2D Nanomaterials for Effective Energy Scavenging
Corresponding Author: Ya Yang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 82
Abstract
The development of a nation is deeply related to its energy consumption. 2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications, such as self-powered sensor devices, environmental monitoring, and large-scale power generation. Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources. In this review, the variety of techniques for scavenging energies from sustainable sources such as solar, air, waste heat, and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials. In addition, practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.
Highlights:
1 An introduction to the range of 2D nanomaterials and their advantages for energy scavenging applications.
2 A variety of methods are presented for converting solar, mechanical, thermal, and chemical energies into electrical energy.
3 A discussion of exclusive applications that exploit 2D nanomaterials for self-powered sensor devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c
- J. Hu, Z. Guo, P.E. Mcwilliams, J.E. Darges, D.L. Druffel et al., Band gap engineering in a 2D material for solar-to-chemical energy conversion. Nano Lett. 16(1), 74–79 (2016). https://doi.org/10.1021/acs.nanolett.5b02895
- J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth et al., The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007). https://doi.org/10.1038/nature05545
- H. Tao, Q. Fan, T. Ma, S. Liu, H. Gysling et al., Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci. 111, 100637 (2020). https://doi.org/10.1016/j.pmatsci.2020.100637
- S.K. Behura, C. Wang, Y. Wen, V. Berry, Graphene–semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics 13(5), 312–318 (2019). https://doi.org/10.1038/s41566-019-0391-9
- W.F. Yang, F. Igbari, Y.H. Lou, Z.K. Wang, L.S. Liao, Tin halide perovskites: progress and challenges. Adv. Energy Mater. 10(13), 1902584 (2020). https://doi.org/10.1002/aenm.201902584
- F. Zhao, Y. Feng, Y. Wang, X. Zhang, X. Liang et al., Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat. Commun. 11(1), 1443 (2020). https://doi.org/10.1038/s41467-020-15262-4
- S.A. Han, J. Lee, J. Lin, S.W. Kim, J.H. Kim, Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy 57, 680–691 (2019). https://doi.org/10.1016/j.nanoen.2018.12.081
- C. Cui, F. Xue, W.J. Hu, L.J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2(1), 18 (2018). https://doi.org/10.1038/s41699-018-0063-5
- M.J. Lee, J.H. Ahn, J.H. Sung, H. Heo, S.G. Jeon et al., Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat. Commun. 7(1), 12011 (2016). https://doi.org/10.1038/ncomms12011
- D. Zabek, K. Seunarine, C. Spacie, C. Bowen, Graphene ink laminate structures on poly (vinylidene difluoride) (PVDF) for pyroelectric thermal energy harvesting and waste heat recovery. ACS Appl. Mater. Interfaces 9(10), 9161–9167 (2017). https://doi.org/10.1021/acsami.6b16477
- Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen et al., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10(1), 2920 (2019). https://doi.org/10.1038/s41467-019-10885-8
- G. Zhu, Z.H. Lin, Q. Jing, P. Bai, C. Pan et al., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13(2), 847–853 (2013). https://doi.org/10.1021/nl4001053
- Z.L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Progress in nanogenerators for portable electronics. Mater. Today 15(12), 532–543 (2012). https://doi.org/10.1016/S1369-7021(13)70011-7
- R. Zhang, M. Hummelgård, J. Örtegren, M. Olsen, H. Andersson et al., Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters, and motion sensors. ACS Appl. Energy Mater. 1(6), 2955–2960 (2018). https://doi.org/10.1021/acsaem.8b00667
- E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2(7), 17089 (2017). https://doi.org/10.1038/nenergy.2017.89
- H. Zhang, H.M. Cheng, P. Ye, 2D nanomaterials: beyond graphene and transition metal dichalcogenides. Chem. Soc. Rev. 47(16), 6009–6012 (2018). https://doi.org/10.1039/C8CS90084A
- Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang et al., Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7(19), 1602684 (2017). https://doi.org/10.1002/aenm.201602684
- Z. Wang, N. Li, Z. Shi, Z. Gu, Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21(17), 175602 (2010). https://doi.org/10.1088/0957-4484/21/17/175602
- L. Grande, V.T. Chundi, D. Wei, C. Bower, P. Andrew et al., Graphene for energy harvesting/storage devices and printed electronics. Particuology 10(1), 1–8 (2012). https://doi.org/10.1016/j.partic.2011.12.001
- C.X. Guo, G.H. Guai, C.M. Li, Graphene based materials: enhancing solar energy harvesting. Adv. Energy Mater. 1(3), 448–452 (2011). https://doi.org/10.1002/aenm.201100119
- Z. Wei, J. Yang, K. Bi, Y. Chen, Mode dependent lattice thermal conductivity of single layer graphene. J. Appl. Phys. 116(15), 153503 (2014). https://doi.org/10.1063/1.4898338
- L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao et al., One-dimensional electrical contact to a two-dimensional. Mater. Sci. 342(6158), 614 (2013). https://doi.org/10.1126/science.1244358
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
- V. Bhavanasi, V. Kumar, K. Parida, J. Wang, P.S. Lee, Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl. Mater. Interfaces 8(1), 521–529 (2016). https://doi.org/10.1021/acsami.5b09502
- M. Engel, D.B. Farmer, J.T. Azpiroz, J.T. Seo, J. Kang et al., Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration. Nat. Commun. 9(1), 4095 (2018). https://doi.org/10.1038/s41467-018-06604-4
- W. Kong, H. Kum, S.H. Bae, J. Shim, H. Kim et al., Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14(10), 927–938 (2019). https://doi.org/10.1038/s41565-019-0555-2
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- H. Huang, Y. Cui, Q. Li, C. Dun, W. Zhou et al., Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 26, 172–179 (2016). https://doi.org/10.1016/j.nanoen.2016.05.022
- J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969). https://doi.org/10.1080/00018736900101307
- S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
- M. Ahmadi, O. Zabihi, S. Jeon, M. Yoonessi, A. Dasari, 2d Transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites. J. Mater. Chem. A 8(3), 845–883 (2020). https://doi.org/10.1039/C9TA10130F
- L. Yangi, Y. Li, Y. Pei, J. Wang, H. Lin et al., A novel 2d perovskite as surface “patches” for efficient flexible perovskite solar cells. J. Mater. Chem. A 8(16), 7808–7818 (2020). https://doi.org/10.1039/C9TA13719J
- P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin et al., Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 9(14), 12759–12765 (2017). https://doi.org/10.1021/acsami.7b01709
