). https://doi.org/10.1063/1.4827596
- A.R. Damodaran, S. Lee, J. Karthik, S. MacLaren, L.W. Martin, Emperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films. Phys. Rev. B 85, 024113 (2012). https://doi.org/10.1103/PhysRevB.85.024113
- T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97, 1993–2011 (2014). https://doi.org/10.1111/jace.12982
- S.K. Singh, H. Ishiwara, K. Maruyama, Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett. 88, 262908 (2006). https://doi.org/10.1063/1.2218819
- S.K. Singh, K. Sato, K. Maruyama, H. Ishiwara, Cr-doping effects to electrical properties of BiFeO3 thin films formed by chemical solution deposition. Jpn. J. Appl. Phys. Part 2 45, 37–41 (2006). https://doi.org/10.1143/JJAP.45.L1087
- D. Wang, Z. Fan, W. Li, D. Zhou, A. Feteira et al., High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3–BaTiO3 ceramics. ACS Appl. Energy Mater. 1, 4403–4412 (2018). https://doi.org/10.1021/acsaem.8b01099
- Q. Zhou, C. Zhou, H. Yang, C. Yuan, G. Chen, L. Cao, Q. Fan, Piezoelectric and ferroelectric properties of Ga modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature. J. Mater. Sci. 25, 196–201 (2014). https://doi.org/10.1007/s10854-013-1573-8
- C. Zhou, Z. Cen, H. Yang, Q. Zhou, W. Li, C. Yuan, H. Wang, Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature. Phys. B Condens. Matter. 410, 13–16 (2013). https://doi.org/10.1016/j.physb.2012.11.003
- D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, I.M. Reaney, Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J. Eur. Ceram. Soc. 37, 1857–1860 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.10.027
- L.F. Cotica, F.R. Estrada, V.F. Freitas, G.S. Dias, I.A. Santos, J.A. Eiras, D. Garcia, Ferroic states in La doped BiFeO3–PbTiO3 multiferroic compounds. J. Appl. Phys. 111, 114105 (2012). https://doi.org/10.1063/1.4729288
- Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Enhanced polarization and magnetization in multiferroic (1 − x)BiFeO3−xSrTiO3 solid solution. Solid State Sci. 13, 2196–2200 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.10.008
- Y. Ma, X.M. Chen, Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics. J. Appl. Phys. 105, 054107 (2009). https://doi.org/10.1063/1.3081648
- Q. Zheng, L. Luo, K.H. Lam, N. Jiang, Y. Guo, D. Lin, Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3–BaTiO3 lead-free ceramics. J. Appl. Phys. 116, 184101 (2014). https://doi.org/10.1063/1.4901198
- W.M. Zhu, H.Y. Guo, Z.G. Ye, Structural and magnetic characterization of multiferroic (BiFeO3)1−x(PbTiO3)x solid solutions. Phys. Rev. B 78, 014401 (2008). https://doi.org/10.1103/PhysRevB.78.014401
- C. Daumont, W. Ren, I.C. Infante, S. Lisenkov, J. Allibe et al., Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films. J. Phys: Condens. Matter. 24, 16 (2012). https://doi.org/10.1088/0953-8984/24/16/162202
- J.C. Yang, Q. He, S.J. Suresha, C.Y. Kuo, C.Y. Peng et al., Orthorhombic BiFeO3. Phys. Rev. Lett. 109, 247606 (2012). https://doi.org/10.1103/PhysRevLett.109.247606
- H.W. Jang, S.H. Baek, D. Ortiz, C.M. Folkman, R.R. Das et al., Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys. Rev. Lett. 101, 107602 (2008). https://doi.org/10.1103/PhysRevLett.101.107602
- H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet et al., Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009). https://doi.org/10.1103/PhysRevLett.102.217603
- J.X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi et al., Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys. Rev. Lett. 107, 147602 (2011). https://doi.org/10.1103/PhysRevLett.107.147602
- J.C. Wojdeł, J. Íñiguez, Ab initio indications for giant magnetoelectric effects driven by structural softness. Phys. Rev. Lett. 105, 037208 (2010). https://doi.org/10.1103/PhysRevLett.105.037208
- C. Beekman, W. Siemons, T.Z. Ward, M. Chi, J. Howe et al., Phase transitions, phase coexistence, and piezoelectric switching behavior in highly strained BiFeO3 films. Adv. Mater. 25, 5561–5567 (2013). https://doi.org/10.1002/adma.201302066
- H.-J. Liu, C.-W. Liang, W.-I. Liang, H.-J. Chen, J.-C. Yang et al., Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and X-ray diffraction. Phys. Rev. B 85, 014104 (2012). https://doi.org/10.1103/PhysRevB.85.014104
- J.T. Heron, D.G. Schlom, R. Ramesh, Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 1, 021303 (2014). https://doi.org/10.1063/1.4870957
- F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M.P. Cruz, P.L. Yang, D. Hao, R. Ramesh, Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586–1590 (2007). https://doi.org/10.1021/nl070465o
