Nanogenerator-Based Self-Charging Energy Storage Devices
Corresponding Author: Ya Yang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 19
Abstract
One significant challenge for electronic devices is that the energy storage devices are unable to provide sufficient energy for continuous and long-time operation, leading to frequent recharging or inconvenient battery replacement. To satisfy the needs of next-generation electronic devices for sustainable working, conspicuous progress has been achieved regarding the development for nanogenerator-based self-charging energy storage devices. Herein, the development of the self-charging energy storage devices is summarized. Focus will be on preparation of nanomaterials for Li-ion batteries and supercapacitors, structural design of the nanogenerator-based self-charging energy storage devices, performance testing, and potential applications. Moreover, the challenges and perspectives regarding self-charging energy storage devices are also discussed.
Highlights:
1 The progress of nanogenerator-based self-charging energy storage devices is summarized.
2 The fabrication technologies of nanomaterials, device designs, working principles, self-charging performances, and the potential application fields of self-charging storage devices are presented and discussed.
3 Some perspectives and problems that need to be solved are described.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
- J.B. Goodenough, K. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of grapheme. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). https://doi.org/10.1126/science.1124005
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- K. Zhao, Z.L. Wang, Y. Yang, Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator. ACS Nano 10(9), 9044–9052 (2016). https://doi.org/10.1021/acsnano.6b05815
- F. Diaz-Gonzalez, A. Sumper, O. Gomis-Bellmunt, A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16(4), 2154–2171 (2012). https://doi.org/10.1016/j.rser.2012.01.029
- Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
- Y. Wang, Y. Yang, Superhydrophobic surfaces-based redox-induced electricity from water droplets for self-powered wearable electronics. Nano Energy 56, 547–554 (2019). https://doi.org/10.1016/j.nanoen.2018.11.089
- T. Quan, X. Wang, Z.L. Wang, Y. Yang, Hybridized electromagnetic–triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 9(12), 12301–12310 (2015). https://doi.org/10.1021/acsnano.5b05598
- H. He, Y. Fu, T. Zhao, X. Gao, L. Xing, Y. Zhang, X. Xue, All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics. Nano Energy 39, 590–600 (2017). https://doi.org/10.1016/j.nanoen.2017.07.033
- Y. Zhang, Y. Zhang, X. Xue, C. Cui, B. He, Y. Nie, P. Deng, Z.L. Wang, PVDF–PZT nanocomposite film based self-charging power cell. Nanotechnology 25, 105401 (2014). https://doi.org/10.1088/0957-4484/25/10/105401
- Y.S. Kim, Y. Xie, X. Wen, S. Wang, S.J. Kim, H.K. Song, Z.L. Wang, Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy 14, 77–86 (2015). https://doi.org/10.1016/j.nanoen.2015.01.006
- D. Pankratov, P. Falkman, Z. Blum, S. Shleev, A hybrid electric power device for simultaneous generation and storage of electric energy. Energy Environ. Sci. 7(3), 989–993 (2014). https://doi.org/10.1039/c3ee43413c
- J. Luo, F.R. Fan, T. Jiang, Z. Wang, W. Tang, C. Zhang, M. Liu, G. Cao, Z.L. Wang, Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 8(12), 3934–3943 (2015). https://doi.org/10.1007/s12274-015-0894-8
- L. Xing, Y. Nie, X. Xue, Y. Zhang, PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell. Nano Energy 10, 44–52 (2014). https://doi.org/10.1016/j.nanoen.2014.09.004