- J. Liu, Y. Xue, Z. Wang, Z.Q. Xu, C. Zheng et al., Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10(3), 3536–3542 (2016). https://doi.org/10.1021/acsnano.5b07791
- J. Zhang, X. Zhu, M. Wang, B. Hu, Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat. Commun. 11(1), 2618 (2020). https://doi.org/10.1038/s41467-020-16415-1
- V. Ramalingam, P. Varadhan, H.C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31(48), e1903841 (2019). https://doi.org/10.1002/adma.201903841
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- H. Yu, Y. Wang, Y. Jing, J. Ma, C.F. Du et al., Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 15(25), e1901503 (2019). https://doi.org/10.1002/smll.201901503
- D. Zhu, M. Qiao, J. Liu, T. Tao, C. Guo, Engineering pristine 2d metal–organic framework nanosheets for electrocatalysis. J. Mater. Chem. A 8(17), 8143–8170 (2020). https://doi.org/10.1039/D0TA03138K
- S. Jin, H.J. Son, O.K. Farha, G.P. Wiederrecht, J.P. Hupp, Energy transfer from quantum dots to metal–organic frameworks for enhanced light harvesting. J. Am. Chem. Soc. 135(3), 955–958 (2013). https://doi.org/10.1021/ja3097114
- S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3(1), 17075 (2018). https://doi.org/10.1038/natrevmats.2017.75
- H. Li, J. Hou, T.D. Bennett, J. Liu, Y. Zhang, Templated growth of vertically aligned 2D metal–organic framework nanosheets. J. Mater. Chem. A 7(10), 5811–5818 (2019). https://doi.org/10.1039/C8TA07234E
- J.E. ten Elshof, H. Yuan, P. Gonzalez Rodriguez, Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage. Adv. Energy Mater. 6(23), 1600355 (2016). https://doi.org/10.1002/aenm.201600355
- Y. Yang, Q. Liao, J. Qi, W. Guo, Y. Zhang, Synthesis and transverse electromechanical characterization of single crystalline ZnO nanoleaves. Phys. Chem. Chem. Phys. 12(3), 552–555 (2010). https://doi.org/10.1039/b918326d
- Y. Ma, B. Li, S. Yang, Ultrathin two-dimensional metallic nanomaterials. Mater. Chem. Front. 2(3), 456–467 (2018). https://doi.org/10.1039/C7QM00548B
- P. Xiong, B. Sun, N. Sakai, R. Ma, T. Sasaki et al., 2d superlattices for efficient energy storage and conversion. Adv. Mater. 32(18), 1902654 (2020). https://doi.org/10.1002/adma.201902654
- Y. Zhang, J. Mei, C. Yan, T. Liao, J. Bell et al., Bioinspired 2D nanomaterials for sustainable applications. Adv. Mater. 32(18), 1902806 (2020). https://doi.org/10.1002/adma.201902806
- O. MacLean, F. Rosei, Two-dimensional polymers grow up. Science 366(6471), 1308 (2019). https://doi.org/10.1126/science.aaz9326
- J. Xu, X. Chen, Y. Xu, Y. Du, C. Yan, Ultrathin 2D rare-earth nanomaterials: compositions, syntheses, and applications. Adv. Mater. 32, e1806461 (2020). https://doi.org/10.1002/adma.201806461
- G. Guan, M.Y. Han, Functionalized hybridization of 2d nanomaterials. Adv. Sci. 6(23), 1901837 (2019). https://doi.org/10.1002/advs.201901837
- F. Bai, L. Xu, X. Zhai, X. Chen, W. Yang, Vacancy in ultrathin 2d nanomaterials toward sustainable energy application. Adv. Energy Mater. 10(11), 1902107 (2020). https://doi.org/10.1002/aenm.201902107
- J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Surface defect engineering in 2d nanomaterials for photocatalysis. Adv. Funct. Mater. 28(39), 1801983 (2018). https://doi.org/10.1002/adfm.201801983
- J. Kang, H. Sahin, F.M. Peeters, Tuning carrier confinement in the MoS2/WS2 lateral heterostructure. J. Phys. Chem. C 119(17), 9580–9586 (2015). https://doi.org/10.1021/acs.jpcc.5b00814
- F. Feng, J. Wu, C. Wu, Y. Xie, Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications. Small 11(6), 654–666 (2015). https://doi.org/10.1002/smll.201402346
- F. Purcell-Milton, R. McKenna, L.J. Brennan, C.P. Cullen, L. Guillemeney et al., Induction of chirality in two-dimensional nanomaterials: chiral 2D MoS2 nanostructures. ACS Nano 12(2), 954–964 (2018). https://doi.org/10.1021/acsnano.7b06691
- B. Shen, Y. Kim, M. Lee, Supramolecular chiral 2d materials and emerging functions. Adv. Mater. 32, 1905669 (2020). https://doi.org/10.1002/adma.201905669
- Y. Yang, H. Zhang, R. Liu, X. Wen, T.C. Hou et al., Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 3(12), 1563–1568 (2013). https://doi.org/10.1002/aenm.201300376
- X. Li, Z. Lv, H. Zhu, Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv. Mater. 27(42), 6549–6574 (2015). https://doi.org/10.1002/adma.201502999
- G. Kalita, M. Dzulsyahmi Shaarin, B. Paudel, R. Mahyavanshi, M. Tanemura, Temperature dependent diode and photovoltaic characteristics of graphene-gan heterojunction. Appl. Phys. Lett. 111(1), 013504 (2017). https://doi.org/10.1063/1.4992114
- J.H. Meng, X. Liu, X.W. Zhang, Y. Zhang, H.L. Wang et al., Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy 28, 44–50 (2016). https://doi.org/10.1016/j.nanoen.2016.08.028
- W.K. Metzger, S. Grover, D. Lu, E. Colegrove, J. Moseley et al., Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 4(10), 837–845 (2019). https://doi.org/10.1038/s41560-019-0446-7
- C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
- J.W. Lee, Z. Dai, T.H. Han, C. Choi, S.Y. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9(1), 3021 (2018). https://doi.org/10.1038/s41467-018-05454-4
- S. Yang, J. Cha, J.C. Kim, D. Lee, W. Huh et al., Monolithic interface contact engineering to boost optoelectronic performances of 2d semiconductor photovoltaic heterojunctions. Nano Lett. 20(4), 2443–2451 (2020). https://doi.org/10.1021/acs.nanolett.9b05162
- R. Vinoth, S.G. Babu, V. Bharti, V. Gupta, M. Navaneethan et al., Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells. Sci. Rep. 7(1), 43133 (2017). https://doi.org/10.1038/srep43133
- H. Kim, M. Pei, Y. Lee, A.A. Sutanto, S. Paek et al., Self-crystallized multifunctional 2d perovskite for efficient and stable perovskite solar cells. Adv. Funct. Mater. 30(19), 1910620 (2020). https://doi.org/10.1002/adfm.201910620
- Best Research-Cell Efficiency Chart|Photovoltaic Research|NREL. https://www.nrel.gov/pv/cell-efficiency.html. Accessed July 2020
- F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579 (2020). https://doi.org/10.1002/aenm.201902579
- M.Z. Rahman, C.W. Kwong, K. Davey, S.Z. Qiao, 2d phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 9(3), 709–728 (2016). https://doi.org/10.1039/C5EE03732H
- L. Wang, Y. Zhang, L. Chen, H. Xu, Y. Xiong, 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 30(48), e1801955 (2018). https://doi.org/10.1002/adma.201801955
- T. Butburee, Y. Bai, H. Wang, H. Chen, Z. Wang et al., 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance. Adv. Mater. 30(21), e1705666 (2018). https://doi.org/10.1002/adma.201705666
