Coupling Enhancement of a Flexible BiFeO3 Film-Based Nanogenerator for Simultaneously Scavenging Light and Vibration Energies
Corresponding Author: Ya Yang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 198
Abstract
Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light, mechanical and thermal energy and achieve a stable direct current output. Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage, while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics. Here, we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO3 ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies. This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3% energy enhancement to achieve a multi-dimensional "1 + 1 > 2" coupling enhancement in terms of current, charge and energy. This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.
Highlights:
1 Development of new form of coupled nanogenerators to enhance performance.
2 Energy in the form of light and vibration is successfully harvested, by converting an alternating current signal into a direct current signal.
3 New approach to creating coupled nanogenerators, where multiple harvesting mechanisms by exploiting ferroelectric materials are achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
- T. Tsoutsos, N. Frantzeskaki, V. Gekas, Environmental impacts from the solar energy technologies. Energy Policy 33(3), 289–296 (2005). https://doi.org/10.1016/s0301-4215(03)00241-6
- X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
- Z. Ren, X. Liang, D. Liu, X. Li, J. Ping et al., Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 11(31), 2101116 (2021). https://doi.org/10.1002/aenm.202101116
- Y. Yang, J.H. Jung, B.K. Yun, F. Zhang, K.C. Pradel et al., Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv. Mater. 24(39), 5357–5362 (2012). https://doi.org/10.1002/adma.201201414
- M. Zhang, W. Zhu, T. Zhang, Y. Su, Y. Yang, Lever-inspired triboelectric nanogenerator with ultra-high output for pulse monitoring. Nano Energy 97, 107159 (2022). https://doi.org/10.1016/j.nanoen.2022.107159
- A. Perez-Tomas, E. Chikoidze, Y. Dumont, M.R. Jennings, S.O. Russell et al., Giant bulk photovoltaic effect in solar cell architectures with ultra-wide bandgap Ga2O3 transparent conducting electrodes. Mater. Today Energy 14, 100350 (2019). https://doi.org/10.1016/j.mtener.2019.100350
- Y. Yuan, Z. Xiao, B. Yang, J. Huang, Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2(17), 6027–6041 (2014). https://doi.org/10.1039/c3ta14188h
- H. Huang, Solar energy ferroelectric photovoltaics. Nat. Photon. 4(3), 134–135 (2010). https://doi.org/10.1038/nphoton.2010.15
- H. Geng, H. Xiao, G. Lin, H. Zhong, H. Cheng et al., Visible or near-infrared light self-powered photodetectors based on transparent ferroelectric ceramics. ACS Appl. Mater. Interfaces 12(30), 33950–33959 (2020). https://doi.org/10.1021/acsami.0c09991
- S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.H. Yang et al., Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5(2), 143–147 (2010). https://doi.org/10.1038/nnano.2009.451
- N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang et al., Structure, performance, and application of BiFeO3 nanomaterials. Nano-Micro Lett. 12, 81 (2020). https://doi.org/10.1007/s40820-020-00420-6
- A. Bhatnagar, A.R. Chaudhuri, Y.H. Kim, D. Hesse, M. Alexe, Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013). https://doi.org/10.1038/ncomms3835
- Y. Liu, Y. Wang, J. Ma, S. Li, H. Pan et al., Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. Prog. Mater. Sci. 127, 100943 (2022). https://doi.org/10.1016/j.pmatsci.2022.100943
- D. Lee, A. Yoon, S.Y. Jang, J.G. Yoon, J.S. Chung et al., Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107(5), 057602 (2011). https://doi.org/10.1103/PhysRevLett.107.057602
