Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges
Corresponding Author: Ya Yang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 156
Abstract
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
Highlights:
1 This review focuses on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.
2 Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted.
3 Challenges, future directions and applications for new photocatalysis and electrocatalysis exploiting 2D nanomaterials are suggested.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020). https://doi.org/10.1021/acs.chemrev.9b00201
- S.S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
- S.C. Sun, G.Q. Shen, J.W. Jiang, W.B. Mi, X.L. Liu et al., Boosting oxygen evolution kinetics by Mn-N-C motifs with tunable spin state for highly efficient solar-driven water splitting. Adv. Energy Mater. 9, 1901505 (2019). https://doi.org/10.1002/aenm.201901505
- L. Pan, M.H. Ai, C.Y. Huang, L. Yin, X. Liu et al., Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 11, 418 (2020). https://doi.org/10.1038/s41467-020-14333-w
- X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007). https://doi.org/10.1126/science.1139366
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
- X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010). https://doi.org/10.1021/cr1001645
- M.D. Karkas, O. Verho, E.V. Johnston, B. Akermark, Artificial photosynthesis: Molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014). https://doi.org/10.1021/cr400572f
- H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li et al., Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014). https://doi.org/10.1039/c4cs00126e
- H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115
- X. Chia, M. Pumera, Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018). https://doi.org/10.1038/s41929-018-0181-7
- Y. Jiao, Y. Zheng, M.T. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/C4CS00470A
- E. Roduner, Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions-a tutorial. Catal. Today 309, 263–268 (2018). https://doi.org/10.1016/j.cattod.2017.05.091
- S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015). https://doi.org/10.1038/nmat4281
- H. Tada, T. Kiyonaga, S. Naya, Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem. Soc. Rev. 38, 1849–1858 (2009). https://doi.org/10.1039/b822385h
- S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). https://doi.org/10.1038/Nmat3151
- N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007). https://doi.org/10.1126/science.1140484
- B.H. Wu, N.F. Zheng, Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8, 168–197 (2013). https://doi.org/10.1016/j.nantod.2013.02.006
- S. Koh, P. Strasser, Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007). https://doi.org/10.1021/ja0742784
- B.H. Wu, Y.J. Kuang, X.H. Zhang, J.H. Chen, Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today 6, 75–90 (2011). https://doi.org/10.1016/j.nantod.2010.12.008
- X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu et al., Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). https://doi.org/10.1021/ar300361m
- X.Y. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015). https://doi.org/10.1021/acs.chemrev.5b00287
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
- D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017). https://doi.org/10.1038/Nmat4703
- S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). https://doi.org/10.1021/nn400280c
- G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha et al., Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015). https://doi.org/10.1021/acsnano.5b05556
- M.M. Wu, T. Wu, M.Z. Sun, L. Lu, N. Li et al., General synthesis of large-area flexible bi-atomic subnano thin lanthanide oxide nanoscrolls. Nano Energy 78, 105318 (2020). https://doi.org/10.1016/j.nanoen.2020.105318
- J. Xu, X.Y. Chen, Y.S. Xu, Y.P. Du, C.H. Yan, Ultrathin 2D rare-earth nanomaterials: Compositions, syntheses, and applications. Adv. Mater. 32, 1806461 (2020). https://doi.org/10.1002/adma.201806461
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
- H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
- M.S. Xu, T. Liang, M.M. Shi, H.Z. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013). https://doi.org/10.1021/cr300263a
- J.Y. Tang, X.Y. Kong, B.J. Ng, Y.H. Chew, A.R. Mohamed et al., Midgap-state-mediated two-step photoexcitation in nitrogen defect-modified g-C3N4 atomic layers for superior photocatalytic CO2 reduction. Catal. Sci. Technol. 9, 2335–2343 (2019). https://doi.org/10.1039/c9cy00449a
- B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8, 6904–6920 (2016). https://doi.org/10.1039/c6nr00546b
- J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). https://doi.org/10.1038/nmat3439
- G. Wang, J. Tao, Y. Zhang, S. Wang, X. Yan et al., Engineering two-dimensional mass-transport channels of the MoS2 nanocatalyst toward improved hydrogen evolution performance. ACS Appl. Mater. Interfaces 10, 25409–25414 (2018). https://doi.org/10.1021/acsami.8b07163
- S. Zhang, B. Li, X. Wang, G. Zhao, B. Hu et al., Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chem. Eng. J. 390, 124642 (2020). https://doi.org/10.1016/j.cej.2020.124642
- H.L. You, Y.M. Jia, Z. Wu, X.L. Xu, W.Q. Qian et al., Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis. Electrochem. Commun. 79, 55–58 (2017). https://doi.org/10.1016/j.elecom.2017.04.017
- W.Q. Qian, W.Y. Yang, Y. Zhang, C.R. Bowen, Y. Yang, Piezoelectric materials for controlling electro-chemical processes. Nano-Micro Lett. 12, 149 (2020). https://doi.org/10.1007/s40820-020-00489-z
- J. Wu, Z. Wu, W.Q. Qian, Y.M. Jia, Y. Wang et al., Electric-field-treatment-induced enhancement of photoluminescence in Er3+-doped (Ba0.95Sr0.05)(Zr0.1Ti0.9)O3 piezoelectric ceramic. Mater. Lett. 184, 131–133 (2016). https://doi.org/10.1016/j.matlet.2016.07.061
- H. Wang, X. Liu, P. Niu, S. Wang, J. Shi et al., Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2, 1377–1413 (2020). https://doi.org/10.1016/j.matt.2020.04.002
- D. Qin, Y. Zhou, W. Wang, C. Zhang, G. Zeng et al., Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO2: Insights into performance, theories and perspective. J. Mater. Chem. A 8, 19156–19195 (2020). https://doi.org/10.1039/d0ta07460h
- K. Khan, A.K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang et al., Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 12, 167 (2020). https://doi.org/10.1007/s40820-020-00504-3
- C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang et al., Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 10, 2000214 (2020). https://doi.org/10.1002/aenm.202000214
- W. Qian, K. Zhao, D. Zhang, C.R. Bowen, Y. Wang et al., Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. ACS Appl. Mater. Interfaces 11, 27862–27869 (2019). https://doi.org/10.1021/acsami.9b07857
- S. Xu, W. Qian, D. Zhang, X. Zhao, X. Zhang et al., A coupled photo-piezo-catalytic effect in a bst-pdms porous foam for enhanced dye wastewater degradation. Nano Energy 77, 105305 (2020). https://doi.org/10.1016/j.nanoen.2020.105305
- X.N. Zang, W.S. Chen, X.L. Zou, J.N. Hohman, L.J. Yang et al., Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 30, 1805188 (2018). https://doi.org/10.1002/adma.201805188
- M. Zhou, Z.L. Zhang, K.K. Huang, Z. Shi, R.G. Xie et al., Colloidal preparation and electrocatalytic hydrogen production of MoS2 and WS2 nanosheets with controllable lateral sizes and layer numbers. Nanoscale 8, 15262–15272 (2016). https://doi.org/10.1039/c6nr04775k
- T.Y. Wang, L. Liu, Z.W. Zhu, P. Papakonstantinou, J.B. Hu et al., Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an au electrode. Energy Environ. Sci. 6, 625–633 (2013). https://doi.org/10.1039/c2ee23513g
- G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/Nnano.2014.207
- Y.F. Hao, M.S. Bharathi, L. Wang, Y.Y. Liu, H. Chen et al., The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013). https://doi.org/10.1126/science.1243879
- Y.Q. Wu, P.D. Ye, M.A. Capano, Y. Xuan, Y. Sui et al., Top-gated graphene field-effect-transistors formed by decomposition of sic. Appl. Phys. Lett. 92, 092102 (2008). https://doi.org/10.1063/1.2889959
- F. Torrisi, T. Hasan, W.P. Wu, Z.P. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012). https://doi.org/10.1021/nn2044609
- B. Fallahazad, S. Kim, L. Colombo, E. Tutuc, Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric. Appl. Phys. Lett. 97, 123105 (2010). https://doi.org/10.1063/1.3492843
- G. Nandamuri, S. Roumimov, R. Solanki, Remote plasma assisted growth of graphene films. Appl. Phys. Lett. 96, 154101 (2010). https://doi.org/10.1063/1.3387812
- J. Zheng, H. Zhang, S.H. Dong, Y.P. Liu, C.T. Nai et al., High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014). https://doi.org/10.1038/ncomms3995
- B. Radisavljevic, A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013). https://doi.org/10.1038/Nmat3687
- B. Radisavljevic, A. Kis, Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8, 146–147 (2013). https://doi.org/10.1038/nnano.2013.30
- H. Wang, L.L. Yu, Y.H. Lee, Y.M. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012). https://doi.org/10.1021/nl302015v
- G. Fiori, B.N. Szafranek, G. Iannaccone, D. Neumaier, Velocity saturation in few-layer MoS2 transistor. Appl. Phys. Lett. 103, 233509 (2013). https://doi.org/10.1063/1.4840175
- Y.F. Yu, S.Y. Huang, Y.P. Li, S.N. Steinmann, W.T. Yang et al., Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014). https://doi.org/10.1021/nl403620g
- M. Javaid, D.W. Drumm, S.P. Russo, A.D. Greentree, A study of size-dependent properties of MoS2 monolayer nanoflakes using density-functional theory. Sci. Rep. 7, 9775 (2017). https://doi.org/10.1038/s41598-017-09305-y
- Y.L. Li, P.P. Li, J.S. Wang, Y.L. Yang, W.Q. Yao et al., Water soluble graphitic carbon nitride with tunable fluorescence for boosting broad-response photocatalysis. Appl. Catal. B-Environ. 225, 519–529 (2018). https://doi.org/10.1016/j.apcatb.2017.12.017
- X.W. Li, Y.J. Sun, T. Xiong, G.M. Jiang, Y.X. Zhang et al., Activation of amorphous bismuth oxide via plasmonic bi metal for efficient visible-light photocatalysis. J. Catal. 352, 102–112 (2017). https://doi.org/10.1016/j.jcat.2017.04.025
- R.A. He, D.F. Xu, B. Cheng, J.G. Yu, W.K. Ho, Review on nanoscale bi-based photocatalysts. Nanoscale Horiz. 3, 464–504 (2018). https://doi.org/10.1039/c8nh00062j
- X.C. Du, J.W. Huang, J.J. Zhang, Y.C. Yan, C.Y. Wu et al., Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem. Int. Ed. 58, 4484–4502 (2019). https://doi.org/10.1002/anie.201810104
- Y.Q. Guo, K. Xu, C.Z. Wu, J.Y. Zhao, Y. Xie, Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44, 637–646 (2015). https://doi.org/10.1039/c4cs00302k
- X. Long, G.X. Li, Z.L. Wang, H.Y. Zhu, T. Zhang et al., Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 137, 11900–11903 (2015). https://doi.org/10.1021/jacs.5b07728
- Y. Yusran, H. Li, X. Guan, D. Li, L. Tang et al., Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 32, 1907289 (2020). https://doi.org/10.1002/adma.201907289
- D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
- D. Voiry, H. Yamaguchi, J.W. Li, R. Silva, D.C.B. Alves et al., Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013). https://doi.org/10.1038/Nmat3700
- C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agrait et al., Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012). https://doi.org/10.1002/adma.201103965
- J. Pu, Y. Yomogida, K.K. Liu, L.J. Li, Y. Iwasa et al., Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012). https://doi.org/10.1021/nl301335q
- T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). https://doi.org/10.1126/science.1141483
- Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han et al., Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014). https://doi.org/10.1038/ncomms4783