- B. Zhang, Z. Wang, X. Peng, Z. Wang, L. Zhou et al., A novel route to manufacture 2D layer MoS2 and g-C3N4 by atmospheric plasma with enhanced visible-light-driven photocatalysis. Nanomaterials 9(8), 1139 (2019). https://doi.org/10.3390/nano9081139
- M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri et al., Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environm. Sci. 12(1), 59–95 (2019). https://doi.org/10.1039/C8EE00886H
- R.K. Yadav, J.O. Lee, A. Kumar, N.J. Park, D. Yadav et al., highly improved solar energy harvesting for fuel production from CO2 by a newly designed graphene film photocatalyst. Sci. Rep. 8, 16741 (2018). https://doi.org/10.1038/s41598-018-35135-7
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- M. Seol, S. Kim, Y. Cho, K.E. Byun, H. Kim et al., Triboelectric series of 2D layered materials. Adv. Mater. 30(39), 1801210 (2018). https://doi.org/10.1002/adma.201801210
- H. Liu, Y. Feng, J. Shao, Y. Chen, Z.L. Wang et al., Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis. Nano Energy 70, 104499 (2020). https://doi.org/10.1016/j.nanoen.2020.104499
- H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
- Y. Wu, Y. Luo, J. Qu, W.A. Daoud, T. Qi, Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics. Nano Energy 64, 103948 (2019). https://doi.org/10.1016/j.nanoen.2019.103948
- Y. Guo, Y. Cao, Z. Chen, R. Li, W. Gong et al., Fluorinated metal–organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. Nano Energy 70, 104517 (2020). https://doi.org/10.1016/j.nanoen.2020.104517
- J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim et al., Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers. Nat. Nanotechnol. 13(2), 112–116 (2018). https://doi.org/10.1038/s41565-017-0019-5
- V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Natarajan, S. Sahoo et al., Antimonene dendritic nanostructures: dual-functional material for high-performance energy storage and harvesting devices. Nano Energy 77, 105248 (2020). https://doi.org/10.1016/j.nanoen.2020.105248
- N. Kaur, J. Bahadur, V. Panwar, P. Singh, K. Rathi, K. Pal, Effective energy harvesting from a single electrode based triboelectric nanogenerator. Sci. Rep. 6(1), 38835 (2016). https://doi.org/10.1038/srep38835
- S. Jang, J.H. Oh, Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci. Rep. 8(1), 14287 (2018). https://doi.org/10.1038/s41598-018-32609-6
- Y. Li, W. Zheng, H. Zhang, H. Wang, H. Cai et al., Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators. Nano Energy 70, 104540 (2020). https://doi.org/10.1016/j.nanoen.2020.104540
- B.N. Chandrashekar, B. Deng, A.S. Smitha, Y. Chen, C. Tan et al., Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 27(35), 5210–5216 (2015). https://doi.org/10.1002/adma.201502560
- Z. Quan, C.B. Han, T. Jiang, Z.L. Wang, Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 6(5), 1501799 (2016). https://doi.org/10.1002/aenm.201501799
- K.A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3(19), 2871–2876 (2012). https://doi.org/10.1021/jz3012436
- C. Cui, F. Xue, W.J. Hu, L.J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2(1), 24 (2018). https://doi.org/10.1038/s41699-018-0067-1
- K.H. Kim, B. Kumar, K.Y. Lee, H.K. Park, J.H. Lee et al., Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation. Sci. Rep. 3(1), 2017 (2013). https://doi.org/10.1038/srep02017
- Y. Lee, S. Kim, D. Kim, C. Lee, H. Park et al., Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Appl. Surface Sci. 509, 145328 (2020). https://doi.org/10.1016/j.apsusc.2020.145328
- W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523), 470–474 (2014). https://doi.org/10.1038/nature13792
- Y.M. You, W.Q. Liao, D. Zhao, H.Y. Ye, Y. Zhang et al., An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357(6348), 306–309 (2017). https://doi.org/10.1126/science.aai8535
- M. Bai, Y. Zhai, F. Liu, Y. Wang, S. Luo, Stretchable graphene thin film enabled yarn sensors with tunable piezoresistivity for human motion monitoring. Sci. Rep. 9(1), 18644 (2019). https://doi.org/10.1038/s41598-019-55262-z
- L. Bu, Z. Chen, Z. Chen, L. Qin, F. Yang et al., Impact induced compound method for triboelectric-piezoelectric hybrid nanogenerators to achieve watt level average power in low frequency rotations. Nano Energy 70, 104500 (2020). https://doi.org/10.1016/j.nanoen.2020.104500
- W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer et al., Thermal conductivity reduction and thermoelectric Fig. of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96(4), 045901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
- Y.T. Li, Y. Tian, M.X. Sun, T. Tu, Z.Y. Ju et al., Graphene-based devices for thermal energy conversion and utilization. Adv. Funct. Mater. 30(8), 1903888 (2020). https://doi.org/10.1002/adfm.201903888
- G. Zhang, Y.W. Zhang, Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 5(31), 7684–7698 (2017). https://doi.org/10.1039/C7TC01088E
- S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda et al., Giant thermoelectric power factor in ultrathin FeSe superconductor. Nat. Commun. 10(1), 825 (2019). https://doi.org/10.1038/s41467-019-08784-z
- G. Kogo, B. Xiao, S. Danquah, H. Lee, J. Niyogushima et al., A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask. Sci. Rep. 10(1), 1067 (2020). https://doi.org/10.1038/s41598-020-57991-y
- K.A. Morgan, T. Tang, I. Zeimpekis, A. Ravagli, C. Craig et al., High-throughput physical vapour deposition flexible thermoelectric generators. Sci. Rep. 9(1), 4393 (2019). https://doi.org/10.1038/s41598-019-41000-y
- S.J. Liang, B. Liu, W. Hu, K. Zhou, L.K. Ang, Thermionic energy conversion based on graphene van der Waals heterostructures. Sci. Rep. 7, 46211 (2017). https://doi.org/10.1038/srep46211
- D. Zhang, Y. Song, L. Ping, S. Xu, D. Yang et al., Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Res. 12(12), 2982–2987 (2019). https://doi.org/10.1007/s12274-019-2541-2
- D. Guyomar, G. Sebald, Pyroelectric/electrocaloric energy scanvenging and cooling capabilities in ferroelectric materials. Int. J. Appl. Electromagn. Mech. 31(1), 41–46 (2009). https://doi.org/10.3233/JAE-2009-1045
- C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhanc et al., Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7(12), 3836–3856 (2014). https://doi.org/10.1039/C4EE01759E
- G. Cha, Y. Jia, Y.S. Ju, High-power density pyroelectric energy harvesters incorporating switchable liquid-based thermal interfaces. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE (January 2012). https://doi.org/10.1109/MEMSYS.2012.6170414