- A. Ramadoss, B. Saravanakumar, S.W. Lee, Y.S. Kim, S.J. Kim, Z.L. Wang, Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 9(4), 4337–4345 (2015). https://doi.org/10.1021/acsnano.5b00759
- J. Luo, W. Tang, F.R. Fan, C. Liu, Y. Pang, G. Cao, Z.L. Wang, Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 10(8), 8078–8086 (2016). https://doi.org/10.1021/acsnano.6b04201
- K. Zhao, Y. Yang, X. Liu, Z.L. Wang, Triboelectrifcation-enabled self-charging lithium-ion batteries. Adv. Energy Mater. 7(21), 1700103 (2017). https://doi.org/10.1002/aenm.201700103
- J. Zhao, H. Li, C. Li, Q. Zhang, J. Sun et al., MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy 45, 420–431 (2018). https://doi.org/10.1016/j.nanoen.2018.01.021
- A. Maitra, S.K. Karan, S. Paria, A.K. Das, R. Bera et al., Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator. Nano Energy 40, 633–645 (2017). https://doi.org/10.1016/j.nanoen.2017.08.057
- K. Dong, Y.C. Wang, J. Deng, Y. Dai, S.L. Zhang et al., A highly stretchable and washable all-yarn based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11(9), 9490–9499 (2017). https://doi.org/10.1021/acsnano.7b05317
- Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
- N. Sun, Z. Wen, F. Zhao, Y. Yang, H. Shao et al., All flexible electrospun papers based self-charging power system. Nano Energy 38, 210–217 (2017). https://doi.org/10.1016/j.nanoen.2017.05.048
- T. Gao, K. Zhao, X. Liu, Y. Yang, Implanting a solid Li-ion battery into a triboelectric nanogenerator for simultaneously scavenging and storing wind energy. Nano Energy 41, 210–216 (2017). https://doi.org/10.1016/j.nanoen.2017.09.037
- H. Guo, M.H. Yeh, Y.C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11), 10580–10588 (2016). https://doi.org/10.1021/acsnano.6b06621
- X. Liu, K. Zhao, Z.L. Wang, Y. Yang, Unity convoluted design of solid Li-ion battery and triboelectric nanogenerator for self-powered wearable electronics. Adv. Energy Mater. 7(22), 1701629 (2017). https://doi.org/10.1002/aenm.201701629
- H. Guo, M.H. Yeh, Y. Zi, Z. Wen, J. Chen, G. Liu, C. Hu, Z.L. Wang, Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 11(5), 4475–4482 (2017). https://doi.org/10.1021/acsnano.7b00866
- X. Pu, W. Hu, Z.L. Wang, Toward wearable self-charging power systems: the integration of energy-harvesting and storage devices. Small 14(1), 1702817 (2018). https://doi.org/10.1002/smll.201702817
- X. Pu, L. Li, H. Song, C. Du, Z. Zhao, C. Jiang, G. Cao, W. Hu, Z.L. Wang, A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27(15), 2472–2478 (2015). https://doi.org/10.1002/adma.201500311
- X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
- M. Liu, Z. Cong, X. Pu, W. Guo, T. Liu, M. Li, Y. Zhang, W. Hu, Z.L. Wang, High-energy asymmetric supercapacitor yarns for self-charging power textiles. Adv. Funct. Mater. 29(2), 1806298 (2019). https://doi.org/10.1002/adfm.201806298
- J. Chen, H. Guo, X. Pu, X. Wang, Y. Xi, C. Hu, Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy 50, 536–543 (2018). https://doi.org/10.1016/j.nanoen.2018.06.009
- Y. Song, H. Wang, X. Cheng, G. Li, X. Chen, H. Chen, L. Miao, X. Zhang, H. Zhang, Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy 55, 29–36 (2019). https://doi.org/10.1016/j.nanoen.2018.10.045
- X. Pu, M. Liu, L. Li, C. Zhang, Y. Pang, C. Jiang, L. Shao, W. Hu, Z.L. Wang, Efficient charging of li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 3(1), 1500255 (2016). https://doi.org/10.1002/advs.201500255