- M.M. Yang, D.J. Kim, M. Alexe, Flexo-photovoltaic effect. Science 360(6391), 904–907 (2018). https://doi.org/10.1126/science.aan3256
- K. Chu, B.K. Jang, J.H. Sung, Y.A. Shin, E.S. Lee et al., Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat. Nanotechnol. 10(11), 972-U196 (2015). https://doi.org/10.1038/nnano.2015.191
- M.S. Majdoub, P. Sharma, T. Cagin, Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77(12), 125424 (2008). https://doi.org/10.1103/PhysRevB.77.125424
- H. Lu, C.W. Bark, D.E. Ojos, J. Alcala, C.B. Eom et al., Mechanical writing of ferroelectric polarization. Science 336(6077), 59–61 (2012). https://doi.org/10.1126/science.1218693
- L. Shu, S. Ke, L. Fei, W. Huang, Z. Wang et al., Photoflexoelectric effect in halide perovskites. Nat. Mater. 19(6), 605–609 (2020). https://doi.org/10.1038/s41563-020-0659-y
- Q. Deng, S. Shen, The flexodynamic effect on nanoscale flexoelectric energy harvesting: a computational approach. Smart Mater. Struct. 27(10), 105001 (2018). https://doi.org/10.1088/1361-665X/aadab3
- N. Ma, K. Zhang, Y. Yang, Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 29(46), 1703694 (2017). https://doi.org/10.1002/adma.201703694
- X. Zhao, K. Song, H. Huang, W. Han, Y. Yang, Ferroelectric materials for solar energy scavenging and photodetectors. Adv. Opt. Mater. 10(2), 2101741 (2022). https://doi.org/10.1002/adom.202101741
- H. Li, C.R. Bowen, Y. Yang, Scavenging energy sources using ferroelectric materials. Adv. Funct. Mater. 31(25), 2100905 (2021). https://doi.org/10.1002/adfm.202100905
- K. Song, R. Zhao, Z.L. Wang, Y. Yang, Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31(36), 1902831 (2019). https://doi.org/10.1002/adma.201902831
- X. Han, Y. Ji, Y. Yang, Ferroelectric photovoltaic materials and devices. Adv. Funct. Mater. 32(14), 2109625 (2022). https://doi.org/10.1002/adfm.202109625
- Y. Ji, K. Zhang, Z.L. Wang, Y. Yang, Piezo-pyro-photoelectric effects induced coupling enhancement of charge quantity in BaTiO3 materials for simultaneously scavenging light and vibration energies. Energy Environ. Sci. 12(4), 1231–1240 (2019). https://doi.org/10.1039/c9ee00006b
- X. Zhao, C. Li, Y. Wang, W. Han, Y. Yang, Hybridized nanogenerators for effectively scavenging mechanical and solar energies. iScience 24(5), 102415 (2021). https://doi.org/10.1016/j.isci.2021.102415
- K. Zhao, B. Ouyang, C.R. Bowen, Z.L. Wang, Y. Yang, One-structure-based multi-effects coupled nanogenerators for flexible and self-powered multi-functional coupled sensor systems. Nano Energy 71, 104632 (2020). https://doi.org/10.1016/j.nanoen.2020.104632
- R. Guo, L. You, W. Lin, A. Abdelsamie, X. Shu et al., Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect. Nat. Commun. 11(1), 2571 (2020). https://doi.org/10.1038/s41467-020-16465-5
- Y. Guo, B. Guo, W. Dong, H. Li, H. Liu, Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BifFeO3 based thin films. Nanotechnology 24(27), 275201 (2013). https://doi.org/10.1088/0957-4484/24/27/275201
- L. Wang, S. Liu, X. Feng, C. Zhang, L. Zhu et al., Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 15(8), 661–667 (2020). https://doi.org/10.1038/s41565-020-0700-y
- A. Abdollahi, F. Vasquez-Sancho, G. Catalan, Piezoelectric mimicry of flexoelectricity. Phys. Rev. Lett. 121(20), 205502 (2018). https://doi.org/10.1103/PhysRevLett.121.205502
- D. Kothari, V.R. Reddy, V.G. Sathe, A. Gupta, A. Banerjee et al., Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 320(3–4), 548–552 (2008). https://doi.org/10.1016/j.jmmm.2007.07.016
- B. Ouyang, Y. Wang, R. Zhang, H. Olin, Y. Yang, Dual-polarity output response-based photoelectric devices. Cell Rep. Phys. Sci. 2(5), 100418 (2021). https://doi.org/10.1016/j.xcrp.2021.100418