- K. Zhang, Y. Wang, Z.L. WanG, Y. Yang, Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy 55, 534–540 (2019). https://doi.org/10.1016/j.nanoen.2018.11.020
- Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.H. Lin et al., Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7(1), 785–790 (2013). https://doi.org/10.1021/nn305247x
- S. Pandya, J. Wilbur, J. Kim, R. Gao, A. Dasgupta et al., Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17(5), 432–438 (2018). https://doi.org/10.1038/s41563-018-0059-8
- U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini et al., Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat. Commun. 8(1), 14311 (2017). https://doi.org/10.1038/ncomms14311
- Y. Chang, J.Y. Wang, F.L. Wu, W. Tian, W. Zhai, Structural design and pyroelectric property of SnS/CdS heterojunctions contrived for low-temperature visible photodetectors. Adv. Funct. Mater. 30, 2001450 (2020). https://doi.org/10.1002/adfm.202001450
- H. Li, C.S.L. Koh, Y.H. Lee, Y. Zhang, G.C. Phan-Quang et al., A wearable solar-thermal-pyroelectric harvester: achieving high power output using modified rGO-PEI and polarized PVDF. Nano Energy 73, 104723 (2020). https://doi.org/10.1016/j.nanoen.2020.104723
- Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11(1), 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
- J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 13(34), 15384–15402 (2011). https://doi.org/10.1039/C1CP21915D
- J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Environ. Sci. Technol. 44(23), 9207–9212 (2010). https://doi.org/10.1021/es1009345
- F.H. van der Heyden, D. Stein, C. Dekker, Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95(11), 116104 (2005). https://doi.org/10.1103/PhysRevLett.95.116104
- A. Siria, P. Poncharal, A.L. Biance, R. Fulcrand, X. Blasé et al., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494(7438), 455–458 (2013). https://doi.org/10.1038/nature11876
- M. Macha, S. Marion, V.V. Nandigana, A. Radenovic, 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4(9), 588–605 (2019). https://doi.org/10.1038/s41578-019-0126-z
- J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco et al., Single-layer MoS2 nanopores as nanopower generators. Nature 536(7615), 197–200 (2016). https://doi.org/10.1038/nature18593
- P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, S. Sahoo, S. Manoharan et al., A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with ionogel electrolyte. Adv. Mater. Interfaces 5(12), 1800055 (2018). https://doi.org/10.1002/admi.201800055
- S. Sahoo, K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S. Manoharan et al., High performance self-charging supercapacitors using a porous PVDF-ionic liquid electrolyte sandwiched between two-dimensional graphene electrodes. J. Mater. Chem. A 7(38), 21693–21703 (2019). https://doi.org/10.1039/C9TA06245A
- D. Zhou, F. Wang, J. Yang, L.Z. Fan, Flexible solid-state self-charging supercapacitor based on symmetric electrodes and piezo-electrolyte. Chem. Eng. J. 406, 126825 (2021). https://doi.org/10.1016/j.cej.2020.126825
- L. Manjakkal, C.G. Núñez, W. Dang, R. Dahiya, Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018). https://doi.org/10.1016/j.nanoen.2018.06.072
- K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo et al., Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 11(1), 2351 (2020). https://doi.org/10.1038/s41467-020-15808-6
- D. Zhou, F. Wang, X. Zhao, J. Yang, H. Lu et al., Self-chargeable flexible solid-state supercapacitor for wearable electronics. ACS Appl. Mater. Interfaces 12(40), 44883–44891 (2020). https://doi.org/10.1021/acsami.0c14426
- D. Zhou, T. Yang, J. Yang, L.Z. Fan, A flexible self-charging sodium-ion full battery for self-powered wearable electronics. J. Mater. Chem. A 8(26), 13267–13276 (2020). https://doi.org/10.1039/D0TA05006G
- D. Zhou, N. Wang, T. Yang, L. Wang, X. Cao et al., Piezoelectric nanogenerator promotes highly stretchable and self-chargeable supercapacitors. Mater. Horiz. 7, 2158–2167 (2020). https://doi.org/10.1039/D0MH00610F
- S. Qin, Q. Zhang, X. Yang, M. Liu, Q. Sun et al., Hybrid piezo/triboelectric-driven self-charging electrochromic supercapacitor power package. Adv. Energy Mater. 8(23), 1800069 (2018). https://doi.org/10.1002/aenm.201800069
- D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65, 103974 (2019). https://doi.org/10.1016/j.nanoen.2019.103974
- Y. Jiang, Y. Wang, H. Wu, Y. Wang, R. Zhang et al., Laser-etched stretchable graphene–polymer composite array for sensitive strain and viscosity sensors. Nano-Micro Lett. 11(1), 99 (2019). https://doi.org/10.1007/s40820-019-0333-6
- S. Radhakrishnan, J. Mathiyarasu, Chapter 8—Graphene–carbon nanotubes modified electrochemical sensors, in Graphene-based electrochemical sensors for biomolecules. ed. by A. Pandikumar, P. Rameshkumar (Elsevier, Amsterdam, 2019), pp. 187–205. https://doi.org/10.1016/B978-0-12-815394-9.00008-X
- K. Roy, S.K. Ghosh, A. Sultana, S. Garain, M. Xie et al., A self-powered wearable pressure sensor and pyroelectric breathing sensor based on go interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2(4), 2013–2025 (2019). https://doi.org/10.1021/acsanm.9b00033
- C. Li, S. Cong, Z. Tian, Y. Song, L. Yu et al., Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 60, 247–256 (2019). https://doi.org/10.1016/j.nanoen.2019.03.061
- Y. Wang, Y. Wang, Y. Yang, Graphene–polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Energy Mater. 8(22), 1800961 (2018). https://doi.org/10.1002/aenm.201800961
- Y. Lee, J. Kim, B. Jang, S. Kim, B.K. Sharma et al., Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62, 259–267 (2019). https://doi.org/10.1016/j.nanoen.2019.05.039
- P. Li, D. Zhang, Z. Wu, Flexible MoS2 sensor arrays for high performance label-free ion sensing. Sensors Actuat. A: Phys. 286, 51–58 (2019). https://doi.org/10.1016/j.sna.2018.12.026
- A.V. Raghu, K.K. Karuppanan, J. Nampoothiri, B. Pullithadathil, Wearable, flexible ethanol gas sensor based on TiO2 nanoparticles-grafted 2d-titanium carbide nanosheets. ACS Appl. Nano Mater. 2(3), 1152–1163 (2019). https://doi.org/10.1021/acsanm.8b01975
- S. Kim, Y. Dong, M.M. Hossain, S. Gorman, I. Towfeeq et al., Piezoresistive graphene/P(VDF-TrFE) heterostructure based highly sensitive and flexible pressure sensor. ACS Appl. Mater. Interfaces 11(17), 16006–16017 (2019). https://doi.org/10.1021/acsami.9b01964
- T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang et al., A flexible pressure sensor based on an MXene–textile network structure. J. Mater. Chem. C 7(4), 1022–1027 (2019). https://doi.org/10.1039/C8TC04893B
- Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). https://doi.org/10.1126/science.1124005
- Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016). https://doi.org/10.1021/acsnano.6b02693
- H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou et al., Symbiotic cardiac pacemaker. Nat. Commun. 10(1), 1821 (2019). https://doi.org/10.1038/s41467-019-09851-1
- Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
- T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c
J. Hu, Z. Guo, P.E. Mcwilliams, J.E. Darges, D.L. Druffel et al., Band gap engineering in a 2D material for solar-to-chemical energy conversion. Nano Lett. 16(1), 74–79 (2016). https://doi.org/10.1021/acs.nanolett.5b02895
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth et al., The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007). https://doi.org/10.1038/nature05545
H. Tao, Q. Fan, T. Ma, S. Liu, H. Gysling et al., Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci. 111, 100637 (2020). https://doi.org/10.1016/j.pmatsci.2020.100637
S.K. Behura, C. Wang, Y. Wen, V. Berry, Graphene–semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics 13(5), 312–318 (2019). https://doi.org/10.1038/s41566-019-0391-9
W.F. Yang, F. Igbari, Y.H. Lou, Z.K. Wang, L.S. Liao, Tin halide perovskites: progress and challenges. Adv. Energy Mater. 10(13), 1902584 (2020). https://doi.org/10.1002/aenm.201902584
F. Zhao, Y. Feng, Y. Wang, X. Zhang, X. Liang et al., Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat. Commun. 11(1), 1443 (2020). https://doi.org/10.1038/s41467-020-15262-4
S.A. Han, J. Lee, J. Lin, S.W. Kim, J.H. Kim, Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy 57, 680–691 (2019). https://doi.org/10.1016/j.nanoen.2018.12.081
C. Cui, F. Xue, W.J. Hu, L.J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2(1), 18 (2018). https://doi.org/10.1038/s41699-018-0063-5
M.J. Lee, J.H. Ahn, J.H. Sung, H. Heo, S.G. Jeon et al., Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat. Commun. 7(1), 12011 (2016). https://doi.org/10.1038/ncomms12011
D. Zabek, K. Seunarine, C. Spacie, C. Bowen, Graphene ink laminate structures on poly (vinylidene difluoride) (PVDF) for pyroelectric thermal energy harvesting and waste heat recovery. ACS Appl. Mater. Interfaces 9(10), 9161–9167 (2017). https://doi.org/10.1021/acsami.6b16477
Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen et al., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10(1), 2920 (2019). https://doi.org/10.1038/s41467-019-10885-8
G. Zhu, Z.H. Lin, Q. Jing, P. Bai, C. Pan et al., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13(2), 847–853 (2013). https://doi.org/10.1021/nl4001053
Z.L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, Progress in nanogenerators for portable electronics. Mater. Today 15(12), 532–543 (2012). https://doi.org/10.1016/S1369-7021(13)70011-7
R. Zhang, M. Hummelgård, J. Örtegren, M. Olsen, H. Andersson et al., Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters, and motion sensors. ACS Appl. Energy Mater. 1(6), 2955–2960 (2018). https://doi.org/10.1021/acsaem.8b00667
E. Pomerantseva, Y. Gogotsi, Two-dimensional heterostructures for energy storage. Nat. Energy 2(7), 17089 (2017). https://doi.org/10.1038/nenergy.2017.89
H. Zhang, H.M. Cheng, P. Ye, 2D nanomaterials: beyond graphene and transition metal dichalcogenides. Chem. Soc. Rev. 47(16), 6009–6012 (2018). https://doi.org/10.1039/C8CS90084A
Y. Xue, Q. Zhang, W. Wang, H. Cao, Q. Yang et al., Opening two-dimensional materials for energy conversion and storage: a concept. Adv. Energy Mater. 7(19), 1602684 (2017). https://doi.org/10.1002/aenm.201602684
Z. Wang, N. Li, Z. Shi, Z. Gu, Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21(17), 175602 (2010). https://doi.org/10.1088/0957-4484/21/17/175602
L. Grande, V.T. Chundi, D. Wei, C. Bower, P. Andrew et al., Graphene for energy harvesting/storage devices and printed electronics. Particuology 10(1), 1–8 (2012). https://doi.org/10.1016/j.partic.2011.12.001
C.X. Guo, G.H. Guai, C.M. Li, Graphene based materials: enhancing solar energy harvesting. Adv. Energy Mater. 1(3), 448–452 (2011). https://doi.org/10.1002/aenm.201100119
Z. Wei, J. Yang, K. Bi, Y. Chen, Mode dependent lattice thermal conductivity of single layer graphene. J. Appl. Phys. 116(15), 153503 (2014). https://doi.org/10.1063/1.4898338
L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao et al., One-dimensional electrical contact to a two-dimensional. Mater. Sci. 342(6158), 614 (2013). https://doi.org/10.1126/science.1244358
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
V. Bhavanasi, V. Kumar, K. Parida, J. Wang, P.S. Lee, Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl. Mater. Interfaces 8(1), 521–529 (2016). https://doi.org/10.1021/acsami.5b09502
M. Engel, D.B. Farmer, J.T. Azpiroz, J.T. Seo, J. Kang et al., Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration. Nat. Commun. 9(1), 4095 (2018). https://doi.org/10.1038/s41467-018-06604-4
W. Kong, H. Kum, S.H. Bae, J. Shim, H. Kim et al., Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14(10), 927–938 (2019). https://doi.org/10.1038/s41565-019-0555-2
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
H. Huang, Y. Cui, Q. Li, C. Dun, W. Zhou et al., Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 26, 172–179 (2016). https://doi.org/10.1016/j.nanoen.2016.05.022
J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18(73), 193–335 (1969). https://doi.org/10.1080/00018736900101307
S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2(8), 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33
M. Ahmadi, O. Zabihi, S. Jeon, M. Yoonessi, A. Dasari, 2d Transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites. J. Mater. Chem. A 8(3), 845–883 (2020). https://doi.org/10.1039/C9TA10130F
L. Yangi, Y. Li, Y. Pei, J. Wang, H. Lin et al., A novel 2d perovskite as surface “patches” for efficient flexible perovskite solar cells. J. Mater. Chem. A 8(16), 7808–7818 (2020). https://doi.org/10.1039/C9TA13719J
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin et al., Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 9(14), 12759–12765 (2017). https://doi.org/10.1021/acsami.7b01709
J. Liu, Y. Xue, Z. Wang, Z.Q. Xu, C. Zheng et al., Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10(3), 3536–3542 (2016). https://doi.org/10.1021/acsnano.5b07791
J. Zhang, X. Zhu, M. Wang, B. Hu, Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat. Commun. 11(1), 2618 (2020). https://doi.org/10.1038/s41467-020-16415-1
V. Ramalingam, P. Varadhan, H.C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31(48), e1903841 (2019). https://doi.org/10.1002/adma.201903841
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/C8CS00324F