- Y.P. Zhu, C.X. Guo, Y. Zheng, S.Z. Qiao, Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50, 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635
- E. Parzinger, B. Miller, B. Blaschke, J.A. Garrido, J.W. Ager et al., Photocatalytic stability of single- and few-layer MoS2. ACS Nano 9, 11302–11309 (2015). https://doi.org/10.1021/acsnano.5b04979
- Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S.Z. Qiao, Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 52, 3110–3116 (2013). https://doi.org/10.1002/anie.201209548
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadnnap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014). https://doi.org/10.1021/ja500432h
- D.H. Deng, X.L. Pan, L.A. Yu, Y. Cui, Y.P. Jiang et al., Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188–1193 (2011). https://doi.org/10.1021/cm102666r
- Z.Z. Lin, X.C. Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem. Int. Ed. 52, 1735–1738 (2013). https://doi.org/10.1002/anie.201209017
- J.R. Ran, T.Y. Ma, G.P. Gao, X.W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015). https://doi.org/10.1039/c5ee02650d
- Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 7, 16850–16856 (2015). https://doi.org/10.1021/acsami.5b04947
- F. Besenbacher, M. Brorson, B.S. Clausen, S. Helveg, B. Hinnemann et al., Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catal. Today 130, 86–96 (2008). https://doi.org/10.1016/j.cattod.2007.08.009
- J. Bonde, P.G. Moses, T.F. Jaramillo, J.K. Norskov, I. Chorkendorff, Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140, 219–231 (2008). https://doi.org/10.1039/b803857k
- L.S. Byskov, J.K. Norskov, B.S. Clausen, H. Topsoe, Dft calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999). https://doi.org/10.1006/jcat.1999.2598
- J.V. Lauritsen, J. Kibsgaard, G.H. Olesen, P.G. Moses, B. Hinnemann et al., Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 249, 220–233 (2007). https://doi.org/10.1016/j.jcat.2007.04.013
- M. Gong, W. Zhou, M.C. Tsai, J.G. Zhou, M.Y. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der waals heterostructures. Science 353, aac9439 (2016). https://doi.org/10.1126/science.aac9439
- W.G. Tu, Y. Zhou, Q. Liu, S.C. Yan, S.S. Bao et al., An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 23, 1743–1749 (2013). https://doi.org/10.1002/adfm.201202349
- J.F. Xie, J.J. Zhang, S. Li, F. Grote, X.D. Zhang et al., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013). https://doi.org/10.1021/ja408329q
- D.H. Deng, L. Yu, X.L. Pan, S. Wang, X.Q. Chen et al., Size effect of graphene on electrocatalytic activation of oxygen. Chem. Commun. 47, 10016–10018 (2011). https://doi.org/10.1039/c1cc13033a
- Y. Jia, L.Z. Zhang, A.J. Du, G.P. Gao, J. Chen et al., Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
- L. Tao, Q. Wang, S. Dou, Z.L. Ma, J. Huo et al., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016). https://doi.org/10.1039/c5cc09173j
- D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015). https://doi.org/10.1039/c5cs00151j
- H. Li, C. Tsai, A.L. Koh, L.L. Cai, A.W. Contryman et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016). https://doi.org/10.1038/Nmat4465
- D. Voiry, J. Yang, M. Chhowalla, Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 28, 6197–6206 (2016). https://doi.org/10.1002/adma.201505597
- M. Xiao, Z.L. Wang, M.Q. Lyu, B. Luo, S.C. Wang et al., Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 31, 1801369 (2019). https://doi.org/10.1002/adma.201801369
- W. Li, N. Jiang, B. Hu, X. Liu, F.Z. Song et al., Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron reservoirs. Chem 4, 637–649 (2018). https://doi.org/10.1016/j.chempr.2017.12.019
- S.B. Wang, X.C. Wang, Multifunctional metal-organic frameworks for photocatalysis. Small 11, 3097–3112 (2015). https://doi.org/10.1002/smll.201500084
- F.X. Xiao, J.W. Miao, H.B. Tao, S.F. Hung, H.Y. Wang et al., One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small 11, 2115–2131 (2015). https://doi.org/10.1002/smll.201402420
- H.T. Wang, Z.Y. Lu, S.C. Xu, D.S. Kong, J.J. Cha et al., Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 110, 19701–19706 (2013). https://doi.org/10.1073/pnas.1316792110
- A. Ambrosi, Z. Sofer, M. Pumera, 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 51, 8450–8453 (2015). https://doi.org/10.1039/c5cc00803d
- M.Y. Wang, L.J. Cai, Y. Wang, F.C. Zhou, K. Xu et al., Graphene-draped semiconductors for enhanced photocorrosion resistance and photocatalytic properties. J. Am. Chem. Soc. 139, 4144–4151 (2017). https://doi.org/10.1021/jacs.7b00341
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
- J. Xu, L. Wang, Y.F. Zhu, Decontamination of bisphenol a from aqueous solution by graphene adsorption. Langmuir 28, 8418–8425 (2012). https://doi.org/10.1021/la301476p
- J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015). https://doi.org/10.1126/science.aaa3145
- G.G. Zhang, S.H. Zang, X.C. Wang, Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal. 5, 941–947 (2015). https://doi.org/10.1021/cs502002u
- R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angew. Chem. Int. Ed. 54, 2406–2409 (2015). https://doi.org/10.1002/anie.201411170
- Y. Zheng, L.H. Lin, B. Wang, X.C. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54, 12868–12884 (2015). https://doi.org/10.1002/anie.201501788
- M. Zhang, W.J. Luo, Z. Wei, W.J. Jiang, D. Liu et al., Separation free C3N4/SiO2 hybrid hydrogels as high active photocatalysts for TOC removal. Appl. Catal. B-Environ. 194, 105–110 (2016). https://doi.org/10.1016/j.apcatb.2016.04.049
- M. Zhang, W.Q. Yao, Y.H. Lv, X.J. Bai, Y.F. Liu et al., Enhancement of mineralization ability of C3N4 via a lower valence position by a tetracyanoquinodimethane organic semiconductor. J. Mater. Chem. A 2, 11432–11438 (2014). https://doi.org/10.1039/c4ta01471e
- F. Dong, Z.Y. Wang, Y.J. Sun, W.K. Ho, H.D. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci. 401, 70–79 (2013). https://doi.org/10.1016/j.jcis.2013.03.034
- F. Dong, M.Y. Ou, Y.K. Jiang, S. Guo, Z.B. Wu, Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind. Eng. Chem. Res. 53, 2318–2330 (2014). https://doi.org/10.1021/ie4038104
- Y.J. Wang, X.J. Bai, C.S. Pan, J. He, Y.F. Zhu, Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J. Mater. Chem. 22, 11568–11573 (2012). https://doi.org/10.1039/c2jm16873a
- C.S. Pan, J. Xu, Y.J. Wang, D. Li, Y.F. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 22, 1518–1524 (2012). https://doi.org/10.1002/adfm.201102306
- D.M. Chen, K.W. Wang, D.G. Xiang, R.L. Zong, W.Q. Yao et al., Significantly enhancement of photocatalytic performances via core-shell structure of ZnO@mpg-C3N4. Appl. Catal. B-Environ. 147, 554–561 (2014). https://doi.org/10.1016/j.apcatb.2013.09.039
- X.J. Bai, R.L. Zong, C.X. Li, D. Liu, Y.F. Liu et al., Enhancement of visible photocatalytic activity via Ag@C3N4 core-shell plasmonic composite. Appl. Catal. B-Environ. 147, 82–91 (2014). https://doi.org/10.1016/j.apcatb.2013.08.007
- Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl. Catal. B-Environ. 220, 337–347 (2018). https://doi.org/10.1016/j.apcatb.2017.08.004
- J.G. Yu, S.H. Wang, J.X. Low, W. Xiao, Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890 (2013). https://doi.org/10.1039/c3cp53131g
- Y.P. Yuan, S.W. Cao, Y.S. Liao, L.S. Yin, C. Xue, Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Appl. Catal. B-Environ. 140, 164–168 (2013). https://doi.org/10.1016/j.apcatb.2013.04.006
- W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
- H.L. Gao, S.C. Yan, J.J. Wang, Z.G. Zou, Ion coordination significantly enhances the photocatalytic activity of graphitic-phase carbon nitride. Dalton T. 43, 8178–8183 (2014). https://doi.org/10.1039/c3dt53224k
- P. Wu, J. Wang, J. Zhao, L. Guo, F.E. Osterloh, High alkalinity boosts visible light driven H2 evolution activity of g-C3N4 in aqueous methanol. Chem. Commun. 50, 15521–15524 (2014). https://doi.org/10.1039/c4cc08063g
- S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, L.L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
- G.G. Zhang, M.W. Zhang, X.X. Ye, X.Q. Qiu, S. Lin et al., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26, 805–809 (2014). https://doi.org/10.1002/adma.201303611
- G. Liu, P. Niu, C.H. Sun, S.C. Smith, Z.G. Chen et al., Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010). https://doi.org/10.1021/ja103798k
- Y. Wang, Y. Di, M. Antonietti, H.R. Li, X.F. Chen et al., Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22, 5119–5121 (2010). https://doi.org/10.1021/cm1019102
- G.H. Dong, K. Zhao, L.Z. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48, 6178–6180 (2012). https://doi.org/10.1039/C2CC32181E
- S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine b and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26, 3894–3901 (2010). https://doi.org/10.1021/la904023j
- X.F. Chen, J.S. Zhang, X.Z. Fu, M. Antonietti, X.C. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009). https://doi.org/10.1021/ja903923s
- G.G. Zhang, C.J. Huang, X.C. Wang, Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 11, 1215–1221 (2015). https://doi.org/10.1002/smll.201402636
- Z.X. Ding, X.F. Chen, M. Antonietti, X.C. Wang, Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. Chemsuschem 4, 274–281 (2011). https://doi.org/10.1002/cssc.201000149
- T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016). https://doi.org/10.1021/acscatal.5b02922
- J. Thote, H.B. Aiyappa, A. Deshpande, D. Diaz Diaz, S. Kurungot et al., A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chemistry 20, 15961–15965 (2014). https://doi.org/10.1002/chem.201403800
- B. Zhu, B. Lin, Y. Zhou, P. Sun, Q. Yao et al., Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts. J. Mater. Chem. A 2, 3819–3827 (2014). https://doi.org/10.1039/c3ta14819j
- U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj et al., Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew. Chem. Int. Ed. 52, 13057–13061 (2013). https://doi.org/10.1002/anie.201306918
- H.N. Kim, T.W. Kim, I.Y. Kim, S.-J. Hwang, Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: Porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv. Funct. Mater. 21, 3111–3118 (2011). https://doi.org/10.1002/adfm.201100453
- D. Mullangi, D. Chakraborty, A. Pradeep, V. Koshti, C.P. Vinod et al., Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 14, e1801233 (2018). https://doi.org/10.1002/smll.201801233
- B.J. Yao, J.T. Li, N. Huang, J.L. Kan, L. Qiao et al., Pd NP-loaded and covalently cross-linked COF membrane microreactor for aqueous CBs dechlorination at room temperature. ACS Appl. Mater. Interfaces 10, 20448–20457 (2018). https://doi.org/10.1021/acsami.8b04022
- T. Banerjee, F. Haase, G. Savasci, K. Gottschling, C. Ochsenfeld et al., Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts. J. Am. Chem. Soc. 139, 16228–16234 (2017). https://doi.org/10.1021/jacs.7b07489
- H.B. Aiyappa, J. Thote, D.B. Shinde, R. Banerjee, S. Kurungot, Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 28, 4375–4379 (2016). https://doi.org/10.1021/acs.chemmater.6b01370
- W. Zhong, R. Sa, L. Li, Y. He, L. Li et al., A covalent organic framework bearing single ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 141, 7615–7621 (2019). https://doi.org/10.1021/jacs.9b02997
- L. Qin, H. Yi, G. Zeng, C. Lai, D. Huang et al., Hierarchical porous carbon material restricted au catalyst for highly catalytic reduction of nitroaromatics. J. Hazard Mater. 380, 120864 (2019). https://doi.org/10.1016/j.jhazmat.2019.120864
- I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, aad4998 (2017). https://doi.org/10.1126/science.aad4998
- N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/C6CS00328A
- M. Gong, H.J. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 8, 23–39 (2015). https://doi.org/10.1007/s12274-014-0591-z