- S. Goswami, D. Bhattacharya, P. Choudhury, Particle size dependence of magnetization and noncentrosymmetry in nanoscale BiFeO3. J. Appl. Phys. 109, 07D737 (2011). https://doi.org/10.1063/1.3567038
- D. Sando, A. Agbelele, D. Rahmedov, J. Liu, P. Rovillain et al., Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013). https://doi.org/10.1038/nmat3629
- J.Y. Chauleau, E. Haltz, C. Carretero, S. Fusil, M. Viret, Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nat. Mater. 16, 803–807 (2017). https://doi.org/10.1038/nmat4899
- H. Deng, H. Deng, P. Yang, J. Chu, Effect of Cr doping on the structure, optical and magnetic properties of multiferroic BiFeO3 thin films. J. Mater. Sci. 23, 1215–1218 (2012). https://doi.org/10.1007/s10854-011-0575-7
- Y.J. Yoo, J.S. Hwang, Y.P. Lee, J.S. Park, J.H. Kang, J. Kim, B.W. Lee, M.S. Seo, High ferromagnetic transition temperature in multiferroic BiFe0.95Ni0.05O3 compound. J. Appl. Phys. 114, 163902 (2013). https://doi.org/10.1063/1.4826623
- J. Chen, Y. Wang, Y. Deng, Competition between compressive strain and Mn doping on tuning the structure and magnetic behavior of BiFeO3 thin films. Funct. Mater. Lett. 8, 1550066 (2015). https://doi.org/10.1142/S1793604715500666
- T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry et al., Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006). https://doi.org/10.1038/nmat1731
- J. Zhang, X. Ke, G. Gou, J. Seidel, B. Xiang et al., A nanoscale shape memory oxide. Nat. Commun. 4, 2768 (2013). https://doi.org/10.1038/ncomms3768
- J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He et al., Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011). https://doi.org/10.1103/PhysRevLett.107.217202
- Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han et al., Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008). https://doi.org/10.1038/nmat2184
- S.H. Baek, H.W. Jang, C.M. Folkman, Y.L. Li, B. Winchester et al., Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010). https://doi.org/10.1038/nmat2703
- S. Manipatruni, D.E. Nikonov, C.-C. Lin, B. Prasad, Y.-L. Huang et al., Voltage control of unidirectional anisotropy in ferromagnet-multiferroic system. Sci. Adv. 4, eaat4229 (2018). https://doi.org/10.1126/sciadv.aat4229
- P. Yu, J.S. Lee, S. Okamoto, M.D. Rossell, M. Huijben et al., Interface ferromagnetism and orbital reconstruction in BiFeO3–La0.7Sr0.3MnO3 heterostructures. Phys. Rev. Lett. 105, 027201 (2010). https://doi.org/10.1103/PhysRevLett.105.027201
- S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, R.C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010). https://doi.org/10.1038/nmat2803
- T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009). https://doi.org/10.1126/science.1168636
- S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.H. Yang et al., Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010). https://doi.org/10.1038/nnano.2009.451
- L. You, F. Zheng, L. Fang, Y. Zhou, L.Z. Tan et al., Enhancing ferroelectric photovoltaic effect by polar order engineering. Sci. Adv. 4, eaat3438 (2018). https://doi.org/10.1126/sciadv.aat3438
- M.-M. Yang, A.N. Iqbal, J.J.P. Peters, A.M. Sanchez, M. Alexe, Strain-gradient mediated local conduction in strained bismuth ferrite films. Nat. Commun. 10, 2791 (2019). https://doi.org/10.1038/s41467-019-10664-5
- R. Zhao, N. Ma, K. Song, Y. Yang, Boosting Photocurrent via heating BiFeO3 materials for enhanced self-powered UV photodetectors. Adv. Funct. Mater. 30, 1906232 (2020). https://doi.org/10.1002/adfm.201906232
- T. Gao, Z. Chen, F. Niu, D. Zhou, Q. Huang, Y. Zhu, L. Qin, X. Sun, Y. Huang, Shape-controlled preparation of bismuth ferrite by hydrothermal method and their visible-light degradation properties. J. Alloys Compd. 648, 564–570 (2015). https://doi.org/10.1016/j.jallcom.2015.07.059
- S. Wang, D. Chen, F. Niu, N. Zhang, L. Qin, Y. Huang, Hydrogenation-induced surface oxygen vacancies in BiFeO3 nanoparticles for enhanced visible light photocatalytic performance. J. Alloys Compd. 688, 399–406 (2016). https://doi.org/10.1016/j.jallcom.2016.07.076
- Y.-H. Hsieh, F. Xue, T. Yang, H.-J. Liu, Y. Zhu et al., Permanent ferroelectric retention of BiFeO3 mesocrystal. Nat. Commun. 7, 13199 (2016). https://doi.org/10.1038/ncomms13199
- P. Sharma, Q. Zhang, D. Sando, C.H. Lei, Y. Liu, J. Li, V. Nagarajan, J. Seidel, Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017). https://doi.org/10.1126/sciadv.1700512