- T.H. Yang, Y.W. Harn, K.C. Chiu, C.L. Fan, J.M. Wu, Promising electron field emitters composed of conducting perovskite LaNiO3 shells on zno nanorod arrays. J. Mater. Chem. 22(33), 17071–17078 (2012). https://doi.org/10.1039/c2jm32483k
- Q.L. Thi, V.C. Nguyen, Y. Bitla, J.W. Chen, D.T. Hien et al., Self-assembled BiFeO3-epsilon-Fe2O3 vertical heteroepitaxy for visible light photoelectrochemistry. Adv. Energy Mater. 6(18), 1600686 (2016). https://doi.org/10.1002/aenm.201600686
- R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang et al., Bandgap tuning of multiferroic oxide solar cells. Nat. Photon. 9(1), 61–67 (2015). https://doi.org/10.1038/nphoton.2014.255
References
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
T. Tsoutsos, N. Frantzeskaki, V. Gekas, Environmental impacts from the solar energy technologies. Energy Policy 33(3), 289–296 (2005). https://doi.org/10.1016/s0301-4215(03)00241-6
X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
Z. Ren, X. Liang, D. Liu, X. Li, J. Ping et al., Water-wave driven route avoidance warning system for wireless ocean navigation. Adv. Energy Mater. 11(31), 2101116 (2021). https://doi.org/10.1002/aenm.202101116
Y. Yang, J.H. Jung, B.K. Yun, F. Zhang, K.C. Pradel et al., Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv. Mater. 24(39), 5357–5362 (2012). https://doi.org/10.1002/adma.201201414
M. Zhang, W. Zhu, T. Zhang, Y. Su, Y. Yang, Lever-inspired triboelectric nanogenerator with ultra-high output for pulse monitoring. Nano Energy 97, 107159 (2022). https://doi.org/10.1016/j.nanoen.2022.107159
A. Perez-Tomas, E. Chikoidze, Y. Dumont, M.R. Jennings, S.O. Russell et al., Giant bulk photovoltaic effect in solar cell architectures with ultra-wide bandgap Ga2O3 transparent conducting electrodes. Mater. Today Energy 14, 100350 (2019). https://doi.org/10.1016/j.mtener.2019.100350
Y. Yuan, Z. Xiao, B. Yang, J. Huang, Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2(17), 6027–6041 (2014). https://doi.org/10.1039/c3ta14188h
H. Huang, Solar energy ferroelectric photovoltaics. Nat. Photon. 4(3), 134–135 (2010). https://doi.org/10.1038/nphoton.2010.15
H. Geng, H. Xiao, G. Lin, H. Zhong, H. Cheng et al., Visible or near-infrared light self-powered photodetectors based on transparent ferroelectric ceramics. ACS Appl. Mater. Interfaces 12(30), 33950–33959 (2020). https://doi.org/10.1021/acsami.0c09991
S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.H. Yang et al., Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5(2), 143–147 (2010). https://doi.org/10.1038/nnano.2009.451
N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang et al., Structure, performance, and application of BiFeO3 nanomaterials. Nano-Micro Lett. 12, 81 (2020). https://doi.org/10.1007/s40820-020-00420-6
A. Bhatnagar, A.R. Chaudhuri, Y.H. Kim, D. Hesse, M. Alexe, Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013). https://doi.org/10.1038/ncomms3835
Y. Liu, Y. Wang, J. Ma, S. Li, H. Pan et al., Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. Prog. Mater. Sci. 127, 100943 (2022). https://doi.org/10.1016/j.pmatsci.2022.100943
D. Lee, A. Yoon, S.Y. Jang, J.G. Yoon, J.S. Chung et al., Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107(5), 057602 (2011). https://doi.org/10.1103/PhysRevLett.107.057602
M.M. Yang, D.J. Kim, M. Alexe, Flexo-photovoltaic effect. Science 360(6391), 904–907 (2018). https://doi.org/10.1126/science.aan3256
K. Chu, B.K. Jang, J.H. Sung, Y.A. Shin, E.S. Lee et al., Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat. Nanotechnol. 10(11), 972-U196 (2015). https://doi.org/10.1038/nnano.2015.191
M.S. Majdoub, P. Sharma, T. Cagin, Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77(12), 125424 (2008). https://doi.org/10.1103/PhysRevB.77.125424
H. Lu, C.W. Bark, D.E. Ojos, J. Alcala, C.B. Eom et al., Mechanical writing of ferroelectric polarization. Science 336(6077), 59–61 (2012). https://doi.org/10.1126/science.1218693
