Piezoelectric Materials for Controlling Electro-Chemical Processes
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 149
Abstract
Piezoelectric materials have been analyzed for over 100 years, due to their ability to convert mechanical vibrations into electric charge or electric fields into a mechanical strain for sensor, energy harvesting, and actuator applications. A more recent development is the coupling of piezoelectricity and electro-chemistry, termed piezo-electro-chemistry, whereby the piezoelectrically induced electric charge or voltage under a mechanical stress can influence electro-chemical reactions. There is growing interest in such coupled systems, with a corresponding growth in the number of associated publications and patents. This review focuses on recent development of the piezo-electro-chemical coupling multiple systems based on various piezoelectric materials. It provides an overview of the basic characteristics of piezoelectric materials and comparison of operating conditions and their overall electro-chemical performance. The reported piezo-electro-chemical mechanisms are examined in detail. Comparisons are made between the ranges of material morphologies employed, and typical operating conditions are discussed. In addition, potential future directions and applications for the development of piezo-electro-chemical hybrid systems are described. This review provides a comprehensive overview of recent studies on how piezoelectric materials and devices have been applied to control electro-chemical processes, with an aim to inspire and direct future efforts in this emerging research field.
Highlights:
1 This review focuses on recent development of the piezo-electro-chemical coupling multiple systems based on various piezoelectric materials.
2 Comparison of operating conditions and their electro-chemical performance is provided.
3 Challenges, potential future directions, and applications for the development of piezo-electro-chemical hybrid systems are described.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Curie, J. Curie, Development, via compression, of electric polarization in hemihedral crystals with inclined faces. Bull. Soc. Minerol. Fr. 3, 90–93 (1880)
- Google Scholar
- Z. Liang, C.F. Yan, S. Rtimi, J. Bandara, Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook. Appl. Catal. B 241, 256–269 (2019). https://doi.org/10.1016/j.apcatb.2018.09.028
- M.B. Starr, X.D. Wang, Coupling of piezoelectric effect with electrochemical processes. Nano Energy 14, 296–311 (2015). https://doi.org/10.1016/j.nanoen.2015.01.035
- R.S. Dahiya, A. Adami, C. Collini, L. Lorenzelli, POSFET tactile sensing arrays using CMOS technology. Sens. Actuat. A 202, 226–232 (2013). https://doi.org/10.1016/j.sna.2013.02.007
- C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014). https://doi.org/10.1039/C3EE42454E
- D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998). https://doi.org/10.1088/0034-4885/61/9/002
- J. Wu, Z. Wu, W.Q. Qian, Y.M. Jia, Y. Wang, H.S. Luo, lectric-field-treatment-induced enhancement of photoluminescence in Er3+-doped (Ba0.95Sr0.05)(Zr0.1Ti0.9)O3 piezoelectric ceramic. Mater. Lett. 184, 131–133 (2016). https://doi.org/10.1016/j.matlet.2016.07.061
- P.P. Shi, Y.Y. Tang, P.F. Li, W.Q. Liao, Z.X. Wang, Q. Ye, R.G. Xiong, Symmetry breaking in molecular ferroelectrics. Chem. Soc. Rev. 45, 3811–3827 (2016). https://doi.org/10.1039/C5CS00308C
- A.L. Kholkin, N.A. Pertsev, A.V. Goltsev, Piezoelectricity and crystal symmetry, in Piezoelectric and Acoustic Materials for Transducer Applications, ed. by A. Safari, E.K. Akdogan (Springer, Berlin, 2008), pp. 17–38. https://doi.org/10.1007/978-0-387-76540-2
- Google Scholar
- A.A. Marino, R.O. Becker, Piezoelectric effect and growth control in bone. Nature 228, 473–474 (1970). https://doi.org/10.1038/228473a0
- I. Katsouras, K. Asadi, M.Y. Li, T.B. van Driel, K.S. Kjaer et al., The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78–84 (2016). https://doi.org/10.1038/nmat4423
- P.S. Brody, Large polarization-dependent photovoltages in ceramic BaTiO3 + 5 wt% CaTiO3. Solid State Commun. 12, 673–676 (1973). https://doi.org/10.1016/0038-1098(73)90310-4
- P.S. Brody, High-voltage photovoltaic effect in barium-titanate and lead titanate lead zirconate ceramics. J. Solid State Chem. 12, 193–200 (1975). https://doi.org/10.1016/0022-4596(75)90305-9
- V.M. Fridkin, Review of recent work on the bulk photovoltaic effect in ferro and piezoelectrics. Ferroelectrics 53, 169–187 (1984). https://doi.org/10.1080/00150198408245047
- J.L. Giocondi, G.S. Rohrer, Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem. Mater. 13, 241–242 (2001). https://doi.org/10.1021/cm000890h
- J.L. Giocondi, G.S. Rohrer, Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3. J. Phys. Chem. B 105, 8275–8277 (2001). https://doi.org/10.1021/jp011804j
- A. Bhardwaj, N.V. Burbure, A. Gamalski, G.S. Rohrer, Composition dependence of the photochemical reduction of Ag by Ba1-xSrxTiO3. Chem. Mater. 22, 3527–3534 (2010). https://doi.org/10.1021/cm100718t