- S. Bharathkumar, M. Sakar, S. Balakumar, Experimental evidence for the carrier transportation enhanced visible light driven photocatalytic process in bismuth ferrite (BiFeO3) one-dimensional fiber nanostructures. J. Phys. Chem. C 120, 18811–18821 (2016). https://doi.org/10.1021/acs.jpcc.6b04344
- Y.-N. Feng, H.-C. Wang, Y.-D. Luo, Y. Shen, Y.-H. Lin, Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres. J. Appl. Phys. 113, 146101 (2013). https://doi.org/10.1063/1.4801796
- M. Sakar, S. Balakumar, P. Saravanan, S. Bharathkumar, Compliments of confinements: substitution and dimension induced magnetic origin and band-bending mediated photocatalytic enhancements in Bi1−xDyxFeO3 particulate and fiber nanostructures. Nanoscale 7, 10667–10679 (2015). https://doi.org/10.1039/C5NR01079A
- T. Li, J. Shen, N. Li, M. Ye, Hydrothermal preparation, characterization and enhanced properties of reduced graphene-BiFeO3 nanocomposite. Mater. Lett. 91, 42–44 (2013). https://doi.org/10.1016/j.matlet.2012.09.045
- B. Xu, J. Iniguez, L. Bellaiche, Designing lead-free antiferroelectrics for energy storage. Nat. Commun. 8, 15682 (2017). https://doi.org/10.1038/ncomms15682
- G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang et al., Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Reaney Energy Environ. Sci. 12, 582–588 (2019). https://doi.org/10.1039/C8EE03287D
- Y. Zhang, H. Lu, L. Xie, X. Yan, T.R. Paudel et al., Anisotropic polarization-induced conductance at a ferroelectric–insulator interface. Nat. Nanotechnol. 13, 1132–1136 (2018). https://doi.org/10.1038/s41565-018-0259-z
- Q. Li, Y. Cao, P. Yu, R.K. Vasudevan, N. Laanait et al., Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition. Nat. Commun. 6, 8985 (2015). https://doi.org/10.1038/ncomms9985
- J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando et al., Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett. 12, 1141–1145 (2012). https://doi.org/10.1021/nl202537y
- Q. Zhang, L. You, X. Shen, C. Wan, Z. Yuan et al., Polarization-mediated thermal stability of metal/oxide heterointerface. Adv. Mater. 27, 6934–6938 (2015). https://doi.org/10.1002/adma.201502754
- M. Alexe, D. Hesse, Tip-enhanced photovoltaic effects in bismuth ferrite. Nat. Commun. 2, 256 (2011). https://doi.org/10.1038/ncomms1261
- Y.-D. Liou, Y.-Y. Chiu, R.T. Hart, C.-Y. Kuo, Y.-L. Huang et al., Deterministic optical control of room temperature multiferroicity in BiFeO3 thin films. Nat. Mater. 18, 580–587 (2019). https://doi.org/10.1038/s41563-019-0348-x
References
G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009). https://doi.org/10.1002/adma.200802849
S.-W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007). https://doi.org/10.1038/nmat1804
N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004). https://doi.org/10.1038/nature02572
R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007). https://doi.org/10.1038/nmat1805
J.F. Scott, Multiferroic memories. Nat. Mater. 6, 256–257 (2007). https://doi.org/10.1038/nmat1868
S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012). https://doi.org/10.1126/science.1214143
J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003). https://doi.org/10.1126/science.1080615
N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005). https://doi.org/10.1126/science.1113357
J.C. Yang, Q. He, P. Yu, Y.H. Chu, BiFeO3 thin films: a playground for exploring electric-field control of multifunctionalities. Ann. Rev. Mater. Res. 45, 249–275 (2015). https://doi.org/10.1146/annurev-matsci-070214-020837
M. Valant, A.-K. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater. 19, 5431–5436 (2007). https://doi.org/10.1021/cm071730
J. Ma, J. Hu, Z. Li, C.-W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011). https://doi.org/10.1002/adma.201003636
A.M. Ionescu, Ferroelectric devices show potential. Nat. Nanotechnol. 7, 83–85 (2012). https://doi.org/10.1038/nnano.2012.10
M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song et al., High-performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27, 6976–6982 (2015). https://doi.org/10.1002/adma.201502424
J.F. Scott, F.D. Morrison, M. Miyake, P. Zubko, Nano-ferroelectric materials and devices. Ferroelectrics 336, 237–245 (2006). https://doi.org/10.1080/00150190600697699
N.A. Spaldin, Fundamental size limits in ferroelectricity. Science 304, 1606–1607 (2004). https://doi.org/10.1126/science.1099822
J. Lv, J. Wu, W. Wu, Enhanced electrical properties of quenched (1 − x)Bi1−ySmyFeO3–xBiScO3 lead-free ceramics. J. Phys. Chem. C 119, 21105–21115 (2015). https://doi.org/10.1021/acs.jpcc.5b07249