- L.N. Dang, H.F. Liang, J.Q. Zhuo, B.K. Lamb, H.Y. Sheng et al., Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis. Chem. Mater. 30, 4321–4330 (2018). https://doi.org/10.1021/acs.chemmater.8b01334
- C.X. Guo, Y. Zheng, J.R. Ran, F.X. Xie, M. Jaroniec et al., Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis. Angew. Chem. Int. Ed. 56, 8539–8543 (2017). https://doi.org/10.1002/anie.201701531
- R. Chen, S.F. Hung, D.J. Zhou, J.J. Gao, C.J. Yang et al., Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 31, 1903909 (2019). https://doi.org/10.1002/adma.201903909
- Q. Wang, L. Shang, R. Shi, X. Zhang, Y.F. Zhao et al., NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 7, 1700467 (2017). https://doi.org/10.1002/aenm.201700467
- J.T. Zhang, L. Yu, Y. Chen, X.F. Lu, S.Y. Gao et al., Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater. 32, 1906432 (2020). https://doi.org/10.1002/adma.201906432
- B. Nagendra, K. Mohan, E.B. Gowd, Polypropylene/layered double hydroxide (LDH) nanocomposites: Influence of LDH particle size on the crystallization behavior of polypropylene. ACS Appl. Mater. Interfaces 7, 12399–12410 (2015). https://doi.org/10.1021/am5075826
- J. Kosco, I. McCulloch, Residual Pd enables photocatalytic H2 evolution from conjugated polymers. ACS Energy Lett. 3, 2846–2850 (2018). https://doi.org/10.1021/acsenergylett.8b01853
- R. Chen, C.J. Yang, W.Z. Cai, H.Y. Wang, J.W. Miao et al., Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2, 1070–1075 (2017). https://doi.org/10.1021/acsenergylett.7b00219
- A. Tiwari, T. Maagaard, I. Chorkendorff, S. Horch, Effect of dissolved glassware on the structure-sensitive part of the Cu(111) voltammogram in KOH. ACS Energy Lett. 4, 1645–1649 (2019). https://doi.org/10.1021/acsenergylett.9b01064
- Z.S. Zhang, L. Melo, R.P. Jansonius, F. Habibzadeh, E.R. Grant et al., Ph matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 3101–3107 (2020). https://doi.org/10.1021/acsenergylett.0c01606
- H.L. You, Z. Wu, L.H. Zhang, Y.R. Ying, Y. Liu et al., Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew. Chem. Int. Ed. 58, 11779–11784 (2019). https://doi.org/10.1002/anie.201906181
- P.V. Kamat, S. Jin, Semiconductor photocatalysis: “Tell us the complete story!” ACS Energy Lett. 3, 622–623 (2018). https://doi.org/10.1021/acsenergylett.8b00196
- A.S. Hainer, J.S. Hodgins, V. Sandre, M. Vallieres, A.E. Lanterna et al., Photocatalytic hydrogen generation using metal-decorated TiO2: Sacrificial donors vs true water splitting. ACS Energy Lett. 3, 542–545 (2018). https://doi.org/10.1021/acsenergylett.8b00152
- S.F. Hung, Y.P. Zhu, G.Q. Tzeng, H.C. Chen, C.S. Hsu et al., In situ spatially coherent identification of phosphide-based catalysts: Crystallographic latching for highly efficient overall water electrolysis. ACS Energy Lett. 4, 2813–2820 (2019). https://doi.org/10.1021/acsenergylett.9b02075
- J. Wong, S.T. Omelchenko, H.A. Atwater, Impact of semiconductor band tails and band filling on photovoltaic efficiency limits. ACS Energy Lett. 6, 52–57 (2021). https://doi.org/10.1021/acsenergylett.0c02362
- Y. Nosaka, A. Nosaka, Understanding hydroxyl radical (•OH) generation processes in photocatalysis. ACS Energy Lett. 1, 356–359 (2016). https://doi.org/10.1021/acsenergylett.6b00174
- D. Salvatore, C.P. Berlinguette, Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 215–220 (2020). https://doi.org/10.1021/acsenergylett.9b02356
- S.Q. Niu, S.W. Li, Y.C. Du, X.J. Han, P. Xu, How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 5, 1083–1087 (2020). https://doi.org/10.1021/acsenergylett.0c00321
- S. Anantharaj, S. Kundu, Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 4, 1260–1264 (2019). https://doi.org/10.1021/acsenergylett.9b00686
- V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013). https://doi.org/10.1126/science.1226419
- Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff et al., Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017). https://doi.org/10.1021/jacs.6b13100
- T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018). https://doi.org/10.1021/acscatal.7b03437
- J. Sturala, J. Luxa, M. Pumera, Z. Sofer, Chemistry of graphene derivatives: Synthesis, applications, and perspectives. Chem-Eur J. 24, 5992–6006 (2018). https://doi.org/10.1002/chem.201704192
- M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014). https://doi.org/10.1021/cr500207g
- P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914). https://doi.org/10.1021/ja02184a002
- C.K. Chan, X.F. Zhang, Y. Cui, High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307–309 (2008). https://doi.org/10.1021/nl0727157
- H.J. Ying, W.Q. Han, Metallic Sn-based anode materials: Application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 4, 1700298 (2017). https://doi.org/10.1002/advs.201700298
- X.X. Zuo, J. Zhu, P. Muller-Buschbaum, Y.J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
- N. Nitta, G. Yushin, High-capacity anode materials for lithium-ion batteries: Choice of elements and structures for active particles. Part Part Syst. Char. 31, 317–336 (2014). https://doi.org/10.1002/ppsc.201300231
- G. Abellan, S. Wild, V. Lloret, N. Scheuschner, R. Gillen et al., Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139, 10432–10440 (2017). https://doi.org/10.1021/jacs.7b04971
- O.I. Malyi, K.V. Sopiha, C. Draxl, C. Persson, Stability and electronic properties of phosphorene oxides: From 0-dimensional to amorphous 2-dimensional structures. Nanoscale 9, 2428–2435 (2017). https://doi.org/10.1039/c6nr08810d
- D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015). https://doi.org/10.1038/ncomms9563
- Q. Zhang, S. Huang, J. Deng, D.T. Gangadharan, F. Yang et al., Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst: 2D/2D heterostructure for broadband H2 evolution. Adv. Funct. Mater. 29, 1902486 (2019). https://doi.org/10.1002/adfm.201902486
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- C. Ashworth, 2D materials: The thick and the thin. Nat. Rev. Mater. 3, 18019 (2018). https://doi.org/10.1038/natrevmats.2018.19
- X.Q. Wang, Y.F. Chen, B.J. Zheng, F. Qi, J.R. He et al., Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J. Alloy. Compd. 691, 698–704 (2017). https://doi.org/10.1016/j.jallcom.2016.08.305
- L. Zhang, X.Q. Ji, X. Ren, Y.J. Ma, X.F. Shi et al., Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 30, 1800191 (2018). https://doi.org/10.1002/adma.201800191
- A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). https://doi.org/10.1126/science.1120411
- X. Tan, W. Zeng, Y. Fan, J. Yan, G. Zhao, Covalent organic frameworks bearing pillar[6]arene-reduced Au nanoparticles for the catalytic reduction of nitroaromatics. Nanotechnology 31, 135705 (2020). https://doi.org/10.1088/1361-6528/ab5ff5
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29, 1700072 (2017). https://doi.org/10.1002/adma.201700072
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- M. Naguib, Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 48, 128–135 (2015). https://doi.org/10.1021/ar500346b
- B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
- J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
- M.W. Barsoum, The Mn+1AXn phases: A new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
- A.N. Enyashin, A.L. Ivanoyskii, Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by methoxy groups. J. Phys. Chem. C 117, 13637–13643 (2013). https://doi.org/10.1021/jp401820b
- Q. Tang, Z. Zhou, P.W. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- Y. Xie, P.R.C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers. Phys. Rev. B 87, 235441 (2013). https://doi.org/10.1103/PhysRevB.87.235441
- M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
- L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003). https://doi.org/10.1126/science.1078842
- M.V. Savoskin, V.N. Mochalin, A.P. Yaroshenko, N.I. Lazareva, T.E. Konstantinova et al., Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 45, 2797–2800 (2007). https://doi.org/10.1016/j.carbon.2007.09.031
- A.N. Enyashin, A.L. Ivanovskii, Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes. Comput. Theor. Chem. 989, 27–32 (2012). https://doi.org/10.1016/j.comptc.2012.02.034
- M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides. MRS Commun. 2, 133–137 (2012). https://doi.org/10.1557/mrc.2012.25
- M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna et al., MXene: A promising transition metal carbide anode for lithium-ion batteries. ElectroChem. Commun. 16, 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002
- J. Come, M. Naguib, P. Rozier, M.W. Barsoum, Y. Gogotsi et al., A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J. Electrochem. Soc. 159, A1368–A1373 (2012). https://doi.org/10.1149/2.003208jes
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- D.Q. Er, J.W. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6, 11173–11179 (2014). https://doi.org/10.1021/am501144q
- T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016). https://doi.org/10.1002/anie.201509758
- C.Y. Ling, L. Shi, Y.X. Ouyang, Q. Chen, J.L. Wang, Transition metal-promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction. Adv. Sci. 3, 1600180 (2016). https://doi.org/10.1002/advs.201600180
- M.F. Shao, R.K. Zhang, Z.H. Li, M. Wei, D.G. Evans et al., Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem. Commun. 51, 15880–15893 (2015). https://doi.org/10.1039/C5CC07296D
- H.S. Yang, Z.L. Li, B. Lu, J. Gao, X.T. Jin et al., Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano 12, 11407–11416 (2018). https://doi.org/10.1021/acsnano.8b06380
- R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 29, 1701546 (2017). https://doi.org/10.1002/adma.201701546
- Y. Zhao, X. Zhang, X. Jia, G.I.N. Waterhouse, R. Shi et al., Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 8, 1703585 (2018). https://doi.org/10.1002/aenm.201703585
- R. Mohan, Green bismuth. Nat. Chem. 2, 336–336 (2010). https://doi.org/10.1038/nchem.609
- D.D. Zhu, J.L. Liu, S.Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
- Z.Y. Wang, S. Yan, Y.J. Sun, T. Xiong, F. Dong et al., Bi metal sphere/graphene oxide nanohybrids with enhanced direct plasmonic photocatalysis. Appl. Catal. B-Environ. 214, 148–157 (2017). https://doi.org/10.1016/j.apcatb.2017.05.040
- S.M. Beladi-Mousavi, M. Pumera, 2D-pnictogens: Alloy-based anode battery materials with ultrahigh cycling stability. Chem. Soc. Rev. 47, 6964–6989 (2018). https://doi.org/10.1039/c8cs00425k
- N. Han, Y. Wang, H. Yang, J. Deng, J.H. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
- K. Xu, L. Wang, X. Xu, S.X. Dou, W. Hao et al., Two dimensional bismuth-based layered materials for energy-related applications. Energy Storage Mater. 19, 446–463 (2019). https://doi.org/10.1016/j.ensm.2019.03.021
- Y.F. Sun, H. Cheng, S. Gao, Q.H. Liu, Z.H. Sun et al., Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 134, 20294–20297 (2012). https://doi.org/10.1021/ja3102049
- J. Li, Y. Yu, L. Zhang, Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale 6, 8473–8488 (2014). https://doi.org/10.1039/c4nr02553a
- J. Di, J. Xia, H. Li, S. Guo, S. Dai, Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy 41, 172–192 (2017). https://doi.org/10.1016/j.nanoen.2017.09.008
- J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 50, 112–121 (2017). https://doi.org/10.1021/acs.accounts.6b00523
- J.F. Ni, X.X. Bi, Y. Jiang, L. Li, J. Lu, Bismuth chalcogenide compounds Bi2X3 (X=O, S, Se): Applications in electrochemical energy storage. Nano Energy 34, 356–366 (2017). https://doi.org/10.1016/j.nanoen.2017.02.041
- Y.Z. Pei, H. Wang, G.J. Snyder, Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012). https://doi.org/10.1002/adma.201202919
- R.A. Schlitz, F.G. Brunetti, A.M. Glaudell, P.L. Miller, M.A. Brady et al., Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv. Mater. 26, 2825–2830 (2014). https://doi.org/10.1002/adma.201304866