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
H. Yu, Y. Wang, Y. Jing, J. Ma, C.F. Du et al., Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 15(25), e1901503 (2019). https://doi.org/10.1002/smll.201901503
D. Zhu, M. Qiao, J. Liu, T. Tao, C. Guo, Engineering pristine 2d metal–organic framework nanosheets for electrocatalysis. J. Mater. Chem. A 8(17), 8143–8170 (2020). https://doi.org/10.1039/D0TA03138K
S. Jin, H.J. Son, O.K. Farha, G.P. Wiederrecht, J.P. Hupp, Energy transfer from quantum dots to metal–organic frameworks for enhanced light harvesting. J. Am. Chem. Soc. 135(3), 955–958 (2013). https://doi.org/10.1021/ja3097114
S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3(1), 17075 (2018). https://doi.org/10.1038/natrevmats.2017.75
H. Li, J. Hou, T.D. Bennett, J. Liu, Y. Zhang, Templated growth of vertically aligned 2D metal–organic framework nanosheets. J. Mater. Chem. A 7(10), 5811–5818 (2019). https://doi.org/10.1039/C8TA07234E
J.E. ten Elshof, H. Yuan, P. Gonzalez Rodriguez, Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage. Adv. Energy Mater. 6(23), 1600355 (2016). https://doi.org/10.1002/aenm.201600355
Y. Yang, Q. Liao, J. Qi, W. Guo, Y. Zhang, Synthesis and transverse electromechanical characterization of single crystalline ZnO nanoleaves. Phys. Chem. Chem. Phys. 12(3), 552–555 (2010). https://doi.org/10.1039/b918326d
Y. Ma, B. Li, S. Yang, Ultrathin two-dimensional metallic nanomaterials. Mater. Chem. Front. 2(3), 456–467 (2018). https://doi.org/10.1039/C7QM00548B
P. Xiong, B. Sun, N. Sakai, R. Ma, T. Sasaki et al., 2d superlattices for efficient energy storage and conversion. Adv. Mater. 32(18), 1902654 (2020). https://doi.org/10.1002/adma.201902654
Y. Zhang, J. Mei, C. Yan, T. Liao, J. Bell et al., Bioinspired 2D nanomaterials for sustainable applications. Adv. Mater. 32(18), 1902806 (2020). https://doi.org/10.1002/adma.201902806
O. MacLean, F. Rosei, Two-dimensional polymers grow up. Science 366(6471), 1308 (2019). https://doi.org/10.1126/science.aaz9326
J. Xu, X. Chen, Y. Xu, Y. Du, C. Yan, Ultrathin 2D rare-earth nanomaterials: compositions, syntheses, and applications. Adv. Mater. 32, e1806461 (2020). https://doi.org/10.1002/adma.201806461
G. Guan, M.Y. Han, Functionalized hybridization of 2d nanomaterials. Adv. Sci. 6(23), 1901837 (2019). https://doi.org/10.1002/advs.201901837
F. Bai, L. Xu, X. Zhai, X. Chen, W. Yang, Vacancy in ultrathin 2d nanomaterials toward sustainable energy application. Adv. Energy Mater. 10(11), 1902107 (2020). https://doi.org/10.1002/aenm.201902107
J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Surface defect engineering in 2d nanomaterials for photocatalysis. Adv. Funct. Mater. 28(39), 1801983 (2018). https://doi.org/10.1002/adfm.201801983
J. Kang, H. Sahin, F.M. Peeters, Tuning carrier confinement in the MoS2/WS2 lateral heterostructure. J. Phys. Chem. C 119(17), 9580–9586 (2015). https://doi.org/10.1021/acs.jpcc.5b00814
F. Feng, J. Wu, C. Wu, Y. Xie, Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications. Small 11(6), 654–666 (2015). https://doi.org/10.1002/smll.201402346
F. Purcell-Milton, R. McKenna, L.J. Brennan, C.P. Cullen, L. Guillemeney et al., Induction of chirality in two-dimensional nanomaterials: chiral 2D MoS2 nanostructures. ACS Nano 12(2), 954–964 (2018). https://doi.org/10.1021/acsnano.7b06691
B. Shen, Y. Kim, M. Lee, Supramolecular chiral 2d materials and emerging functions. Adv. Mater. 32, 1905669 (2020). https://doi.org/10.1002/adma.201905669
Y. Yang, H. Zhang, R. Liu, X. Wen, T.C. Hou et al., Fully enclosed triboelectric nanogenerators for applications in water and harsh environments. Adv. Energy Mater. 3(12), 1563–1568 (2013). https://doi.org/10.1002/aenm.201300376
X. Li, Z. Lv, H. Zhu, Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv. Mater. 27(42), 6549–6574 (2015). https://doi.org/10.1002/adma.201502999
G. Kalita, M. Dzulsyahmi Shaarin, B. Paudel, R. Mahyavanshi, M. Tanemura, Temperature dependent diode and photovoltaic characteristics of graphene-gan heterojunction. Appl. Phys. Lett. 111(1), 013504 (2017). https://doi.org/10.1063/1.4992114
J.H. Meng, X. Liu, X.W. Zhang, Y. Zhang, H.L. Wang et al., Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy 28, 44–50 (2016). https://doi.org/10.1016/j.nanoen.2016.08.028
W.K. Metzger, S. Grover, D. Lu, E. Colegrove, J. Moseley et al., Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 4(10), 837–845 (2019). https://doi.org/10.1038/s41560-019-0446-7
C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
J.W. Lee, Z. Dai, T.H. Han, C. Choi, S.Y. Chang et al., 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9(1), 3021 (2018). https://doi.org/10.1038/s41467-018-05454-4
S. Yang, J. Cha, J.C. Kim, D. Lee, W. Huh et al., Monolithic interface contact engineering to boost optoelectronic performances of 2d semiconductor photovoltaic heterojunctions. Nano Lett. 20(4), 2443–2451 (2020). https://doi.org/10.1021/acs.nanolett.9b05162
R. Vinoth, S.G. Babu, V. Bharti, V. Gupta, M. Navaneethan et al., Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells. Sci. Rep. 7(1), 43133 (2017). https://doi.org/10.1038/srep43133
H. Kim, M. Pei, Y. Lee, A.A. Sutanto, S. Paek et al., Self-crystallized multifunctional 2d perovskite for efficient and stable perovskite solar cells. Adv. Funct. Mater. 30(19), 1910620 (2020). https://doi.org/10.1002/adfm.201910620
Best Research-Cell Efficiency Chart|Photovoltaic Research|NREL. https://www.nrel.gov/pv/cell-efficiency.html. Accessed July 2020
F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579 (2020). https://doi.org/10.1002/aenm.201902579
M.Z. Rahman, C.W. Kwong, K. Davey, S.Z. Qiao, 2d phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 9(3), 709–728 (2016). https://doi.org/10.1039/C5EE03732H
L. Wang, Y. Zhang, L. Chen, H. Xu, Y. Xiong, 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 30(48), e1801955 (2018). https://doi.org/10.1002/adma.201801955
T. Butburee, Y. Bai, H. Wang, H. Chen, Z. Wang et al., 2D porous TiO2 single-crystalline nanostructure demonstrating high photo-electrochemical water splitting performance. Adv. Mater. 30(21), e1705666 (2018). https://doi.org/10.1002/adma.201705666
B. Zhang, Z. Wang, X. Peng, Z. Wang, L. Zhou et al., A novel route to manufacture 2D layer MoS2 and g-C3N4 by atmospheric plasma with enhanced visible-light-driven photocatalysis. Nanomaterials 9(8), 1139 (2019). https://doi.org/10.3390/nano9081139
M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri et al., Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environm. Sci. 12(1), 59–95 (2019). https://doi.org/10.1039/C8EE00886H