D. Ricinschi, K.-Y. Yun, M. Okuyama, A mechanism for the 150 µC cm−2 polarization of BiFeO3 films based on first-principles calculations and new structural data. J. Phys.: Condens. Matter. 18, 97–105 (2006). https://doi.org/10.1088/0953-8984/18/6/L03
R. Guo, L. You, Y. Zhou, Z.S. Lim, X. Zou, L. Chen, R. Ramesh, J.L. Wang, Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990 (2013). https://doi.org/10.1038/ncomms2990
J. Qi, N. Ma, Y. Yang, Photovoltaic–pyroelectric coupled effect based nanogenerators for self-powered photodetector system. Adv. Mater. Interfaces 5, 1701189 (2018). https://doi.org/10.1002/admi.201701189
J. Qi, N. Ma, X.C. Ma, R. Adelung, Y. Yang, Enhanced photocurrent in BiFeO3 materials by coupling temperature and thermo-phototronic effects for self-powered ultraviolet photodetector system. ACS Appl. Mater. Interfaces 10, 13712–13719 (2018). https://doi.org/10.1021/acsami.8b02543
R. Zhao, N. Ma, J. Qi, Y.K. Mishra, R. Adelung, Y. Yang, Optically controlled abnormal photovoltaic current modulation with temperature in BiFeO3. Adv. Electron. Mater. 5, 1800791 (2019). https://doi.org/10.1002/aelm.201800791
T. Zheng, J. Wu, Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics. J. Mater. Chem. C 3, 11326–11334 (2015). https://doi.org/10.1039/C5TC02203G
C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953–15962 (2012). https://doi.org/10.1039/c2cp43082g
L. Chen, W. Ren, W.M. Zhu, Z.G. Ye, P. Shi, X.F. Chen, X.Q. Wu, X. Yao, Improved dielectric and ferroelectric properties in Ti-doped BiFeO3–PbTiO3 thin films prepared by pulsed laser deposition. Thin Solid Films 518, 1637–1640 (2010). https://doi.org/10.1016/j.tsf.2009.11.072
M.A. Khan, T.P. Comyn, A.J. Bell, Large remanent polarization in ferroelectric BiFeO3–PbTiO3BiFeO3–PbTiO3 thin films on Pt∕SiPt∕Si substrates. Appl. Phys. Lett. 91, 032901 (2007). https://doi.org/10.1063/1.2759256
F. Yan, T.J. Zhu, M.O. Lai, L. Lu, Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films. Scr. Mater. 63, 780–783 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.013
J. Bertinshaw, R. Maran, S.J. Callori, V. Ramesh, J. Cheung et al., Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films. Nat. Commun. 7, 12664 (2016). https://doi.org/10.1038/ncomms12664
Z. Chen, Z. Chen, C.-Y. Kuo, Y. Tang, L.R. Dedon et al., Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nat. Commun. 9, 3764 (2018). https://doi.org/10.1038/s41467-018-06190-5
C.Y. Kuo, Z. Hu, J.C. Yang, S.C. Liao, Y.L. Huang et al., Single-domain multiferroic BiFeO3 films. Nat. Commun. 7, 12712 (2016). https://doi.org/10.1038/ncomms12712
H. Wang, Z.R. Liu, H.Y. Yoong, T.R. Paudel, J.X. Xiao et al., Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit. Nat. Commun. 9, 3319 (2018). https://doi.org/10.1038/s41467-018-05662-y
F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 19, 2889–2892 (2007). https://doi.org/10.1002/adma.200602377
F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Preparation and photoabsorption characterization of BiFeO3 nanowires. Appl. Phys. Lett. 89, 102506 (2006). https://doi.org/10.1063/1.2345825
S. Li, R. Nechache, I.A.V. Davalos, G. Goupil, L. Nikolova et al., Ultrafast microwave hydrothermal synthesis of BiFeO3 nanoplates. J. Am. Ceram. Soc. 96, 3155–3162 (2013). https://doi.org/10.1111/jace.12473
Z. Li, Y. Wang, G. Tian, P. Li, L. Zhao et al., High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci. Adv. 3, e1700919 (2017). https://doi.org/10.1126/sciadv.1700919
J. Ma, J. Ma, Q. Zhang, R. Peng, J. Wang et al., Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat. Nanotechnol. 13, 947–952 (2018). https://doi.org/10.1038/s41565-018-0204-1
F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer et al., Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation. iScience 4, 236–246 (2018). https://doi.org/10.1016/j.isci.2018.06.003
G.G. Philip, A. Senthamizhan, T.S. Natarajan, G. Chandrasekaran, H.A. Therese, The effect of gadolinium doping on the structural, magnetic and photoluminescence properties of electrospun bismuth ferrite nanofibers. Ceram. Int. 41, 13361–13365 (2015). https://doi.org/10.1016/j.ceramint.2015.07.122
J.H. Jeon, H.Y. Joo, Y.M. Kim, D.H. Lee, J.S. Kim, Y.S. Kim, T. Choi, B.H. Park, Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor. Sci. Rep. 6, 23299 (2016). https://doi.org/10.1038/srep23299
X.Y. Zhang, C.W. Lai, X. Zhao, D.Y. Wang, J.Y. Dai, Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl. Phys. Lett. 87, 143102 (2005). https://doi.org/10.1063/1.2076437