- G. Wei, Z. Wang, R. Zhu, H. Kimura, PVDF/BCT–BZT nanocomposite film for a piezo-driven self-charging power cell batteries and energy storage. J. Electrochem. Soc. 165(7), A1238–A1246 (2018). https://doi.org/10.1149/2.0401807jes
- P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, S. Sahoo, S. Manoharan, S.-J. Kim, A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with ionogel electrolyte. Adv. Mater. Interfaces 5(22), 1800055 (2018). https://doi.org/10.1002/admi.201800055
- L. Yuan, X. Xiao, T. Ding, J. Zhong, X. Zhang et al., Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 51(20), 4934–4938 (2012). https://doi.org/10.1002/anie.201109142
References
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
J.B. Goodenough, K. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of grapheme. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). https://doi.org/10.1126/science.1124005
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
K. Zhao, Z.L. Wang, Y. Yang, Self-powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator. ACS Nano 10(9), 9044–9052 (2016). https://doi.org/10.1021/acsnano.6b05815
F. Diaz-Gonzalez, A. Sumper, O. Gomis-Bellmunt, A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16(4), 2154–2171 (2012). https://doi.org/10.1016/j.rser.2012.01.029
Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
Y. Wang, Y. Yang, Superhydrophobic surfaces-based redox-induced electricity from water droplets for self-powered wearable electronics. Nano Energy 56, 547–554 (2019). https://doi.org/10.1016/j.nanoen.2018.11.089
T. Quan, X. Wang, Z.L. Wang, Y. Yang, Hybridized electromagnetic–triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 9(12), 12301–12310 (2015). https://doi.org/10.1021/acsnano.5b05598
H. He, Y. Fu, T. Zhao, X. Gao, L. Xing, Y. Zhang, X. Xue, All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics. Nano Energy 39, 590–600 (2017). https://doi.org/10.1016/j.nanoen.2017.07.033
Y. Zhang, Y. Zhang, X. Xue, C. Cui, B. He, Y. Nie, P. Deng, Z.L. Wang, PVDF–PZT nanocomposite film based self-charging power cell. Nanotechnology 25, 105401 (2014). https://doi.org/10.1088/0957-4484/25/10/105401
Y.S. Kim, Y. Xie, X. Wen, S. Wang, S.J. Kim, H.K. Song, Z.L. Wang, Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy 14, 77–86 (2015). https://doi.org/10.1016/j.nanoen.2015.01.006
D. Pankratov, P. Falkman, Z. Blum, S. Shleev, A hybrid electric power device for simultaneous generation and storage of electric energy. Energy Environ. Sci. 7(3), 989–993 (2014). https://doi.org/10.1039/c3ee43413c
J. Luo, F.R. Fan, T. Jiang, Z. Wang, W. Tang, C. Zhang, M. Liu, G. Cao, Z.L. Wang, Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 8(12), 3934–3943 (2015). https://doi.org/10.1007/s12274-015-0894-8
L. Xing, Y. Nie, X. Xue, Y. Zhang, PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell. Nano Energy 10, 44–52 (2014). https://doi.org/10.1016/j.nanoen.2014.09.004
A. Ramadoss, B. Saravanakumar, S.W. Lee, Y.S. Kim, S.J. Kim, Z.L. Wang, Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 9(4), 4337–4345 (2015). https://doi.org/10.1021/acsnano.5b00759
J. Luo, W. Tang, F.R. Fan, C. Liu, Y. Pang, G. Cao, Z.L. Wang, Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 10(8), 8078–8086 (2016). https://doi.org/10.1021/acsnano.6b04201
K. Zhao, Y. Yang, X. Liu, Z.L. Wang, Triboelectrifcation-enabled self-charging lithium-ion batteries. Adv. Energy Mater. 7(21), 1700103 (2017). https://doi.org/10.1002/aenm.201700103
J. Zhao, H. Li, C. Li, Q. Zhang, J. Sun et al., MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy 45, 420–431 (2018). https://doi.org/10.1016/j.nanoen.2018.01.021