L. Shu, S. Ke, L. Fei, W. Huang, Z. Wang et al., Photoflexoelectric effect in halide perovskites. Nat. Mater. 19(6), 605–609 (2020). https://doi.org/10.1038/s41563-020-0659-y
Q. Deng, S. Shen, The flexodynamic effect on nanoscale flexoelectric energy harvesting: a computational approach. Smart Mater. Struct. 27(10), 105001 (2018). https://doi.org/10.1088/1361-665X/aadab3
N. Ma, K. Zhang, Y. Yang, Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 29(46), 1703694 (2017). https://doi.org/10.1002/adma.201703694
X. Zhao, K. Song, H. Huang, W. Han, Y. Yang, Ferroelectric materials for solar energy scavenging and photodetectors. Adv. Opt. Mater. 10(2), 2101741 (2022). https://doi.org/10.1002/adom.202101741
H. Li, C.R. Bowen, Y. Yang, Scavenging energy sources using ferroelectric materials. Adv. Funct. Mater. 31(25), 2100905 (2021). https://doi.org/10.1002/adfm.202100905
K. Song, R. Zhao, Z.L. Wang, Y. Yang, Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv. Mater. 31(36), 1902831 (2019). https://doi.org/10.1002/adma.201902831
X. Han, Y. Ji, Y. Yang, Ferroelectric photovoltaic materials and devices. Adv. Funct. Mater. 32(14), 2109625 (2022). https://doi.org/10.1002/adfm.202109625
Y. Ji, K. Zhang, Z.L. Wang, Y. Yang, Piezo-pyro-photoelectric effects induced coupling enhancement of charge quantity in BaTiO3 materials for simultaneously scavenging light and vibration energies. Energy Environ. Sci. 12(4), 1231–1240 (2019). https://doi.org/10.1039/c9ee00006b
X. Zhao, C. Li, Y. Wang, W. Han, Y. Yang, Hybridized nanogenerators for effectively scavenging mechanical and solar energies. iScience 24(5), 102415 (2021). https://doi.org/10.1016/j.isci.2021.102415
K. Zhao, B. Ouyang, C.R. Bowen, Z.L. Wang, Y. Yang, One-structure-based multi-effects coupled nanogenerators for flexible and self-powered multi-functional coupled sensor systems. Nano Energy 71, 104632 (2020). https://doi.org/10.1016/j.nanoen.2020.104632
R. Guo, L. You, W. Lin, A. Abdelsamie, X. Shu et al., Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect. Nat. Commun. 11(1), 2571 (2020). https://doi.org/10.1038/s41467-020-16465-5
Y. Guo, B. Guo, W. Dong, H. Li, H. Liu, Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BifFeO3 based thin films. Nanotechnology 24(27), 275201 (2013). https://doi.org/10.1088/0957-4484/24/27/275201
L. Wang, S. Liu, X. Feng, C. Zhang, L. Zhu et al., Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 15(8), 661–667 (2020). https://doi.org/10.1038/s41565-020-0700-y
A. Abdollahi, F. Vasquez-Sancho, G. Catalan, Piezoelectric mimicry of flexoelectricity. Phys. Rev. Lett. 121(20), 205502 (2018). https://doi.org/10.1103/PhysRevLett.121.205502
D. Kothari, V.R. Reddy, V.G. Sathe, A. Gupta, A. Banerjee et al., Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 320(3–4), 548–552 (2008). https://doi.org/10.1016/j.jmmm.2007.07.016
B. Ouyang, Y. Wang, R. Zhang, H. Olin, Y. Yang, Dual-polarity output response-based photoelectric devices. Cell Rep. Phys. Sci. 2(5), 100418 (2021). https://doi.org/10.1016/j.xcrp.2021.100418
T.H. Yang, Y.W. Harn, K.C. Chiu, C.L. Fan, J.M. Wu, Promising electron field emitters composed of conducting perovskite LaNiO3 shells on zno nanorod arrays. J. Mater. Chem. 22(33), 17071–17078 (2012). https://doi.org/10.1039/c2jm32483k
Q.L. Thi, V.C. Nguyen, Y. Bitla, J.W. Chen, D.T. Hien et al., Self-assembled BiFeO3-epsilon-Fe2O3 vertical heteroepitaxy for visible light photoelectrochemistry. Adv. Energy Mater. 6(18), 1600686 (2016). https://doi.org/10.1002/aenm.201600686
R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang et al., Bandgap tuning of multiferroic oxide solar cells. Nat. Photon. 9(1), 61–67 (2015). https://doi.org/10.1038/nphoton.2014.255