S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, C.W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114, 2903–2908 (2010). https://doi.org/10.1021/jp910401u
J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073–1074 (1970). https://doi.org/10.1016/0038-1098(70)90262-0
J.M. Moreau, C. Michel, R. Gerson, W.J. James, Ferroelectric BiFeO3 X-ray and neutron diffraction study. J. Phys. Chem. Solids 32, 1315–1320 (1971). https://doi.org/10.1016/S0022-3697(71)80189-0
P. Royen, K. Swars, Das System Wismutoxyd-eisenoxyd im bereich von 0 bis 55 Mol% eisenoxyd. Angew. Chem. Int. Ed. 69, 779 (1957). https://doi.org/10.1002/ange.19570692407
S.V. Kiselev, G.S. Zhdanov, R.P. Ozerov, Detection of magnetic arrangement in the ferroelectric by means of neutron diffraction study. Dokl. Akad. Nauk SSSR 145, 1255–1258 (1962)
I. Sosnowska, T. Peterlinneumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15, 4835–4846 (1982). https://doi.org/10.1088/0022-3719/15/23/020
D. Kan, L. Palova, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20, 1108–1115 (2010). https://doi.org/10.1002/adfm.200902017
C.-J. Cheng, D. Kan, V. Anbusathaiah, I. Takeuchi, V. Nagarajan, Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010). https://doi.org/10.1063/1.3520642
B. Xu, D. Wang, J. Iniguez, L. Bellaiche, Finite-temperature properties of rare-earth-substituted BiFeO3 multiferroic solid solutions. Adv. Funct. Mater. 25, 552–558 (2015). https://doi.org/10.1002/adfm.201403811
T.D. Rao, T. Karthik, S. Asthana, Investigation of structural, magnetic and optical properties of rare earth substituted bismuth ferrite. J. Rare Earth 31, 370–375 (2013). https://doi.org/10.1016/S1002-0721(12)60288-9
H. Singh, K.L. Yadav, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 41, 9285–9295 (2015). https://doi.org/10.1016/j.ceramint.2015.03.212
X. Xue, G. Tan, H. Ren, A. Xia, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 39, 6223–6228 (2013). https://doi.org/10.1016/j.ceramint.2015.03.212
C.R. Foschini, M.A. Ramirez, S.R. Simoes, J.A. Varela, E. Longo, A.Z. Simoes, Piezoresponse force microscopy characterization of rare-earth doped BiFeO3 thin films grown by the soft chemical method. Ceram. Int. 39, 2185–2195 (2013). https://doi.org/10.1016/j.ceramint.2012.08.083
S. Fujino, M. Murakami, V. Anbusathaiah, S.H. Lim, V. Nagarajan et al., Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett. 92, 202904 (2008). https://doi.org/10.1063/1.2931706
C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu et al., Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009). https://doi.org/10.1038/nmat2432
M. Vagadia, A. Ravalia, P.S. Solanki, R.J. Choudhary, D.M. Phase, D.G. Kuberkar, Improvement in resistive switching of Ba-doped BiFeO3 films. Appl. Phys. Lett. 103, 033504 (2013). https://doi.org/10.1063/1.4813551
C. Ostos, O. Raymond, N. Suarez-Almodovar, D. Bueno-Baques, L. Mestres, J.M. Siqueiros, Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering. J. Appl. Phys. 110, 024114 (2011). https://doi.org/10.1063/1.3610428
A.H. Khan, S. Atiq, M.S. Anwar, S. Naseem, S.K. Abbas, Optimization of magnetodielectric coupling in Mn substituted BiFeO3 for potential memory devices. J. Mater. Sci. 29, 11812–11823 (2018). https://doi.org/10.1007/s10854-018-9281-z
J.-Z. Huang, Y. Wang, Y. Lin, M. Li, C.W. Nan, Effect of Mn doping on electric and magnetic properties of BiFeO3 thin films by chemical solution deposition. J. Appl. Phys. 106, 063911 (2009). https://doi.org/10.1063/1.3225559
J.M. Luo, S.P. Lin, Y. Zheng, B. Wang, Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition. Appl. Phys. Lett. 101, 062902 (2012). https://doi.org/10.1063/1.4742897
B. Dhanalakshmi, K. Pratap, B.P. Rao, P.S.V.S. Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics. J. Alloy. Compd. 676, 193–201 (2016). https://doi.org/10.1016/j.jallcom.2016.03.208
T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Improved leakage and ferroelectric properties of Mn and Ti codoped BiFeO3 thin films. Appl. Phys. Lett. 94, 112904 (2009). https://doi.org/10.1063/1.3098408
M. Kumar, K.L. Yadav, Strain-relaxed structure in (001)/(100)-oriented epitaxial PbTiO3 films grown on (100) SrTiO3 substrates by metal organic chemical vapor deposition. Appl. Phys. Lett. 91, 112904 (2007). https://doi.org/10.1063/1.2779239
Z. Lu, X. Yang, C. Jin, P. Li, J.-G. Wan, J.-M. Liu, Nonvolatile electric-optical memory controlled by conductive filaments in Ti-doped BiFeO3. Adv. Electron. Mater. 4, 1700551 (2018). https://doi.org/10.1002/aelm.201700551