A. Maitra, S.K. Karan, S. Paria, A.K. Das, R. Bera et al., Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator. Nano Energy 40, 633–645 (2017). https://doi.org/10.1016/j.nanoen.2017.08.057
K. Dong, Y.C. Wang, J. Deng, Y. Dai, S.L. Zhang et al., A highly stretchable and washable all-yarn based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11(9), 9490–9499 (2017). https://doi.org/10.1021/acsnano.7b05317
Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi et al., Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2(10), e1600097 (2016). https://doi.org/10.1126/sciadv.1600097
N. Sun, Z. Wen, F. Zhao, Y. Yang, H. Shao et al., All flexible electrospun papers based self-charging power system. Nano Energy 38, 210–217 (2017). https://doi.org/10.1016/j.nanoen.2017.05.048
T. Gao, K. Zhao, X. Liu, Y. Yang, Implanting a solid Li-ion battery into a triboelectric nanogenerator for simultaneously scavenging and storing wind energy. Nano Energy 41, 210–216 (2017). https://doi.org/10.1016/j.nanoen.2017.09.037
H. Guo, M.H. Yeh, Y.C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11), 10580–10588 (2016). https://doi.org/10.1021/acsnano.6b06621
X. Liu, K. Zhao, Z.L. Wang, Y. Yang, Unity convoluted design of solid Li-ion battery and triboelectric nanogenerator for self-powered wearable electronics. Adv. Energy Mater. 7(22), 1701629 (2017). https://doi.org/10.1002/aenm.201701629
H. Guo, M.H. Yeh, Y. Zi, Z. Wen, J. Chen, G. Liu, C. Hu, Z.L. Wang, Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 11(5), 4475–4482 (2017). https://doi.org/10.1021/acsnano.7b00866
X. Pu, W. Hu, Z.L. Wang, Toward wearable self-charging power systems: the integration of energy-harvesting and storage devices. Small 14(1), 1702817 (2018). https://doi.org/10.1002/smll.201702817
X. Pu, L. Li, H. Song, C. Du, Z. Zhao, C. Jiang, G. Cao, W. Hu, Z.L. Wang, A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27(15), 2472–2478 (2015). https://doi.org/10.1002/adma.201500311
X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
M. Liu, Z. Cong, X. Pu, W. Guo, T. Liu, M. Li, Y. Zhang, W. Hu, Z.L. Wang, High-energy asymmetric supercapacitor yarns for self-charging power textiles. Adv. Funct. Mater. 29(2), 1806298 (2019). https://doi.org/10.1002/adfm.201806298
J. Chen, H. Guo, X. Pu, X. Wang, Y. Xi, C. Hu, Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy 50, 536–543 (2018). https://doi.org/10.1016/j.nanoen.2018.06.009
Y. Song, H. Wang, X. Cheng, G. Li, X. Chen, H. Chen, L. Miao, X. Zhang, H. Zhang, Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy 55, 29–36 (2019). https://doi.org/10.1016/j.nanoen.2018.10.045
X. Pu, M. Liu, L. Li, C. Zhang, Y. Pang, C. Jiang, L. Shao, W. Hu, Z.L. Wang, Efficient charging of li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 3(1), 1500255 (2016). https://doi.org/10.1002/advs.201500255
G. Wei, Z. Wang, R. Zhu, H. Kimura, PVDF/BCT–BZT nanocomposite film for a piezo-driven self-charging power cell batteries and energy storage. J. Electrochem. Soc. 165(7), A1238–A1246 (2018). https://doi.org/10.1149/2.0401807jes
P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, S. Sahoo, S. Manoharan, S.-J. Kim, A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with ionogel electrolyte. Adv. Mater. Interfaces 5(22), 1800055 (2018). https://doi.org/10.1002/admi.201800055
L. Yuan, X. Xiao, T. Ding, J. Zhong, X. Zhang et al., Paper-based supercapacitors for self-powered nanosystems. Angew. Chem. Int. Ed. 51(20), 4934–4938 (2012). https://doi.org/10.1002/anie.201109142