- S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo et al., Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces 7, 14211–14222 (2015). https://doi.org/10.1021/acsami.5b03562
- S. Saha, M. Jana, P. Samanta, N.C. Murmu, N.H. Kim et al., Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater. Chem. Phys. 190, 153–165 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.025
- E.P. Gilshteyn, D. Amanbayev, A.S. Anisimov, T. Kallio, A.G. Nasibulin, All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep. 7, 17449 (2017). https://doi.org/10.1038/s41598-017-17801-4
- R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, R.M. Yadav et al., A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 12, 2655–2694 (2019). https://doi.org/10.1007/s12274-019-2467-8
- O.M. Yaghi, G.M. Li, H.L. Li, Selective binding and removal of guests in a microporous metal-organic framework. Nature 378, 703–706 (1995). https://doi.org/10.1038/378703a0
- A.D. Burrows, C.G. Frost, M.F. Mahon, C. Richardson, Post-synthetic modification of tagged metal-organic frameworks. Angew. Chem. Int. Ed. 47, 8482–8486 (2008). https://doi.org/10.1002/anie.200802908
- Y.F. Song, L. Cronin, Postsynthetic covalent modification of metal-organic framework (MOF) materials. Angew. Chem. Int. Ed. 47, 4635–4637 (2008). https://doi.org/10.1002/anie.200801631
- Z.Y. Liu, X.Y. Yang, B.Q. Lu, Z.P. Shi, D.M. Sun et al., Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Appl. Catal. B-Environ. 243, 86–93 (2019). https://doi.org/10.1016/j.apcatb.2018.10.028
- X.Q. Huang, S.H. Tang, X.L. Mu, Y. Dai, G.X. Chen et al., Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011). https://doi.org/10.1038/Nnano.2010.235
- H.H. Duan, N. Yan, R. Yu, C.R. Chang, G. Zhou et al., Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014). https://doi.org/10.1038/ncomms4093
- P. Kumar, J. Singh, A.C. Pandey, Rational low temperature synthesis and structural investigations of ultrathin bismuth nanosheets. RSC Adv. 3, 2313–2317 (2013). https://doi.org/10.1039/c2ra21907g
- M. Maillard, P.R. Huang, L. Brus, Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Lett. 3, 1611–1615 (2003). https://doi.org/10.1021/nl034666d
- I. Washio, Y.J. Xiong, Y.D. Yin, Y.N. Xia, Reduction by the end groups of poly (vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv. Mater. 18, 1745–1749 (2006). https://doi.org/10.1002/adma.200600675
- Z.X. Fan, Y.H. Zhu, X. Huang, Y. Han, Q.X. Wang et al., Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets. Angew. Chem. Int. Ed. 54, 5672–5676 (2015). https://doi.org/10.1002/anie.201500993
- Z.X. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu et al., Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6, 7684 (2015). https://doi.org/10.1038/ncomms8684
- Y. Li, W.X. Wang, K.Y. Xia, W.J. Zhang, Y.Y. Jiang et al., Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small 11, 4745–4752 (2015). https://doi.org/10.1002/smll.201500769
- J.L. Zhang, J.M. Du, B.X. Han, Z.M. Liu, T. Jiang et al., Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. 45, 1116–1119 (2006). https://doi.org/10.1002/anie.200503762
- Z.X. Fan, X. Huang, C.L. Tan, H. Zhang, Thin metal nanostructures: Synthesis, properties and applications. Chem. Sci. 6, 95–111 (2015). https://doi.org/10.1039/c4sc02571g
- Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li et al., Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018). https://doi.org/10.1021/acs.chemrev.7b00727
- M. Chhowalla, D. Voiry, J.E. Yang, H.S. Shin, K.P. Loh, Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bull. 40, 585–591 (2015). https://doi.org/10.1557/mrs.2015.142
- Z.X. Fan, H. Zhang, Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 45, 63–82 (2016). https://doi.org/10.1039/c5cs00467e
- J. Kim, Y. Lee, S.H. Sun, Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010). https://doi.org/10.1021/ja1009629
- K. Chang, X. Hai, H. Pang, H.B. Zhang, L. Shi et al., Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 28, 10033–10041 (2016). https://doi.org/10.1002/adma.201603765
- Y.D. Qu, H. Medina, S.W. Wang, Y.C. Wang, C.W. Chen et al., Wafer scale phase-engineered 1T- and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 28, 9831–9838 (2016). https://doi.org/10.1002/adma.201602697
- M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132–145 (2010). https://doi.org/10.1021/cr900070d
- A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller et al., Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008). https://doi.org/10.1039/b800274f
- F. Fina, S.K. Callear, G.M. Carins, J.T.S. Irvine, Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 27, 2612–2618 (2015). https://doi.org/10.1021/acs.chemmater.5b00411
- B.V. Lotsch, M. Doblinger, J. Sehnert, L. Seyfarth, J. Senker et al., Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chem-Eur. J. 13, 4969–4980 (2007). https://doi.org/10.1002/chem.200601759
- T. Sekine, H. Kanda, Y. Bando, M. Yokoyama, K. Hojou, A graphitic carbon nitride. J. Mater. Sci. Lett. 9, 1376–1378 (1990). https://doi.org/10.1007/Bf00721588
- Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energ. Environ. Sci. 5, 6717–6731 (2012). https://doi.org/10.1039/C2EE03479D
- Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu et al., An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 27, 4572–4577 (2015). https://doi.org/10.1002/adma.201501939
- L. Cartz, S.R. Srinivasa, R.J. Riedner, J.D. Jorgensen, T.G. Worlton, Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721 (1979). https://doi.org/10.1063/1.438523
- X. Zhang, H.M. Xie, Z.D. Liu, C.L. Tan, Z.M. Luo et al., Black phosphorus quantum dots. Angew. Chem. Int. Ed. 54, 3653–3657 (2015). https://doi.org/10.1002/anie.201409400
- H.L. You, Y.M. Jia, Z. Wu, F.F. Wang, H.T. Huang et al., Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. Nat. Commun. 9, 2889 (2018). https://doi.org/10.1038/s41467-018-05343-w
- Y. Sun, K. Fujisawa, Z. Lin, Y. Lei, J.S. Mondschein et al., Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 139, 11096–11105 (2017). https://doi.org/10.1021/jacs.7b04443
- X. Feng, X.S. Ding, D.L. Jiang, Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012). https://doi.org/10.1039/C2CS35157A
- S.Y. Ding, W. Wang, Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 42, 548–568 (2013). https://doi.org/10.1039/C2CS35072F
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- V. Rives, M.A. Ulibarri, Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord. Chem. Rev. 181, 61–120 (1999). https://doi.org/10.1016/S0010-8545(98)00216-1
- A.I. Khan, D. O’Hare, Intercalation chemistry of layered double hydroxides: Recent developments and applications. J. Mater. Chem. 12, 3191–3198 (2002). https://doi.org/10.1039/b204076j
- R.Z. Ma, Z.P. Liu, L. Li, N. Iyi, T. Sasaki, Exfoliating layered double hydroxides in formamide: A method to obtain positively charged nanosheets. J. Mater. Chem. 16, 3809–3813 (2006). https://doi.org/10.1039/b605422f
- Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng et al., Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 56, 5867–5871 (2017). https://doi.org/10.1002/anie.201701477
- H.F. Feng, Y. Du, C. Wang, W.C. Hao, Efficient visible-light photocatalysts by constructing dispersive energy band with anisotropic p and s-p hybridization states. Curr. Opin. Green Sust. 6, 93–100 (2017). https://doi.org/10.1016/j.cogsc.2017.05.008
- Z.F. Xu, K. Xu, H.F. Feng, Y. Du, W.C. Hao, S-p orbital hybridization: A strategy for developing efficient photocatalysts with high carrier mobility. Sci. Bull. 63, 465–468 (2018). https://doi.org/10.1016/j.scib.2018.02.020
- D.D. Cui, L. Wang, Y. Du, W.C. Hao, J. Chen, Photocatalytic reduction on bismuth-based p-block semiconductors. ACS Sustain. Chem. Eng. 6, 15936–15953 (2018). https://doi.org/10.1021/acssuschemeng.8b04977
- J. Lu, W. Zhou, X. Zhang, G. Xiang, Electronic structures and lattice dynamics of layered BiOCl single crystals. J. Phys. Chem. Lett. 11, 1038–1044 (2020). https://doi.org/10.1021/acs.jpclett.9b03575
- Q.H. Weng, B.J. Wang, X.B. Wang, N. Hanagata, X. Li et al., Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano 8, 6123–6130 (2014). https://doi.org/10.1021/nn5014808
- M. Cai, Q. Liu, Z. Xue, Y. Li, Y. Fan et al., Constructing 2D MOFs from 2D LDHs: A highly efficient and durable electrocatalyst for water oxidation. J. Mater. Chem. A 8, 190–195 (2020). https://doi.org/10.1039/c9ta09397d
- G. Givaja, P. Amo-Ochoa, C.J. Gomez-Garcia, F. Zamora, Electrical conductive coordination polymers. Chem. Soc. Rev. 41, 115–147 (2012). https://doi.org/10.1039/c1cs15092h
- C.H. Hendon, D. Tiana, A. Walsh, Conductive metal-organic frameworks and networks: Fact or fantasy? Phys. Chem. Chem. Phys. 14, 13120–13132 (2012). https://doi.org/10.1039/c2cp41099k
- A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater. 31, 1900617 (2019). https://doi.org/10.1002/adma.201900617
- Z. Wang, J. Huang, J. Mao, Q. Guo, Z. Chen et al., Metal–organic frameworks and their derivatives with graphene composites: Preparation and applications in electrocatalysis and photocatalysis. J. Mater. Chem. A 8, 2934–2961 (2020). https://doi.org/10.1039/c9ta12776c
- M. Yi, Z.G. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015). https://doi.org/10.1039/c5ta00252d
- X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang et al., Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 7, 1700396 (2017). https://doi.org/10.1002/aenm.201700396
- C.X. Zheng, L. Yu, L. Zhu, J.L. Collins, D. Kim et al., Room temperature in-plane ferroelectricity in van der waals In2Se3. Sci. Adv. 4, eaar7720 (2018). https://doi.org/10.1126/sciadv.aar7720
- B. Jayasena, S. Subbiah, A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett. 6, 95 (2011). https://doi.org/10.1186/1556-276x-6-95
- A. Kondo, C.C. Tiew, F. Moriguchi, K. Maeda, Fabrication of metal-organic framework nanosheets and nanorolls with N-donor type bridging ligands. Dalton Trans. 42, 15267–15270 (2013). https://doi.org/10.1039/c3dt52130c
- Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
- Y. Peng, Y.S. Li, Y.J. Ban, H. Jin, W.M. Jiao et al., Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014). https://doi.org/10.1126/science.1254227
- K. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou et al., Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 28, 1801554 (2018). https://doi.org/10.1002/adfm.201801554
- J. Di, J. Xia, H. Li, Z. Liu, Freestanding atomically-thin two-dimensional materials beyond graphene meeting photocatalysis: Opportunities and challenges. Nano Energy 35, 79–91 (2017). https://doi.org/10.1016/j.nanoen.2017.03.030
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- T.A. Shifa, F. Wang, Y. Liu, J. He, Heterostructures based on 2D materials: A versatile platform for efficient catalysis. Adv. Mater. 31, 1804828 (2019). https://doi.org/10.1002/adma.201804828
- X. Cai, Y. Luo, B. Liu, H.M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47, 6224–6266 (2018). https://doi.org/10.1039/c8cs00254a
- J.M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp et al., Covalent bulk functionalization of graphene. Nat. Chem. 3, 279–286 (2011). https://doi.org/10.1038/nchem.1010
- D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013). https://doi.org/10.1021/nl403661s
- P.L. Cullen, K.M. Cox, M.K. Bin Subhan, L. Picco, O.D. Payton et al., Ionic solutions of two-dimensional materials. Nat. Chem. 9, 244–249 (2017). https://doi.org/10.1038/nchem.2650
- N. Zhang, M.Q. Yang, S.Q. Liu, Y.G. Sun, Y.J. Xu, Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 115, 10307–10377 (2015). https://doi.org/10.1021/acs.chemrev.5b00267
- Z. Wang, G. Wang, H. Qi, M. Wang, M. Wang et al., Ultrathin two-dimensional conjugated metal–organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chem. Sci. 11, 7665–7671 (2020). https://doi.org/10.1039/d0sc01408g