H. Matsuo, Y. Noguchi, M. Miyayama, Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications. Nat. Commun. 8, 207 (2017). https://doi.org/10.1038/s41467-017-00245-9
J. Zhuang, H. Wu, W. Ren, Z.-G. Ye, Local polar structure and multiferroic properties of (1 − x)Bi0.9Dy0.1FeO3 − xPbTiO3 solid solution. J. Appl. Phys. 116, 066809 (2014). https://doi.org/10.1063/1.4891345
X. Zhang, Y. Sui, X. Wang, R. Xie, Structure–property relationship of GdCrO3-modified BiFeO3 ceramics. J. Alloy. Compd. 610, 382–387 (2014). https://doi.org/10.1016/j.jallcom.2014.05.050
M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855–862 (2000). https://doi.org/10.1063/1.371953
M. Azuma, S. Niitaka, N. Hayashi, K. Oka, M. Takano, H. Funakubo, Y. Shimakawa, Rhombohedral–tetragonal phase boundary with high Curie temperature in (1 − x) BiCoO3–xBiFeO3 solid solution. Jpn. J. Appl. Phys. 47, 7579–7581 (2008). https://doi.org/10.1143/JJAP.47.7579
W. Saenrang, B.A. Davidson, F. Maccherozzi, J.P. Podkaminer, J. Irwin et al., Deterministic and robust room-temperature exchange coupling in monodomain multiferroic BiFeO3 heterostructures. Nat. Commun. 8, 1583 (2017). https://doi.org/10.1038/s41467-017-01581-6
R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He et al., A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977–980 (2009). https://doi.org/10.1126/science.1177046
D. Sando, Y.R. Yang, E. Bousquet, C. Carretero, V. Garcia et al., Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat. Commun. 7, 10718 (2016). https://doi.org/10.1038/ncomms10718
D. Sando, A. Barthelemy, M. Bibes, BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys.: Condens. Mater. 26, 47 (2014). https://doi.org/10.1088/0953-8984/26/47/473201
Y. Yang, C.M. Schlepuetz, C. Adamo, D.G. Schlom, R. Clarke, Untilting BiFeO3: the influence of substrate boundary conditions in ultra-thin BiFeO3 on SrTiO3. APL Mater. 1, 052102 (2013). https://doi.org/10.1063/1.4827596
A.R. Damodaran, S. Lee, J. Karthik, S. MacLaren, L.W. Martin, Emperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films. Phys. Rev. B 85, 024113 (2012). https://doi.org/10.1103/PhysRevB.85.024113
T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97, 1993–2011 (2014). https://doi.org/10.1111/jace.12982
S.K. Singh, H. Ishiwara, K. Maruyama, Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett. 88, 262908 (2006). https://doi.org/10.1063/1.2218819
S.K. Singh, K. Sato, K. Maruyama, H. Ishiwara, Cr-doping effects to electrical properties of BiFeO3 thin films formed by chemical solution deposition. Jpn. J. Appl. Phys. Part 2 45, 37–41 (2006). https://doi.org/10.1143/JJAP.45.L1087
D. Wang, Z. Fan, W. Li, D. Zhou, A. Feteira et al., High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3–BaTiO3 ceramics. ACS Appl. Energy Mater. 1, 4403–4412 (2018). https://doi.org/10.1021/acsaem.8b01099
Q. Zhou, C. Zhou, H. Yang, C. Yuan, G. Chen, L. Cao, Q. Fan, Piezoelectric and ferroelectric properties of Ga modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature. J. Mater. Sci. 25, 196–201 (2014). https://doi.org/10.1007/s10854-013-1573-8
C. Zhou, Z. Cen, H. Yang, Q. Zhou, W. Li, C. Yuan, H. Wang, Structure, electrical properties of Bi(Fe, Co)O3–BaTiO3 piezoelectric ceramics with improved Curie temperature. Phys. B Condens. Matter. 410, 13–16 (2013). https://doi.org/10.1016/j.physb.2012.11.003
D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, I.M. Reaney, Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J. Eur. Ceram. Soc. 37, 1857–1860 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.10.027
L.F. Cotica, F.R. Estrada, V.F. Freitas, G.S. Dias, I.A. Santos, J.A. Eiras, D. Garcia, Ferroic states in La doped BiFeO3–PbTiO3 multiferroic compounds. J. Appl. Phys. 111, 114105 (2012). https://doi.org/10.1063/1.4729288
Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Enhanced polarization and magnetization in multiferroic (1 − x)BiFeO3−xSrTiO3 solid solution. Solid State Sci. 13, 2196–2200 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.10.008
Y. Ma, X.M. Chen, Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics. J. Appl. Phys. 105, 054107 (2009). https://doi.org/10.1063/1.3081648
Q. Zheng, L. Luo, K.H. Lam, N. Jiang, Y. Guo, D. Lin, Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3–BaTiO3 lead-free ceramics. J. Appl. Phys. 116, 184101 (2014). https://doi.org/10.1063/1.4901198