R.K. Yadav, J.O. Lee, A. Kumar, N.J. Park, D. Yadav et al., highly improved solar energy harvesting for fuel production from CO2 by a newly designed graphene film photocatalyst. Sci. Rep. 8, 16741 (2018). https://doi.org/10.1038/s41598-018-35135-7
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
M. Seol, S. Kim, Y. Cho, K.E. Byun, H. Kim et al., Triboelectric series of 2D layered materials. Adv. Mater. 30(39), 1801210 (2018). https://doi.org/10.1002/adma.201801210
H. Liu, Y. Feng, J. Shao, Y. Chen, Z.L. Wang et al., Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis. Nano Energy 70, 104499 (2020). https://doi.org/10.1016/j.nanoen.2020.104499
H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series. Nat. Commun. 10(1), 1427 (2019). https://doi.org/10.1038/s41467-019-09461-x
Y. Wu, Y. Luo, J. Qu, W.A. Daoud, T. Qi, Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics. Nano Energy 64, 103948 (2019). https://doi.org/10.1016/j.nanoen.2019.103948
Y. Guo, Y. Cao, Z. Chen, R. Li, W. Gong et al., Fluorinated metal–organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. Nano Energy 70, 104517 (2020). https://doi.org/10.1016/j.nanoen.2020.104517
J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim et al., Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers. Nat. Nanotechnol. 13(2), 112–116 (2018). https://doi.org/10.1038/s41565-017-0019-5
V.K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Natarajan, S. Sahoo et al., Antimonene dendritic nanostructures: dual-functional material for high-performance energy storage and harvesting devices. Nano Energy 77, 105248 (2020). https://doi.org/10.1016/j.nanoen.2020.105248
N. Kaur, J. Bahadur, V. Panwar, P. Singh, K. Rathi, K. Pal, Effective energy harvesting from a single electrode based triboelectric nanogenerator. Sci. Rep. 6(1), 38835 (2016). https://doi.org/10.1038/srep38835
S. Jang, J.H. Oh, Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci. Rep. 8(1), 14287 (2018). https://doi.org/10.1038/s41598-018-32609-6
Y. Li, W. Zheng, H. Zhang, H. Wang, H. Cai et al., Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators. Nano Energy 70, 104540 (2020). https://doi.org/10.1016/j.nanoen.2020.104540
B.N. Chandrashekar, B. Deng, A.S. Smitha, Y. Chen, C. Tan et al., Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 27(35), 5210–5216 (2015). https://doi.org/10.1002/adma.201502560
Z. Quan, C.B. Han, T. Jiang, Z.L. Wang, Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 6(5), 1501799 (2016). https://doi.org/10.1002/aenm.201501799
K.A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3(19), 2871–2876 (2012). https://doi.org/10.1021/jz3012436
C. Cui, F. Xue, W.J. Hu, L.J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2(1), 24 (2018). https://doi.org/10.1038/s41699-018-0067-1
K.H. Kim, B. Kumar, K.Y. Lee, H.K. Park, J.H. Lee et al., Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation. Sci. Rep. 3(1), 2017 (2013). https://doi.org/10.1038/srep02017
Y. Lee, S. Kim, D. Kim, C. Lee, H. Park et al., Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Appl. Surface Sci. 509, 145328 (2020). https://doi.org/10.1016/j.apsusc.2020.145328
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523), 470–474 (2014). https://doi.org/10.1038/nature13792
Y.M. You, W.Q. Liao, D. Zhao, H.Y. Ye, Y. Zhang et al., An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357(6348), 306–309 (2017). https://doi.org/10.1126/science.aai8535
M. Bai, Y. Zhai, F. Liu, Y. Wang, S. Luo, Stretchable graphene thin film enabled yarn sensors with tunable piezoresistivity for human motion monitoring. Sci. Rep. 9(1), 18644 (2019). https://doi.org/10.1038/s41598-019-55262-z
L. Bu, Z. Chen, Z. Chen, L. Qin, F. Yang et al., Impact induced compound method for triboelectric-piezoelectric hybrid nanogenerators to achieve watt level average power in low frequency rotations. Nano Energy 70, 104500 (2020). https://doi.org/10.1016/j.nanoen.2020.104500
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer et al., Thermal conductivity reduction and thermoelectric Fig. of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96(4), 045901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
Y.T. Li, Y. Tian, M.X. Sun, T. Tu, Z.Y. Ju et al., Graphene-based devices for thermal energy conversion and utilization. Adv. Funct. Mater. 30(8), 1903888 (2020). https://doi.org/10.1002/adfm.201903888
G. Zhang, Y.W. Zhang, Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 5(31), 7684–7698 (2017). https://doi.org/10.1039/C7TC01088E
S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda et al., Giant thermoelectric power factor in ultrathin FeSe superconductor. Nat. Commun. 10(1), 825 (2019). https://doi.org/10.1038/s41467-019-08784-z
G. Kogo, B. Xiao, S. Danquah, H. Lee, J. Niyogushima et al., A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask. Sci. Rep. 10(1), 1067 (2020). https://doi.org/10.1038/s41598-020-57991-y
K.A. Morgan, T. Tang, I. Zeimpekis, A. Ravagli, C. Craig et al., High-throughput physical vapour deposition flexible thermoelectric generators. Sci. Rep. 9(1), 4393 (2019). https://doi.org/10.1038/s41598-019-41000-y
S.J. Liang, B. Liu, W. Hu, K. Zhou, L.K. Ang, Thermionic energy conversion based on graphene van der Waals heterostructures. Sci. Rep. 7, 46211 (2017). https://doi.org/10.1038/srep46211
D. Zhang, Y. Song, L. Ping, S. Xu, D. Yang et al., Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Res. 12(12), 2982–2987 (2019). https://doi.org/10.1007/s12274-019-2541-2
D. Guyomar, G. Sebald, Pyroelectric/electrocaloric energy scanvenging and cooling capabilities in ferroelectric materials. Int. J. Appl. Electromagn. Mech. 31(1), 41–46 (2009). https://doi.org/10.3233/JAE-2009-1045
C.R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhanc et al., Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7(12), 3836–3856 (2014). https://doi.org/10.1039/C4EE01759E
G. Cha, Y. Jia, Y.S. Ju, High-power density pyroelectric energy harvesters incorporating switchable liquid-based thermal interfaces. IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE (January 2012). https://doi.org/10.1109/MEMSYS.2012.6170414
K. Zhang, Y. Wang, Z.L. WanG, Y. Yang, Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy 55, 534–540 (2019). https://doi.org/10.1016/j.nanoen.2018.11.020
Y. Yang, H. Zhang, G. Zhu, S. Lee, Z.H. Lin et al., Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7(1), 785–790 (2013). https://doi.org/10.1021/nn305247x
S. Pandya, J. Wilbur, J. Kim, R. Gao, A. Dasgupta et al., Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17(5), 432–438 (2018). https://doi.org/10.1038/s41563-018-0059-8