- M.L. Sushko, J. Liu, Surfactant two-dimensional self-assembly under confinement. J. Phys. Chem. B 115, 4322–4328 (2011). https://doi.org/10.1021/jp2003497
- L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010). https://doi.org/10.1021/nl1022139
- D. Geng, G. Yu, Liquid catalysts: An innovative solution to 2D materials in CVD processes. Mater. Horiz. 5, 1021–1034 (2018). https://
References
Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020). https://doi.org/10.1021/acs.chemrev.9b00201
S.S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50
S.C. Sun, G.Q. Shen, J.W. Jiang, W.B. Mi, X.L. Liu et al., Boosting oxygen evolution kinetics by Mn-N-C motifs with tunable spin state for highly efficient solar-driven water splitting. Adv. Energy Mater. 9, 1901505 (2019). https://doi.org/10.1002/aenm.201901505
L. Pan, M.H. Ai, C.Y. Huang, L. Yin, X. Liu et al., Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 11, 418 (2020). https://doi.org/10.1038/s41467-020-14333-w
X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007). https://doi.org/10.1126/science.1139366
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010). https://doi.org/10.1021/cr1001645
M.D. Karkas, O. Verho, E.V. Johnston, B. Akermark, Artificial photosynthesis: Molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014). https://doi.org/10.1021/cr400572f
H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li et al., Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014). https://doi.org/10.1039/c4cs00126e
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). https://doi.org/10.1038/nature11115
X. Chia, M. Pumera, Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018). https://doi.org/10.1038/s41929-018-0181-7
Y. Jiao, Y. Zheng, M.T. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/C4CS00470A
E. Roduner, Selected fundamentals of catalysis and electrocatalysis in energy conversion reactions-a tutorial. Catal. Today 309, 263–268 (2018). https://doi.org/10.1016/j.cattod.2017.05.091
S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015). https://doi.org/10.1038/nmat4281
H. Tada, T. Kiyonaga, S. Naya, Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem. Soc. Rev. 38, 1849–1858 (2009). https://doi.org/10.1039/b822385h
S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). https://doi.org/10.1038/Nmat3151
N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007). https://doi.org/10.1126/science.1140484
B.H. Wu, N.F. Zheng, Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8, 168–197 (2013). https://doi.org/10.1016/j.nantod.2013.02.006
S. Koh, P. Strasser, Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007). https://doi.org/10.1021/ja0742784
B.H. Wu, Y.J. Kuang, X.H. Zhang, J.H. Chen, Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today 6, 75–90 (2011). https://doi.org/10.1016/j.nantod.2010.12.008
X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu et al., Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). https://doi.org/10.1021/ar300361m
X.Y. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015). https://doi.org/10.1021/acs.chemrev.5b00287
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017). https://doi.org/10.1038/Nmat4703
S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). https://doi.org/10.1021/nn400280c
G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha et al., Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015). https://doi.org/10.1021/acsnano.5b05556
M.M. Wu, T. Wu, M.Z. Sun, L. Lu, N. Li et al., General synthesis of large-area flexible bi-atomic subnano thin lanthanide oxide nanoscrolls. Nano Energy 78, 105318 (2020). https://doi.org/10.1016/j.nanoen.2020.105318
J. Xu, X.Y. Chen, Y.S. Xu, Y.P. Du, C.H. Yan, Ultrathin 2D rare-earth nanomaterials: Compositions, syntheses, and applications. Adv. Mater. 32, 1806461 (2020). https://doi.org/10.1002/adma.201806461
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
M.S. Xu, T. Liang, M.M. Shi, H.Z. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013). https://doi.org/10.1021/cr300263a
J.Y. Tang, X.Y. Kong, B.J. Ng, Y.H. Chew, A.R. Mohamed et al., Midgap-state-mediated two-step photoexcitation in nitrogen defect-modified g-C3N4 atomic layers for superior photocatalytic CO2 reduction. Catal. Sci. Technol. 9, 2335–2343 (2019). https://doi.org/10.1039/c9cy00449a
B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8, 6904–6920 (2016). https://doi.org/10.1039/c6nr00546b
J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). https://doi.org/10.1038/nmat3439
G. Wang, J. Tao, Y. Zhang, S. Wang, X. Yan et al., Engineering two-dimensional mass-transport channels of the MoS2 nanocatalyst toward improved hydrogen evolution performance. ACS Appl. Mater. Interfaces 10, 25409–25414 (2018). https://doi.org/10.1021/acsami.8b07163
S. Zhang, B. Li, X. Wang, G. Zhao, B. Hu et al., Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chem. Eng. J. 390, 124642 (2020). https://doi.org/10.1016/j.cej.2020.124642
H.L. You, Y.M. Jia, Z. Wu, X.L. Xu, W.Q. Qian et al., Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis. Electrochem. Commun. 79, 55–58 (2017). https://doi.org/10.1016/j.elecom.2017.04.017
W.Q. Qian, W.Y. Yang, Y. Zhang, C.R. Bowen, Y. Yang, Piezoelectric materials for controlling electro-chemical processes. Nano-Micro Lett. 12, 149 (2020). https://doi.org/10.1007/s40820-020-00489-z
J. Wu, Z. Wu, W.Q. Qian, Y.M. Jia, Y. Wang et al., Electric-field-treatment-induced enhancement of photoluminescence in Er3+-doped (Ba0.95Sr0.05)(Zr0.1Ti0.9)O3 piezoelectric ceramic. Mater. Lett. 184, 131–133 (2016). https://doi.org/10.1016/j.matlet.2016.07.061
H. Wang, X. Liu, P. Niu, S. Wang, J. Shi et al., Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2, 1377–1413 (2020). https://doi.org/10.1016/j.matt.2020.04.002
D. Qin, Y. Zhou, W. Wang, C. Zhang, G. Zeng et al., Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO2: Insights into performance, theories and perspective. J. Mater. Chem. A 8, 19156–19195 (2020). https://doi.org/10.1039/d0ta07460h
K. Khan, A.K. Tareen, M. Aslam, R.U.R. Sagar, B. Zhang et al., Recent progress, challenges, and prospects in two-dimensional photo-catalyst materials and environmental remediation. Nano-Micro Lett. 12, 167 (2020). https://doi.org/10.1007/s40820-020-00504-3
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang et al., Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 10, 2000214 (2020). https://doi.org/10.1002/aenm.202000214
W. Qian, K. Zhao, D. Zhang, C.R. Bowen, Y. Wang et al., Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. ACS Appl. Mater. Interfaces 11, 27862–27869 (2019). https://doi.org/10.1021/acsami.9b07857
S. Xu, W. Qian, D. Zhang, X. Zhao, X. Zhang et al., A coupled photo-piezo-catalytic effect in a bst-pdms porous foam for enhanced dye wastewater degradation. Nano Energy 77, 105305 (2020). https://doi.org/10.1016/j.nanoen.2020.105305
X.N. Zang, W.S. Chen, X.L. Zou, J.N. Hohman, L.J. Yang et al., Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 30, 1805188 (2018). https://doi.org/10.1002/adma.201805188
M. Zhou, Z.L. Zhang, K.K. Huang, Z. Shi, R.G. Xie et al., Colloidal preparation and electrocatalytic hydrogen production of MoS2 and WS2 nanosheets with controllable lateral sizes and layer numbers. Nanoscale 8, 15262–15272 (2016). https://doi.org/10.1039/c6nr04775k
T.Y. Wang, L. Liu, Z.W. Zhu, P. Papakonstantinou, J.B. Hu et al., Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an au electrode. Energy Environ. Sci. 6, 625–633 (2013). https://doi.org/10.1039/c2ee23513g
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/Nnano.2014.207
Y.F. Hao, M.S. Bharathi, L. Wang, Y.Y. Liu, H. Chen et al., The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013). https://doi.org/10.1126/science.1243879
Y.Q. Wu, P.D. Ye, M.A. Capano, Y. Xuan, Y. Sui et al., Top-gated graphene field-effect-transistors formed by decomposition of sic. Appl. Phys. Lett. 92, 092102 (2008). https://doi.org/10.1063/1.2889959
F. Torrisi, T. Hasan, W.P. Wu, Z.P. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012). https://doi.org/10.1021/nn2044609
B. Fallahazad, S. Kim, L. Colombo, E. Tutuc, Dielectric thickness dependence of carrier mobility in graphene with HfO2 top dielectric. Appl. Phys. Lett. 97, 123105 (2010). https://doi.org/10.1063/1.3492843
G. Nandamuri, S. Roumimov, R. Solanki, Remote plasma assisted growth of graphene films. Appl. Phys. Lett. 96, 154101 (2010). https://doi.org/10.1063/1.3387812
J. Zheng, H. Zhang, S.H. Dong, Y.P. Liu, C.T. Nai et al., High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014). https://doi.org/10.1038/ncomms3995
B. Radisavljevic, A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013). https://doi.org/10.1038/Nmat3687
B. Radisavljevic, A. Kis, Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8, 146–147 (2013). https://doi.org/10.1038/nnano.2013.30
H. Wang, L.L. Yu, Y.H. Lee, Y.M. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012). https://doi.org/10.1021/nl302015v
G. Fiori, B.N. Szafranek, G. Iannaccone, D. Neumaier, Velocity saturation in few-layer MoS2 transistor. Appl. Phys. Lett. 103, 233509 (2013). https://doi.org/10.1063/1.4840175
Y.F. Yu, S.Y. Huang, Y.P. Li, S.N. Steinmann, W.T. Yang et al., Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014). https://doi.org/10.1021/nl403620g
M. Javaid, D.W. Drumm, S.P. Russo, A.D. Greentree, A study of size-dependent properties of MoS2 monolayer nanoflakes using density-functional theory. Sci. Rep. 7, 9775 (2017). https://doi.org/10.1038/s41598-017-09305-y
Y.L. Li, P.P. Li, J.S. Wang, Y.L. Yang, W.Q. Yao et al., Water soluble graphitic carbon nitride with tunable fluorescence for boosting broad-response photocatalysis. Appl. Catal. B-Environ. 225, 519–529 (2018). https://doi.org/10.1016/j.apcatb.2017.12.017
X.W. Li, Y.J. Sun, T. Xiong, G.M. Jiang, Y.X. Zhang et al., Activation of amorphous bismuth oxide via plasmonic bi metal for efficient visible-light photocatalysis. J. Catal. 352, 102–112 (2017). https://doi.org/10.1016/j.jcat.2017.04.025
R.A. He, D.F. Xu, B. Cheng, J.G. Yu, W.K. Ho, Review on nanoscale bi-based photocatalysts. Nanoscale Horiz. 3, 464–504 (2018). https://doi.org/10.1039/c8nh00062j
X.C. Du, J.W. Huang, J.J. Zhang, Y.C. Yan, C.Y. Wu et al., Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem. Int. Ed. 58, 4484–4502 (2019). https://doi.org/10.1002/anie.201810104
Y.Q. Guo, K. Xu, C.Z. Wu, J.Y. Zhao, Y. Xie, Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 44, 637–646 (2015). https://doi.org/10.1039/c4cs00302k
X. Long, G.X. Li, Z.L. Wang, H.Y. Zhu, T. Zhang et al., Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 137, 11900–11903 (2015). https://doi.org/10.1021/jacs.5b07728
Y. Yusran, H. Li, X. Guan, D. Li, L. Tang et al., Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 32, 1907289 (2020). https://doi.org/10.1002/adma.201907289
D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
D. Voiry, H. Yamaguchi, J.W. Li, R. Silva, D.C.B. Alves et al., Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013). https://doi.org/10.1038/Nmat3700
C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agrait et al., Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012). https://doi.org/10.1002/adma.201103965
J. Pu, Y. Yomogida, K.K. Liu, L.J. Li, Y. Iwasa et al., Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012). https://doi.org/10.1021/nl301335q
T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). https://doi.org/10.1126/science.1141483
Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han et al., Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014). https://doi.org/10.1038/ncomms4783
Y.P. Zhu, C.X. Guo, Y. Zheng, S.Z. Qiao, Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 50, 915–923 (2017). https://doi.org/10.1021/acs.accounts.6b00635
E. Parzinger, B. Miller, B. Blaschke, J.A. Garrido, J.W. Ager et al., Photocatalytic stability of single- and few-layer MoS2. ACS Nano 9, 11302–11309 (2015). https://doi.org/10.1021/acsnano.5b04979
Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S.Z. Qiao, Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 52, 3110–3116 (2013). https://doi.org/10.1002/anie.201209548
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadnnap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014). https://doi.org/10.1021/ja500432h
D.H. Deng, X.L. Pan, L.A. Yu, Y. Cui, Y.P. Jiang et al., Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188–1193 (2011). https://doi.org/10.1021/cm102666r
Z.Z. Lin, X.C. Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem. Int. Ed. 52, 1735–1738 (2013). https://doi.org/10.1002/anie.201209017
J.R. Ran, T.Y. Ma, G.P. Gao, X.W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015). https://doi.org/10.1039/c5ee02650d
Y.P. Zhu, T.Z. Ren, Z.Y. Yuan, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 7, 16850–16856 (2015). https://doi.org/10.1021/acsami.5b04947
F. Besenbacher, M. Brorson, B.S. Clausen, S. Helveg, B. Hinnemann et al., Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catal. Today 130, 86–96 (2008). https://doi.org/10.1016/j.cattod.2007.08.009
J. Bonde, P.G. Moses, T.F. Jaramillo, J.K. Norskov, I. Chorkendorff, Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140, 219–231 (2008). https://doi.org/10.1039/b803857k
L.S. Byskov, J.K. Norskov, B.S. Clausen, H. Topsoe, Dft calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 187, 109–122 (1999). https://doi.org/10.1006/jcat.1999.2598
J.V. Lauritsen, J. Kibsgaard, G.H. Olesen, P.G. Moses, B. Hinnemann et al., Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 249, 220–233 (2007). https://doi.org/10.1016/j.jcat.2007.04.013
M. Gong, W. Zhou, M.C. Tsai, J.G. Zhou, M.Y. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der waals heterostructures. Science 353, aac9439 (2016). https://doi.org/10.1126/science.aac9439
W.G. Tu, Y. Zhou, Q. Liu, S.C. Yan, S.S. Bao et al., An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 23, 1743–1749 (2013). https://doi.org/10.1002/adfm.201202349
J.F. Xie, J.J. Zhang, S. Li, F. Grote, X.D. Zhang et al., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013). https://doi.org/10.1021/ja408329q
D.H. Deng, L. Yu, X.L. Pan, S. Wang, X.Q. Chen et al., Size effect of graphene on electrocatalytic activation of oxygen. Chem. Commun. 47, 10016–10018 (2011). https://doi.org/10.1039/c1cc13033a
Y. Jia, L.Z. Zhang, A.J. Du, G.P. Gao, J. Chen et al., Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
L. Tao, Q. Wang, S. Dou, Z.L. Ma, J. Huo et al., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016). https://doi.org/10.1039/c5cc09173j
D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015). https://doi.org/10.1039/c5cs00151j
H. Li, C. Tsai, A.L. Koh, L.L. Cai, A.W. Contryman et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016). https://doi.org/10.1038/Nmat4465
D. Voiry, J. Yang, M. Chhowalla, Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 28, 6197–6206 (2016). https://doi.org/10.1002/adma.201505597
M. Xiao, Z.L. Wang, M.Q. Lyu, B. Luo, S.C. Wang et al., Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 31, 1801369 (2019). https://doi.org/10.1002/adma.201801369
W. Li, N. Jiang, B. Hu, X. Liu, F.Z. Song et al., Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron reservoirs. Chem 4, 637–649 (2018). https://doi.org/10.1016/j.chempr.2017.12.019
S.B. Wang, X.C. Wang, Multifunctional metal-organic frameworks for photocatalysis. Small 11, 3097–3112 (2015). https://doi.org/10.1002/smll.201500084
F.X. Xiao, J.W. Miao, H.B. Tao, S.F. Hung, H.Y. Wang et al., One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small 11, 2115–2131 (2015). https://doi.org/10.1002/smll.201402420
H.T. Wang, Z.Y. Lu, S.C. Xu, D.S. Kong, J.J. Cha et al., Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 110, 19701–19706 (2013). https://doi.org/10.1073/pnas.1316792110
A. Ambrosi, Z. Sofer, M. Pumera, 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 51, 8450–8453 (2015). https://doi.org/10.1039/c5cc00803d
M.Y. Wang, L.J. Cai, Y. Wang, F.C. Zhou, K. Xu et al., Graphene-draped semiconductors for enhanced photocorrosion resistance and photocatalytic properties. J. Am. Chem. Soc. 139, 4144–4151 (2017). https://doi.org/10.1021/jacs.7b00341
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
J. Xu, L. Wang, Y.F. Zhu, Decontamination of bisphenol a from aqueous solution by graphene adsorption. Langmuir 28, 8418–8425 (2012). https://doi.org/10.1021/la301476p
J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015). https://doi.org/10.1126/science.aaa3145
G.G. Zhang, S.H. Zang, X.C. Wang, Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal. 5, 941–947 (2015). https://doi.org/10.1021/cs502002u
R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angew. Chem. Int. Ed. 54, 2406–2409 (2015). https://doi.org/10.1002/anie.201411170
Y. Zheng, L.H. Lin, B. Wang, X.C. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54, 12868–12884 (2015). https://doi.org/10.1002/anie.201501788
M. Zhang, W.J. Luo, Z. Wei, W.J. Jiang, D. Liu et al., Separation free C3N4/SiO2 hybrid hydrogels as high active photocatalysts for TOC removal. Appl. Catal. B-Environ. 194, 105–110 (2016). https://doi.org/10.1016/j.apcatb.2016.04.049
M. Zhang, W.Q. Yao, Y.H. Lv, X.J. Bai, Y.F. Liu et al., Enhancement of mineralization ability of C3N4 via a lower valence position by a tetracyanoquinodimethane organic semiconductor. J. Mater. Chem. A 2, 11432–11438 (2014). https://doi.org/10.1039/c4ta01471e
F. Dong, Z.Y. Wang, Y.J. Sun, W.K. Ho, H.D. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci. 401, 70–79 (2013). https://doi.org/10.1016/j.jcis.2013.03.034
F. Dong, M.Y. Ou, Y.K. Jiang, S. Guo, Z.B. Wu, Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind. Eng. Chem. Res. 53, 2318–2330 (2014). https://doi.org/10.1021/ie4038104
Y.J. Wang, X.J. Bai, C.S. Pan, J. He, Y.F. Zhu, Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J. Mater. Chem. 22, 11568–11573 (2012). https://doi.org/10.1039/c2jm16873a
C.S. Pan, J. Xu, Y.J. Wang, D. Li, Y.F. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 22, 1518–1524 (2012). https://doi.org/10.1002/adfm.201102306
D.M. Chen, K.W. Wang, D.G. Xiang, R.L. Zong, W.Q. Yao et al., Significantly enhancement of photocatalytic performances via core-shell structure of ZnO@mpg-C3N4. Appl. Catal. B-Environ. 147, 554–561 (2014). https://doi.org/10.1016/j.apcatb.2013.09.039
X.J. Bai, R.L. Zong, C.X. Li, D. Liu, Y.F. Liu et al., Enhancement of visible photocatalytic activity via Ag@C3N4 core-shell plasmonic composite. Appl. Catal. B-Environ. 147, 82–91 (2014). https://doi.org/10.1016/j.apcatb.2013.08.007
Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl. Catal. B-Environ. 220, 337–347 (2018). https://doi.org/10.1016/j.apcatb.2017.08.004
J.G. Yu, S.H. Wang, J.X. Low, W. Xiao, Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 15, 16883–16890 (2013). https://doi.org/10.1039/c3cp53131g
Y.P. Yuan, S.W. Cao, Y.S. Liao, L.S. Yin, C. Xue, Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Appl. Catal. B-Environ. 140, 164–168 (2013). https://doi.org/10.1016/j.apcatb.2013.04.006
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
H.L. Gao, S.C. Yan, J.J. Wang, Z.G. Zou, Ion coordination significantly enhances the photocatalytic activity of graphitic-phase carbon nitride. Dalton T. 43, 8178–8183 (2014). https://doi.org/10.1039/c3dt53224k
P. Wu, J. Wang, J. Zhao, L. Guo, F.E. Osterloh, High alkalinity boosts visible light driven H2 evolution activity of g-C3N4 in aqueous methanol. Chem. Commun. 50, 15521–15524 (2014). https://doi.org/10.1039/c4cc08063g
S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, L.L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
G.G. Zhang, M.W. Zhang, X.X. Ye, X.Q. Qiu, S. Lin et al., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26, 805–809 (2014). https://doi.org/10.1002/adma.201303611
G. Liu, P. Niu, C.H. Sun, S.C. Smith, Z.G. Chen et al., Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010). https://doi.org/10.1021/ja103798k
Y. Wang, Y. Di, M. Antonietti, H.R. Li, X.F. Chen et al., Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22, 5119–5121 (2010). https://doi.org/10.1021/cm1019102
G.H. Dong, K. Zhao, L.Z. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48, 6178–6180 (2012). https://doi.org/10.1039/C2CC32181E
S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine b and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26, 3894–3901 (2010). https://doi.org/10.1021/la904023j
X.F. Chen, J.S. Zhang, X.Z. Fu, M. Antonietti, X.C. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009). https://doi.org/10.1021/ja903923s
G.G. Zhang, C.J. Huang, X.C. Wang, Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 11, 1215–1221 (2015). https://doi.org/10.1002/smll.201402636
Z.X. Ding, X.F. Chen, M. Antonietti, X.C. Wang, Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. Chemsuschem 4, 274–281 (2011). https://doi.org/10.1002/cssc.201000149
T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016). https://doi.org/10.1021/acscatal.5b02922
J. Thote, H.B. Aiyappa, A. Deshpande, D. Diaz Diaz, S. Kurungot et al., A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chemistry 20, 15961–15965 (2014). https://doi.org/10.1002/chem.201403800
B. Zhu, B. Lin, Y. Zhou, P. Sun, Q. Yao et al., Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts. J. Mater. Chem. A 2, 3819–3827 (2014). https://doi.org/10.1039/c3ta14819j
U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj et al., Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew. Chem. Int. Ed. 52, 13057–13061 (2013). https://doi.org/10.1002/anie.201306918
H.N. Kim, T.W. Kim, I.Y. Kim, S.-J. Hwang, Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: Porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv. Funct. Mater. 21, 3111–3118 (2011). https://doi.org/10.1002/adfm.201100453
D. Mullangi, D. Chakraborty, A. Pradeep, V. Koshti, C.P. Vinod et al., Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 14, e1801233 (2018). https://doi.org/10.1002/smll.201801233
B.J. Yao, J.T. Li, N. Huang, J.L. Kan, L. Qiao et al., Pd NP-loaded and covalently cross-linked COF membrane microreactor for aqueous CBs dechlorination at room temperature. ACS Appl. Mater. Interfaces 10, 20448–20457 (2018). https://doi.org/10.1021/acsami.8b04022
T. Banerjee, F. Haase, G. Savasci, K. Gottschling, C. Ochsenfeld et al., Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts. J. Am. Chem. Soc. 139, 16228–16234 (2017). https://doi.org/10.1021/jacs.7b07489
H.B. Aiyappa, J. Thote, D.B. Shinde, R. Banerjee, S. Kurungot, Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 28, 4375–4379 (2016). https://doi.org/10.1021/acs.chemmater.6b01370
W. Zhong, R. Sa, L. Li, Y. He, L. Li et al., A covalent organic framework bearing single ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 141, 7615–7621 (2019). https://doi.org/10.1021/jacs.9b02997
L. Qin, H. Yi, G. Zeng, C. Lai, D. Huang et al., Hierarchical porous carbon material restricted au catalyst for highly catalytic reduction of nitroaromatics. J. Hazard Mater. 380, 120864 (2019). https://doi.org/10.1016/j.jhazmat.2019.120864
I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017). https://doi.org/10.1038/s41570-016-0003
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, aad4998 (2017). https://doi.org/10.1126/science.aad4998
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/C6CS00328A
M. Gong, H.J. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 8, 23–39 (2015). https://doi.org/10.1007/s12274-014-0591-z
L.N. Dang, H.F. Liang, J.Q. Zhuo, B.K. Lamb, H.Y. Sheng et al., Direct synthesis and anion exchange of noncarbonate-intercalated NiFe-layered double hydroxides and the influence on electrocatalysis. Chem. Mater. 30, 4321–4330 (2018). https://doi.org/10.1021/acs.chemmater.8b01334