W.M. Zhu, H.Y. Guo, Z.G. Ye, Structural and magnetic characterization of multiferroic (BiFeO3)1−x(PbTiO3)x solid solutions. Phys. Rev. B 78, 014401 (2008). https://doi.org/10.1103/PhysRevB.78.014401
C. Daumont, W. Ren, I.C. Infante, S. Lisenkov, J. Allibe et al., Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films. J. Phys: Condens. Matter. 24, 16 (2012). https://doi.org/10.1088/0953-8984/24/16/162202
J.C. Yang, Q. He, S.J. Suresha, C.Y. Kuo, C.Y. Peng et al., Orthorhombic BiFeO3. Phys. Rev. Lett. 109, 247606 (2012). https://doi.org/10.1103/PhysRevLett.109.247606
H.W. Jang, S.H. Baek, D. Ortiz, C.M. Folkman, R.R. Das et al., Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys. Rev. Lett. 101, 107602 (2008). https://doi.org/10.1103/PhysRevLett.101.107602
H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet et al., Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009). https://doi.org/10.1103/PhysRevLett.102.217603
J.X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi et al., Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys. Rev. Lett. 107, 147602 (2011). https://doi.org/10.1103/PhysRevLett.107.147602
J.C. Wojdeł, J. Íñiguez, Ab initio indications for giant magnetoelectric effects driven by structural softness. Phys. Rev. Lett. 105, 037208 (2010). https://doi.org/10.1103/PhysRevLett.105.037208
C. Beekman, W. Siemons, T.Z. Ward, M. Chi, J. Howe et al., Phase transitions, phase coexistence, and piezoelectric switching behavior in highly strained BiFeO3 films. Adv. Mater. 25, 5561–5567 (2013). https://doi.org/10.1002/adma.201302066
H.-J. Liu, C.-W. Liang, W.-I. Liang, H.-J. Chen, J.-C. Yang et al., Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and X-ray diffraction. Phys. Rev. B 85, 014104 (2012). https://doi.org/10.1103/PhysRevB.85.014104
J.T. Heron, D.G. Schlom, R. Ramesh, Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 1, 021303 (2014). https://doi.org/10.1063/1.4870957
F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M.P. Cruz, P.L. Yang, D. Hao, R. Ramesh, Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586–1590 (2007). https://doi.org/10.1021/nl070465o
S. Goswami, D. Bhattacharya, P. Choudhury, Particle size dependence of magnetization and noncentrosymmetry in nanoscale BiFeO3. J. Appl. Phys. 109, 07D737 (2011). https://doi.org/10.1063/1.3567038
D. Sando, A. Agbelele, D. Rahmedov, J. Liu, P. Rovillain et al., Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013). https://doi.org/10.1038/nmat3629
J.Y. Chauleau, E. Haltz, C. Carretero, S. Fusil, M. Viret, Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nat. Mater. 16, 803–807 (2017). https://doi.org/10.1038/nmat4899
H. Deng, H. Deng, P. Yang, J. Chu, Effect of Cr doping on the structure, optical and magnetic properties of multiferroic BiFeO3 thin films. J. Mater. Sci. 23, 1215–1218 (2012). https://doi.org/10.1007/s10854-011-0575-7
Y.J. Yoo, J.S. Hwang, Y.P. Lee, J.S. Park, J.H. Kang, J. Kim, B.W. Lee, M.S. Seo, High ferromagnetic transition temperature in multiferroic BiFe0.95Ni0.05O3 compound. J. Appl. Phys. 114, 163902 (2013). https://doi.org/10.1063/1.4826623
J. Chen, Y. Wang, Y. Deng, Competition between compressive strain and Mn doping on tuning the structure and magnetic behavior of BiFeO3 thin films. Funct. Mater. Lett. 8, 1550066 (2015). https://doi.org/10.1142/S1793604715500666
T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry et al., Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006). https://doi.org/10.1038/nmat1731
J. Zhang, X. Ke, G. Gou, J. Seidel, B. Xiang et al., A nanoscale shape memory oxide. Nat. Commun. 4, 2768 (2013). https://doi.org/10.1038/ncomms3768
J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He et al., Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011). https://doi.org/10.1103/PhysRevLett.107.217202
Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han et al., Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008). https://doi.org/10.1038/nmat2184
S.H. Baek, H.W. Jang, C.M. Folkman, Y.L. Li, B. Winchester et al., Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010). https://doi.org/10.1038/nmat2703
S. Manipatruni, D.E. Nikonov, C.-C. Lin, B. Prasad, Y.-L. Huang et al., Voltage control of unidirectional anisotropy in ferromagnet-multiferroic system. Sci. Adv. 4, eaat4229 (2018). https://doi.org/10.1126/sciadv.aat4229
P. Yu, J.S. Lee, S. Okamoto, M.D. Rossell, M. Huijben et al., Interface ferromagnetism and orbital reconstruction in BiFeO3–La0.7Sr0.3MnO3 heterostructures. Phys. Rev. Lett. 105, 027201 (2010). https://doi.org/10.1103/PhysRevLett.105.027201