U. Sassi, R. Parret, S. Nanot, M. Bruna, S. Borini et al., Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance. Nat. Commun. 8(1), 14311 (2017). https://doi.org/10.1038/ncomms14311
Y. Chang, J.Y. Wang, F.L. Wu, W. Tian, W. Zhai, Structural design and pyroelectric property of SnS/CdS heterojunctions contrived for low-temperature visible photodetectors. Adv. Funct. Mater. 30, 2001450 (2020). https://doi.org/10.1002/adfm.202001450
H. Li, C.S.L. Koh, Y.H. Lee, Y. Zhang, G.C. Phan-Quang et al., A wearable solar-thermal-pyroelectric harvester: achieving high power output using modified rGO-PEI and polarized PVDF. Nano Energy 73, 104723 (2020). https://doi.org/10.1016/j.nanoen.2020.104723
Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11(1), 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 13(34), 15384–15402 (2011). https://doi.org/10.1039/C1CP21915D
J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Environ. Sci. Technol. 44(23), 9207–9212 (2010). https://doi.org/10.1021/es1009345
F.H. van der Heyden, D. Stein, C. Dekker, Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95(11), 116104 (2005). https://doi.org/10.1103/PhysRevLett.95.116104
A. Siria, P. Poncharal, A.L. Biance, R. Fulcrand, X. Blasé et al., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494(7438), 455–458 (2013). https://doi.org/10.1038/nature11876
M. Macha, S. Marion, V.V. Nandigana, A. Radenovic, 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4(9), 588–605 (2019). https://doi.org/10.1038/s41578-019-0126-z
J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco et al., Single-layer MoS2 nanopores as nanopower generators. Nature 536(7615), 197–200 (2016). https://doi.org/10.1038/nature18593
P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, S. Sahoo, S. Manoharan et al., A high efficacy self-charging MoSe2 solid-state supercapacitor using electrospun nanofibrous piezoelectric separator with ionogel electrolyte. Adv. Mater. Interfaces 5(12), 1800055 (2018). https://doi.org/10.1002/admi.201800055
S. Sahoo, K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S. Manoharan et al., High performance self-charging supercapacitors using a porous PVDF-ionic liquid electrolyte sandwiched between two-dimensional graphene electrodes. J. Mater. Chem. A 7(38), 21693–21703 (2019). https://doi.org/10.1039/C9TA06245A
D. Zhou, F. Wang, J. Yang, L.Z. Fan, Flexible solid-state self-charging supercapacitor based on symmetric electrodes and piezo-electrolyte. Chem. Eng. J. 406, 126825 (2021). https://doi.org/10.1016/j.cej.2020.126825
L. Manjakkal, C.G. Núñez, W. Dang, R. Dahiya, Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018). https://doi.org/10.1016/j.nanoen.2018.06.072
K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo et al., Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 11(1), 2351 (2020). https://doi.org/10.1038/s41467-020-15808-6
D. Zhou, F. Wang, X. Zhao, J. Yang, H. Lu et al., Self-chargeable flexible solid-state supercapacitor for wearable electronics. ACS Appl. Mater. Interfaces 12(40), 44883–44891 (2020). https://doi.org/10.1021/acsami.0c14426
D. Zhou, T. Yang, J. Yang, L.Z. Fan, A flexible self-charging sodium-ion full battery for self-powered wearable electronics. J. Mater. Chem. A 8(26), 13267–13276 (2020). https://doi.org/10.1039/D0TA05006G
D. Zhou, N. Wang, T. Yang, L. Wang, X. Cao et al., Piezoelectric nanogenerator promotes highly stretchable and self-chargeable supercapacitors. Mater. Horiz. 7, 2158–2167 (2020). https://doi.org/10.1039/D0MH00610F
S. Qin, Q. Zhang, X. Yang, M. Liu, Q. Sun et al., Hybrid piezo/triboelectric-driven self-charging electrochromic supercapacitor power package. Adv. Energy Mater. 8(23), 1800069 (2018). https://doi.org/10.1002/aenm.201800069
D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65, 103974 (2019). https://doi.org/10.1016/j.nanoen.2019.103974
Y. Jiang, Y. Wang, H. Wu, Y. Wang, R. Zhang et al., Laser-etched stretchable graphene–polymer composite array for sensitive strain and viscosity sensors. Nano-Micro Lett. 11(1), 99 (2019). https://doi.org/10.1007/s40820-019-0333-6
S. Radhakrishnan, J. Mathiyarasu, Chapter 8—Graphene–carbon nanotubes modified electrochemical sensors, in Graphene-based electrochemical sensors for biomolecules. ed. by A. Pandikumar, P. Rameshkumar (Elsevier, Amsterdam, 2019), pp. 187–205. https://doi.org/10.1016/B978-0-12-815394-9.00008-X
K. Roy, S.K. Ghosh, A. Sultana, S. Garain, M. Xie et al., A self-powered wearable pressure sensor and pyroelectric breathing sensor based on go interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2(4), 2013–2025 (2019). https://doi.org/10.1021/acsanm.9b00033
C. Li, S. Cong, Z. Tian, Y. Song, L. Yu et al., Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 60, 247–256 (2019). https://doi.org/10.1016/j.nanoen.2019.03.061
Y. Wang, Y. Wang, Y. Yang, Graphene–polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Energy Mater. 8(22), 1800961 (2018). https://doi.org/10.1002/aenm.201800961
Y. Lee, J. Kim, B. Jang, S. Kim, B.K. Sharma et al., Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62, 259–267 (2019). https://doi.org/10.1016/j.nanoen.2019.05.039
P. Li, D. Zhang, Z. Wu, Flexible MoS2 sensor arrays for high performance label-free ion sensing. Sensors Actuat. A: Phys. 286, 51–58 (2019). https://doi.org/10.1016/j.sna.2018.12.026
A.V. Raghu, K.K. Karuppanan, J. Nampoothiri, B. Pullithadathil, Wearable, flexible ethanol gas sensor based on TiO2 nanoparticles-grafted 2d-titanium carbide nanosheets. ACS Appl. Nano Mater. 2(3), 1152–1163 (2019). https://doi.org/10.1021/acsanm.8b01975
S. Kim, Y. Dong, M.M. Hossain, S. Gorman, I. Towfeeq et al., Piezoresistive graphene/P(VDF-TrFE) heterostructure based highly sensitive and flexible pressure sensor. ACS Appl. Mater. Interfaces 11(17), 16006–16017 (2019). https://doi.org/10.1021/acsami.9b01964
T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang et al., A flexible pressure sensor based on an MXene–textile network structure. J. Mater. Chem. C 7(4), 1022–1027 (2019). https://doi.org/10.1039/C8TC04893B
Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). https://doi.org/10.1126/science.1124005
Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu et al., In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10(7), 6510–6518 (2016). https://doi.org/10.1021/acsnano.6b02693
H. Ouyang, Z. Liu, N. Li, B. Shi, Y. Zou et al., Symbiotic cardiac pacemaker. Nat. Commun. 10(1), 1821 (2019). https://doi.org/10.1038/s41467-019-09851-1
Z.L. Wang, T. Jiang, L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39, 9–23 (2017). https://doi.org/10.1016/j.nanoen.2017.06.035
T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3