C.X. Guo, Y. Zheng, J.R. Ran, F.X. Xie, M. Jaroniec et al., Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis. Angew. Chem. Int. Ed. 56, 8539–8543 (2017). https://doi.org/10.1002/anie.201701531
R. Chen, S.F. Hung, D.J. Zhou, J.J. Gao, C.J. Yang et al., Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 31, 1903909 (2019). https://doi.org/10.1002/adma.201903909
Q. Wang, L. Shang, R. Shi, X. Zhang, Y.F. Zhao et al., NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 7, 1700467 (2017). https://doi.org/10.1002/aenm.201700467
J.T. Zhang, L. Yu, Y. Chen, X.F. Lu, S.Y. Gao et al., Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater. 32, 1906432 (2020). https://doi.org/10.1002/adma.201906432
B. Nagendra, K. Mohan, E.B. Gowd, Polypropylene/layered double hydroxide (LDH) nanocomposites: Influence of LDH particle size on the crystallization behavior of polypropylene. ACS Appl. Mater. Interfaces 7, 12399–12410 (2015). https://doi.org/10.1021/am5075826
J. Kosco, I. McCulloch, Residual Pd enables photocatalytic H2 evolution from conjugated polymers. ACS Energy Lett. 3, 2846–2850 (2018). https://doi.org/10.1021/acsenergylett.8b01853
R. Chen, C.J. Yang, W.Z. Cai, H.Y. Wang, J.W. Miao et al., Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2, 1070–1075 (2017). https://doi.org/10.1021/acsenergylett.7b00219
A. Tiwari, T. Maagaard, I. Chorkendorff, S. Horch, Effect of dissolved glassware on the structure-sensitive part of the Cu(111) voltammogram in KOH. ACS Energy Lett. 4, 1645–1649 (2019). https://doi.org/10.1021/acsenergylett.9b01064
Z.S. Zhang, L. Melo, R.P. Jansonius, F. Habibzadeh, E.R. Grant et al., Ph matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 3101–3107 (2020). https://doi.org/10.1021/acsenergylett.0c01606
H.L. You, Z. Wu, L.H. Zhang, Y.R. Ying, Y. Liu et al., Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew. Chem. Int. Ed. 58, 11779–11784 (2019). https://doi.org/10.1002/anie.201906181
P.V. Kamat, S. Jin, Semiconductor photocatalysis: “Tell us the complete story!” ACS Energy Lett. 3, 622–623 (2018). https://doi.org/10.1021/acsenergylett.8b00196
A.S. Hainer, J.S. Hodgins, V. Sandre, M. Vallieres, A.E. Lanterna et al., Photocatalytic hydrogen generation using metal-decorated TiO2: Sacrificial donors vs true water splitting. ACS Energy Lett. 3, 542–545 (2018). https://doi.org/10.1021/acsenergylett.8b00152
S.F. Hung, Y.P. Zhu, G.Q. Tzeng, H.C. Chen, C.S. Hsu et al., In situ spatially coherent identification of phosphide-based catalysts: Crystallographic latching for highly efficient overall water electrolysis. ACS Energy Lett. 4, 2813–2820 (2019). https://doi.org/10.1021/acsenergylett.9b02075
J. Wong, S.T. Omelchenko, H.A. Atwater, Impact of semiconductor band tails and band filling on photovoltaic efficiency limits. ACS Energy Lett. 6, 52–57 (2021). https://doi.org/10.1021/acsenergylett.0c02362
Y. Nosaka, A. Nosaka, Understanding hydroxyl radical (•OH) generation processes in photocatalysis. ACS Energy Lett. 1, 356–359 (2016). https://doi.org/10.1021/acsenergylett.6b00174
D. Salvatore, C.P. Berlinguette, Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 215–220 (2020). https://doi.org/10.1021/acsenergylett.9b02356
S.Q. Niu, S.W. Li, Y.C. Du, X.J. Han, P. Xu, How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. 5, 1083–1087 (2020). https://doi.org/10.1021/acsenergylett.0c00321
S. Anantharaj, S. Kundu, Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 4, 1260–1264 (2019). https://doi.org/10.1021/acsenergylett.9b00686
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013). https://doi.org/10.1126/science.1226419
Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff et al., Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017). https://doi.org/10.1021/jacs.6b13100
T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018). https://doi.org/10.1021/acscatal.7b03437
J. Sturala, J. Luxa, M. Pumera, Z. Sofer, Chemistry of graphene derivatives: Synthesis, applications, and perspectives. Chem-Eur J. 24, 5992–6006 (2018). https://doi.org/10.1002/chem.201704192
M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014). https://doi.org/10.1021/cr500207g
P.W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914). https://doi.org/10.1021/ja02184a002
C.K. Chan, X.F. Zhang, Y. Cui, High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8, 307–309 (2008). https://doi.org/10.1021/nl0727157
H.J. Ying, W.Q. Han, Metallic Sn-based anode materials: Application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 4, 1700298 (2017). https://doi.org/10.1002/advs.201700298
X.X. Zuo, J. Zhu, P. Muller-Buschbaum, Y.J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
N. Nitta, G. Yushin, High-capacity anode materials for lithium-ion batteries: Choice of elements and structures for active particles. Part Part Syst. Char. 31, 317–336 (2014). https://doi.org/10.1002/ppsc.201300231
G. Abellan, S. Wild, V. Lloret, N. Scheuschner, R. Gillen et al., Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139, 10432–10440 (2017). https://doi.org/10.1021/jacs.7b04971
O.I. Malyi, K.V. Sopiha, C. Draxl, C. Persson, Stability and electronic properties of phosphorene oxides: From 0-dimensional to amorphous 2-dimensional structures. Nanoscale 9, 2428–2435 (2017). https://doi.org/10.1039/c6nr08810d
D. Hanlon, C. Backes, E. Doherty, C.S. Cucinotta, N.C. Berner et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015). https://doi.org/10.1038/ncomms9563
Q. Zhang, S. Huang, J. Deng, D.T. Gangadharan, F. Yang et al., Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst: 2D/2D heterostructure for broadband H2 evolution. Adv. Funct. Mater. 29, 1902486 (2019). https://doi.org/10.1002/adfm.201902486
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
C. Ashworth, 2D materials: The thick and the thin. Nat. Rev. Mater. 3, 18019 (2018). https://doi.org/10.1038/natrevmats.2018.19
X.Q. Wang, Y.F. Chen, B.J. Zheng, F. Qi, J.R. He et al., Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J. Alloy. Compd. 691, 698–704 (2017). https://doi.org/10.1016/j.jallcom.2016.08.305
L. Zhang, X.Q. Ji, X. Ren, Y.J. Ma, X.F. Shi et al., Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 30, 1800191 (2018). https://doi.org/10.1002/adma.201800191
A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). https://doi.org/10.1126/science.1120411
X. Tan, W. Zeng, Y. Fan, J. Yan, G. Zhao, Covalent organic frameworks bearing pillar[6]arene-reduced Au nanoparticles for the catalytic reduction of nitroaromatics. Nanotechnology 31, 135705 (2020). https://doi.org/10.1088/1361-6528/ab5ff5
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29, 1700072 (2017). https://doi.org/10.1002/adma.201700072
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
M. Naguib, Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 48, 128–135 (2015). https://doi.org/10.1021/ar500346b
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
M.W. Barsoum, The Mn+1AXn phases: A new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
A.N. Enyashin, A.L. Ivanoyskii, Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by methoxy groups. J. Phys. Chem. C 117, 13637–13643 (2013). https://doi.org/10.1021/jp401820b
Q. Tang, Z. Zhou, P.W. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/ja308463r
Y. Xie, P.R.C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers. Phys. Rev. B 87, 235441 (2013). https://doi.org/10.1103/PhysRevB.87.235441
M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003). https://doi.org/10.1126/science.1078842
M.V. Savoskin, V.N. Mochalin, A.P. Yaroshenko, N.I. Lazareva, T.E. Konstantinova et al., Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 45, 2797–2800 (2007). https://doi.org/10.1016/j.carbon.2007.09.031
A.N. Enyashin, A.L. Ivanovskii, Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes. Comput. Theor. Chem. 989, 27–32 (2012). https://doi.org/10.1016/j.comptc.2012.02.034
M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides. MRS Commun. 2, 133–137 (2012). https://doi.org/10.1557/mrc.2012.25
M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna et al., MXene: A promising transition metal carbide anode for lithium-ion batteries. ElectroChem. Commun. 16, 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002
J. Come, M. Naguib, P. Rozier, M.W. Barsoum, Y. Gogotsi et al., A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J. Electrochem. Soc. 159, A1368–A1373 (2012). https://doi.org/10.1149/2.003208jes
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
D.Q. Er, J.W. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6, 11173–11179 (2014). https://doi.org/10.1021/am501144q
T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016). https://doi.org/10.1002/anie.201509758
C.Y. Ling, L. Shi, Y.X. Ouyang, Q. Chen, J.L. Wang, Transition metal-promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction. Adv. Sci. 3, 1600180 (2016). https://doi.org/10.1002/advs.201600180
M.F. Shao, R.K. Zhang, Z.H. Li, M. Wei, D.G. Evans et al., Layered double hydroxides toward electrochemical energy storage and conversion: Design, synthesis and applications. Chem. Commun. 51, 15880–15893 (2015). https://doi.org/10.1039/C5CC07296D
H.S. Yang, Z.L. Li, B. Lu, J. Gao, X.T. Jin et al., Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano 12, 11407–11416 (2018). https://doi.org/10.1021/acsnano.8b06380
R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 29, 1701546 (2017). https://doi.org/10.1002/adma.201701546
Y. Zhao, X. Zhang, X. Jia, G.I.N. Waterhouse, R. Shi et al., Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 8, 1703585 (2018). https://doi.org/10.1002/aenm.201703585
R. Mohan, Green bismuth. Nat. Chem. 2, 336–336 (2010). https://doi.org/10.1038/nchem.609
D.D. Zhu, J.L. Liu, S.Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
Z.Y. Wang, S. Yan, Y.J. Sun, T. Xiong, F. Dong et al., Bi metal sphere/graphene oxide nanohybrids with enhanced direct plasmonic photocatalysis. Appl. Catal. B-Environ. 214, 148–157 (2017). https://doi.org/10.1016/j.apcatb.2017.05.040
S.M. Beladi-Mousavi, M. Pumera, 2D-pnictogens: Alloy-based anode battery materials with ultrahigh cycling stability. Chem. Soc. Rev. 47, 6964–6989 (2018). https://doi.org/10.1039/c8cs00425k
N. Han, Y. Wang, H. Yang, J. Deng, J.H. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
K. Xu, L. Wang, X. Xu, S.X. Dou, W. Hao et al., Two dimensional bismuth-based layered materials for energy-related applications. Energy Storage Mater. 19, 446–463 (2019). https://doi.org/10.1016/j.ensm.2019.03.021
Y.F. Sun, H. Cheng, S. Gao, Q.H. Liu, Z.H. Sun et al., Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 134, 20294–20297 (2012). https://doi.org/10.1021/ja3102049
J. Li, Y. Yu, L. Zhang, Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale 6, 8473–8488 (2014). https://doi.org/10.1039/c4nr02553a
J. Di, J. Xia, H. Li, S. Guo, S. Dai, Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy 41, 172–192 (2017). https://doi.org/10.1016/j.nanoen.2017.09.008
J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 50, 112–121 (2017). https://doi.org/10.1021/acs.accounts.6b00523
J.F. Ni, X.X. Bi, Y. Jiang, L. Li, J. Lu, Bismuth chalcogenide compounds Bi2X3 (X=O, S, Se): Applications in electrochemical energy storage. Nano Energy 34, 356–366 (2017). https://doi.org/10.1016/j.nanoen.2017.02.041
Y.Z. Pei, H. Wang, G.J. Snyder, Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012). https://doi.org/10.1002/adma.201202919
R.A. Schlitz, F.G. Brunetti, A.M. Glaudell, P.L. Miller, M.A. Brady et al., Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv. Mater. 26, 2825–2830 (2014). https://doi.org/10.1002/adma.201304866
S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo et al., Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces 7, 14211–14222 (2015). https://doi.org/10.1021/acsami.5b03562
S. Saha, M. Jana, P. Samanta, N.C. Murmu, N.H. Kim et al., Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications. Mater. Chem. Phys. 190, 153–165 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.025