S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, R.C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010). https://doi.org/10.1038/nmat2803
T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.-W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009). https://doi.org/10.1126/science.1168636
S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.H. Yang et al., Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010). https://doi.org/10.1038/nnano.2009.451
L. You, F. Zheng, L. Fang, Y. Zhou, L.Z. Tan et al., Enhancing ferroelectric photovoltaic effect by polar order engineering. Sci. Adv. 4, eaat3438 (2018). https://doi.org/10.1126/sciadv.aat3438
M.-M. Yang, A.N. Iqbal, J.J.P. Peters, A.M. Sanchez, M. Alexe, Strain-gradient mediated local conduction in strained bismuth ferrite films. Nat. Commun. 10, 2791 (2019). https://doi.org/10.1038/s41467-019-10664-5
R. Zhao, N. Ma, K. Song, Y. Yang, Boosting Photocurrent via heating BiFeO3 materials for enhanced self-powered UV photodetectors. Adv. Funct. Mater. 30, 1906232 (2020). https://doi.org/10.1002/adfm.201906232
T. Gao, Z. Chen, F. Niu, D. Zhou, Q. Huang, Y. Zhu, L. Qin, X. Sun, Y. Huang, Shape-controlled preparation of bismuth ferrite by hydrothermal method and their visible-light degradation properties. J. Alloys Compd. 648, 564–570 (2015). https://doi.org/10.1016/j.jallcom.2015.07.059
S. Wang, D. Chen, F. Niu, N. Zhang, L. Qin, Y. Huang, Hydrogenation-induced surface oxygen vacancies in BiFeO3 nanoparticles for enhanced visible light photocatalytic performance. J. Alloys Compd. 688, 399–406 (2016). https://doi.org/10.1016/j.jallcom.2016.07.076
Y.-H. Hsieh, F. Xue, T. Yang, H.-J. Liu, Y. Zhu et al., Permanent ferroelectric retention of BiFeO3 mesocrystal. Nat. Commun. 7, 13199 (2016). https://doi.org/10.1038/ncomms13199
P. Sharma, Q. Zhang, D. Sando, C.H. Lei, Y. Liu, J. Li, V. Nagarajan, J. Seidel, Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017). https://doi.org/10.1126/sciadv.1700512
S. Bharathkumar, M. Sakar, S. Balakumar, Experimental evidence for the carrier transportation enhanced visible light driven photocatalytic process in bismuth ferrite (BiFeO3) one-dimensional fiber nanostructures. J. Phys. Chem. C 120, 18811–18821 (2016). https://doi.org/10.1021/acs.jpcc.6b04344
Y.-N. Feng, H.-C. Wang, Y.-D. Luo, Y. Shen, Y.-H. Lin, Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres. J. Appl. Phys. 113, 146101 (2013). https://doi.org/10.1063/1.4801796
M. Sakar, S. Balakumar, P. Saravanan, S. Bharathkumar, Compliments of confinements: substitution and dimension induced magnetic origin and band-bending mediated photocatalytic enhancements in Bi1−xDyxFeO3 particulate and fiber nanostructures. Nanoscale 7, 10667–10679 (2015). https://doi.org/10.1039/C5NR01079A
T. Li, J. Shen, N. Li, M. Ye, Hydrothermal preparation, characterization and enhanced properties of reduced graphene-BiFeO3 nanocomposite. Mater. Lett. 91, 42–44 (2013). https://doi.org/10.1016/j.matlet.2012.09.045
B. Xu, J. Iniguez, L. Bellaiche, Designing lead-free antiferroelectrics for energy storage. Nat. Commun. 8, 15682 (2017). https://doi.org/10.1038/ncomms15682
G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang et al., Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Reaney Energy Environ. Sci. 12, 582–588 (2019). https://doi.org/10.1039/C8EE03287D
Y. Zhang, H. Lu, L. Xie, X. Yan, T.R. Paudel et al., Anisotropic polarization-induced conductance at a ferroelectric–insulator interface. Nat. Nanotechnol. 13, 1132–1136 (2018). https://doi.org/10.1038/s41565-018-0259-z
Q. Li, Y. Cao, P. Yu, R.K. Vasudevan, N. Laanait et al., Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition. Nat. Commun. 6, 8985 (2015). https://doi.org/10.1038/ncomms9985
J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando et al., Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett. 12, 1141–1145 (2012). https://doi.org/10.1021/nl202537y
Q. Zhang, L. You, X. Shen, C. Wan, Z. Yuan et al., Polarization-mediated thermal stability of metal/oxide heterointerface. Adv. Mater. 27, 6934–6938 (2015). https://doi.org/10.1002/adma.201502754
M. Alexe, D. Hesse, Tip-enhanced photovoltaic effects in bismuth ferrite. Nat. Commun. 2, 256 (2011). https://doi.org/10.1038/ncomms1261
Y.-D. Liou, Y.-Y. Chiu, R.T. Hart, C.-Y. Kuo, Y.-L. Huang et al., Deterministic optical control of room temperature multiferroicity in BiFeO3 thin films. Nat. Mater. 18, 580–587 (2019). https://doi.org/10.1038/s41563-019-0348-x