E.P. Gilshteyn, D. Amanbayev, A.S. Anisimov, T. Kallio, A.G. Nasibulin, All-nanotube stretchable supercapacitor with low equivalent series resistance. Sci. Rep. 7, 17449 (2017). https://doi.org/10.1038/s41598-017-17801-4
R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, R.M. Yadav et al., A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 12, 2655–2694 (2019). https://doi.org/10.1007/s12274-019-2467-8
O.M. Yaghi, G.M. Li, H.L. Li, Selective binding and removal of guests in a microporous metal-organic framework. Nature 378, 703–706 (1995). https://doi.org/10.1038/378703a0
A.D. Burrows, C.G. Frost, M.F. Mahon, C. Richardson, Post-synthetic modification of tagged metal-organic frameworks. Angew. Chem. Int. Ed. 47, 8482–8486 (2008). https://doi.org/10.1002/anie.200802908
Y.F. Song, L. Cronin, Postsynthetic covalent modification of metal-organic framework (MOF) materials. Angew. Chem. Int. Ed. 47, 4635–4637 (2008). https://doi.org/10.1002/anie.200801631
Z.Y. Liu, X.Y. Yang, B.Q. Lu, Z.P. Shi, D.M. Sun et al., Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Appl. Catal. B-Environ. 243, 86–93 (2019). https://doi.org/10.1016/j.apcatb.2018.10.028
X.Q. Huang, S.H. Tang, X.L. Mu, Y. Dai, G.X. Chen et al., Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011). https://doi.org/10.1038/Nnano.2010.235
H.H. Duan, N. Yan, R. Yu, C.R. Chang, G. Zhou et al., Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014). https://doi.org/10.1038/ncomms4093
P. Kumar, J. Singh, A.C. Pandey, Rational low temperature synthesis and structural investigations of ultrathin bismuth nanosheets. RSC Adv. 3, 2313–2317 (2013). https://doi.org/10.1039/c2ra21907g
M. Maillard, P.R. Huang, L. Brus, Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Lett. 3, 1611–1615 (2003). https://doi.org/10.1021/nl034666d
I. Washio, Y.J. Xiong, Y.D. Yin, Y.N. Xia, Reduction by the end groups of poly (vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv. Mater. 18, 1745–1749 (2006). https://doi.org/10.1002/adma.200600675
Z.X. Fan, Y.H. Zhu, X. Huang, Y. Han, Q.X. Wang et al., Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets. Angew. Chem. Int. Ed. 54, 5672–5676 (2015). https://doi.org/10.1002/anie.201500993
Z.X. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu et al., Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6, 7684 (2015). https://doi.org/10.1038/ncomms8684
Y. Li, W.X. Wang, K.Y. Xia, W.J. Zhang, Y.Y. Jiang et al., Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small 11, 4745–4752 (2015). https://doi.org/10.1002/smll.201500769
J.L. Zhang, J.M. Du, B.X. Han, Z.M. Liu, T. Jiang et al., Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. 45, 1116–1119 (2006). https://doi.org/10.1002/anie.200503762
Z.X. Fan, X. Huang, C.L. Tan, H. Zhang, Thin metal nanostructures: Synthesis, properties and applications. Chem. Sci. 6, 95–111 (2015). https://doi.org/10.1039/c4sc02571g
Y. Chen, Z. Fan, Z. Zhang, W. Niu, C. Li et al., Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018). https://doi.org/10.1021/acs.chemrev.7b00727
M. Chhowalla, D. Voiry, J.E. Yang, H.S. Shin, K.P. Loh, Phase-engineered transition-metal dichalcogenides for energy and electronics. MRS Bull. 40, 585–591 (2015). https://doi.org/10.1557/mrs.2015.142
Z.X. Fan, H. Zhang, Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 45, 63–82 (2016). https://doi.org/10.1039/c5cs00467e
J. Kim, Y. Lee, S.H. Sun, Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010). https://doi.org/10.1021/ja1009629
K. Chang, X. Hai, H. Pang, H.B. Zhang, L. Shi et al., Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 28, 10033–10041 (2016). https://doi.org/10.1002/adma.201603765
Y.D. Qu, H. Medina, S.W. Wang, Y.C. Wang, C.W. Chen et al., Wafer scale phase-engineered 1T- and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 28, 9831–9838 (2016). https://doi.org/10.1002/adma.201602697
M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: A review of graphene. Chem. Rev. 110, 132–145 (2010). https://doi.org/10.1021/cr900070d
A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller et al., Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008). https://doi.org/10.1039/b800274f
F. Fina, S.K. Callear, G.M. Carins, J.T.S. Irvine, Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 27, 2612–2618 (2015). https://doi.org/10.1021/acs.chemmater.5b00411
B.V. Lotsch, M. Doblinger, J. Sehnert, L. Seyfarth, J. Senker et al., Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chem-Eur. J. 13, 4969–4980 (2007). https://doi.org/10.1002/chem.200601759
T. Sekine, H. Kanda, Y. Bando, M. Yokoyama, K. Hojou, A graphitic carbon nitride. J. Mater. Sci. Lett. 9, 1376–1378 (1990). https://doi.org/10.1007/Bf00721588
Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energ. Environ. Sci. 5, 6717–6731 (2012). https://doi.org/10.1039/C2EE03479D
Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu et al., An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 27, 4572–4577 (2015). https://doi.org/10.1002/adma.201501939
L. Cartz, S.R. Srinivasa, R.J. Riedner, J.D. Jorgensen, T.G. Worlton, Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721 (1979). https://doi.org/10.1063/1.438523
X. Zhang, H.M. Xie, Z.D. Liu, C.L. Tan, Z.M. Luo et al., Black phosphorus quantum dots. Angew. Chem. Int. Ed. 54, 3653–3657 (2015). https://doi.org/10.1002/anie.201409400
H.L. You, Y.M. Jia, Z. Wu, F.F. Wang, H.T. Huang et al., Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. Nat. Commun. 9, 2889 (2018). https://doi.org/10.1038/s41467-018-05343-w
Y. Sun, K. Fujisawa, Z. Lin, Y. Lei, J.S. Mondschein et al., Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 139, 11096–11105 (2017). https://doi.org/10.1021/jacs.7b04443
X. Feng, X.S. Ding, D.L. Jiang, Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012). https://doi.org/10.1039/C2CS35157A
S.Y. Ding, W. Wang, Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 42, 548–568 (2013). https://doi.org/10.1039/C2CS35072F
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
V. Rives, M.A. Ulibarri, Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord. Chem. Rev. 181, 61–120 (1999). https://doi.org/10.1016/S0010-8545(98)00216-1
A.I. Khan, D. O’Hare, Intercalation chemistry of layered double hydroxides: Recent developments and applications. J. Mater. Chem. 12, 3191–3198 (2002). https://doi.org/10.1039/b204076j
R.Z. Ma, Z.P. Liu, L. Li, N. Iyi, T. Sasaki, Exfoliating layered double hydroxides in formamide: A method to obtain positively charged nanosheets. J. Mater. Chem. 16, 3809–3813 (2006). https://doi.org/10.1039/b605422f
Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng et al., Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 56, 5867–5871 (2017). https://doi.org/10.1002/anie.201701477
H.F. Feng, Y. Du, C. Wang, W.C. Hao, Efficient visible-light photocatalysts by constructing dispersive energy band with anisotropic p and s-p hybridization states. Curr. Opin. Green Sust. 6, 93–100 (2017). https://doi.org/10.1016/j.cogsc.2017.05.008
Z.F. Xu, K. Xu, H.F. Feng, Y. Du, W.C. Hao, S-p orbital hybridization: A strategy for developing efficient photocatalysts with high carrier mobility. Sci. Bull. 63, 465–468 (2018). https://doi.org/10.1016/j.scib.2018.02.020
D.D. Cui, L. Wang, Y. Du, W.C. Hao, J. Chen, Photocatalytic reduction on bismuth-based p-block semiconductors. ACS Sustain. Chem. Eng. 6, 15936–15953 (2018). https://doi.org/10.1021/acssuschemeng.8b04977
J. Lu, W. Zhou, X. Zhang, G. Xiang, Electronic structures and lattice dynamics of layered BiOCl single crystals. J. Phys. Chem. Lett. 11, 1038–1044 (2020). https://doi.org/10.1021/acs.jpclett.9b03575
Q.H. Weng, B.J. Wang, X.B. Wang, N. Hanagata, X. Li et al., Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano 8, 6123–6130 (2014). https://doi.org/10.1021/nn5014808
M. Cai, Q. Liu, Z. Xue, Y. Li, Y. Fan et al., Constructing 2D MOFs from 2D LDHs: A highly efficient and durable electrocatalyst for water oxidation. J. Mater. Chem. A 8, 190–195 (2020). https://doi.org/10.1039/c9ta09397d
G. Givaja, P. Amo-Ochoa, C.J. Gomez-Garcia, F. Zamora, Electrical conductive coordination polymers. Chem. Soc. Rev. 41, 115–147 (2012). https://doi.org/10.1039/c1cs15092h
C.H. Hendon, D. Tiana, A. Walsh, Conductive metal-organic frameworks and networks: Fact or fantasy? Phys. Chem. Chem. Phys. 14, 13120–13132 (2012). https://doi.org/10.1039/c2cp41099k
A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater. 31, 1900617 (2019). https://doi.org/10.1002/adma.201900617
Z. Wang, J. Huang, J. Mao, Q. Guo, Z. Chen et al., Metal–organic frameworks and their derivatives with graphene composites: Preparation and applications in electrocatalysis and photocatalysis. J. Mater. Chem. A 8, 2934–2961 (2020). https://doi.org/10.1039/c9ta12776c
M. Yi, Z.G. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015). https://doi.org/10.1039/c5ta00252d
X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang et al., Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 7, 1700396 (2017). https://doi.org/10.1002/aenm.201700396
C.X. Zheng, L. Yu, L. Zhu, J.L. Collins, D. Kim et al., Room temperature in-plane ferroelectricity in van der waals In2Se3. Sci. Adv. 4, eaar7720 (2018). https://doi.org/10.1126/sciadv.aar7720
B. Jayasena, S. Subbiah, A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res. Lett. 6, 95 (2011). https://doi.org/10.1186/1556-276x-6-95
A. Kondo, C.C. Tiew, F. Moriguchi, K. Maeda, Fabrication of metal-organic framework nanosheets and nanorolls with N-donor type bridging ligands. Dalton Trans. 42, 15267–15270 (2013). https://doi.org/10.1039/c3dt52130c
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
Y. Peng, Y.S. Li, Y.J. Ban, H. Jin, W.M. Jiao et al., Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014). https://doi.org/10.1126/science.1254227
K. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou et al., Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 28, 1801554 (2018). https://doi.org/10.1002/adfm.201801554
J. Di, J. Xia, H. Li, Z. Liu, Freestanding atomically-thin two-dimensional materials beyond graphene meeting photocatalysis: Opportunities and challenges. Nano Energy 35, 79–91 (2017). https://doi.org/10.1016/j.nanoen.2017.03.030
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
T.A. Shifa, F. Wang, Y. Liu, J. He, Heterostructures based on 2D materials: A versatile platform for efficient catalysis. Adv. Mater. 31, 1804828 (2019). https://doi.org/10.1002/adma.201804828
X. Cai, Y. Luo, B. Liu, H.M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47, 6224–6266 (2018). https://doi.org/10.1039/c8cs00254a
J.M. Englert, C. Dotzer, G. Yang, M. Schmid, C. Papp et al., Covalent bulk functionalization of graphene. Nat. Chem. 3, 279–286 (2011). https://doi.org/10.1038/nchem.1010
D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013). https://doi.org/10.1021/nl403661s
P.L. Cullen, K.M. Cox, M.K. Bin Subhan, L. Picco, O.D. Payton et al., Ionic solutions of two-dimensional materials. Nat. Chem. 9, 244–249 (2017). https://doi.org/10.1038/nchem.2650
N. Zhang, M.Q. Yang, S.Q. Liu, Y.G. Sun, Y.J. Xu, Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 115, 10307–10377 (2015). https://doi.org/10.1021/acs.chemrev.5b00267
Z. Wang, G. Wang, H. Qi, M. Wang, M. Wang et al., Ultrathin two-dimensional conjugated metal–organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chem. Sci. 11, 7665–7671 (2020). https://doi.org/10.1039/d0sc01408g
M.L. Sushko, J. Liu, Surfactant two-dimensional self-assembly under confinement. J. Phys. Chem. B 115, 4322–4328 (2011). https://doi.org/10.1021/jp2003497
L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010). https://doi.org/10.1021/nl1022139
D. Geng, G. Yu, Liquid catalysts: An innovative solution to 2D materials in CVD processes. Mater. Horiz. 5, 1021–1034 (2018). https://