- W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013). https://doi.org/10.1126/science.1234855
- Y. Zhang, M.Y. Xie, V. Adamaki, H. Khanbareh, C.R. Bowen, Control of electro-chemical processes using energy harvesting materials and devices. Chem. Soc. Rev. 46, 7757–7786 (2017). https://doi.org/10.1039/c7cs00387k
- G. Sebald, D. Guyomar, A. Agbossou, On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 18(12), 125006–125007 (2009). https://doi.org/10.1088/0964-1726/18/12/125006
- Z.Y. Fei, W.J. Zhao, T.A. Palomaki, B.S. Sun, M.K. Miller et al., Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018). https://doi.org/10.1038/s41586-018-0336-3
- W. Li, L.J. Ji, Perovskite ferroelectrics go metal free. Science 361, 132 (2018). https://doi.org/10.1126/science.aat5729
- C.H. Ahn, K.M. Rabe, J.M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004). https://doi.org/10.1126/science.1092508
- Y.M. You, W.Q. Liao, D.W. Zhao, H.Y. Ye, Y. Zhang et al., An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357, 306–309 (2017). https://doi.org/10.1126/science.aai8535
- Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
- S.C. Masmanidis, R.B. Karabalin, I. De Vlaminck, G. Borghs, M.R. Freeman, M.L. Roukes, Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007). https://doi.org/10.1126/science.1144793
- M.B. Starr, X.D. Wang, Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Sci. Rep. 3, 2160 (2013). https://doi.org/10.1038/srep02160
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
- D. Das, T.N. Veziroglu, Hydrogen production by biological processes: a survey of literature. Int. J. Hydrog. Energy 26, 13–28 (2001). https://doi.org/10.1016/s0360-3199(00)00058-6
- S.A. Grigoriev, V.I. Porembsky, V.N. Fateev, Pure hydrogen production by PEM electrolysis for hydrogen energy. Int. J. Hydrog. Energy 31, 171–175 (2006). https://doi.org/10.1016/j.ijhydene.2005.04.038
- A. Mostafaeipour, M. Khayyami, A. Sedaghat, K. Mohammadi, S. Shamshirband, M.A. Sehati, E. Gorakifard, Evaluating the wind energy potential for hydrogen production: a case study. Int. J. Hydrog. Energy 41, 6200–6210 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.038
- K.S. Hong, H.F. Xu, H. Konishi, X.C. Li, Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett. 1, 997–1102 (2010). https://doi.org/10.1021/jz100027t
- M.Z. Jacobson, G.M. Masters, Energy: exploiting wind versus coal. Science 293, 1438 (2001). https://doi.org/10.1126/science.1063376
- W.D. Metz, Wind energy: large and small systems competing. Science 197, 971–973 (1977). https://doi.org/10.1126/science.197.4307.971
- M. Qolipour, A. Mostafaeipour, O.M. Tousi, Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: a case study. Renew. Sustain. Energy Rev. 78, 113–123 (2017). https://doi.org/10.1016/j.rser.2017.04.088
- H.D. Li, Y.H. Sang, S.J. Chang, X. Huang, Y. Zhang et al., Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 15, 2372–2379 (2015). https://doi.org/10.1021/nl504630j
- W. Qian, K. Zhao, D. Zhang, C.R. Bowen, Y. Wang, Y. Yang, Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. ACS Appl. Mater. Interfaces. 11, 27862–27869 (2019). https://doi.org/10.1021/acsami.9b07857
- Y.L. Zhang, A.M. Schultz, P.A. Salvador, G.S. Rohrer, Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. J. Mater. Chem. 21, 4168–4174 (2011). https://doi.org/10.1039/c0jm04313c
- V. Bermudez, F. Caccavale, C. Sada, F. Segato, E. Dieguez, Etching effect on periodic domain structures of lithium niobate crystals. J. Cryst. Growth 191, 589–593 (1998). https://doi.org/10.1016/S0022-0248(98)00394-7
- F. Kubel, H. Schmid, Growth, twinning and etch figures of ferroelectric ferroelastic dendritic BiFeO3 single domain crystals. J. Cryst. Growth 129, 515–524 (1993). https://doi.org/10.1016/0022-0248(93)90485-f
- W.L. Holstein, Etching study of ferroelectric microdomains in LiNbO3 and MgO:LiNbO3. J. Cryst. Growth 171, 477–484 (1997). https://doi.org/10.1016/S0022-0248(96)00681-1
- O.Y. Gorobets, S.V. Gorobets, O.K. Dvoynenko, Correlation between the sizing features of domain structure and the etching figures of a steel cylinder. Metallofiz Nov. Tekh. 34, 1027–1034 (2012). https://doi.org/10.1063/1.1754147
- C.L. Sones, S. Mailis, W.S. Brocklesby, R.W. Eason, J.R. Owen, Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J. Mater. Chem. 12, 295–298 (2002). https://doi.org/10.1039/b106279b
- X.Y. Xue, S.H. Wang, W.X. Guo, Y. Zhang, Z.L. Wang, Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12, 5048–5054 (2012). https://doi.org/10.1021/nl302879t
- A. Ramadoss, B. Saravanakumar, S.W. Lee, Y.S. Kim, S.J. Kim, Z.L. Wang, Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 9, 4337–4345 (2015). https://doi.org/10.1021/acsnano.5b00759
- R.B. Song, H.Y. Jin, X. Li, L.F. Fei, Y.D. Zhao et al., A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J. Mater. Chem. A 3, 14963–14970 (2015). https://doi.org/10.1039/c5ta03349g
- F. Wang, C.M. Jiang, C.L. Tang, S. Bi, Q.H. Wang, D.F. Du, J.H. Song, High output nano-energy cell with piezoelectric nanogenerator and porous supercapacitor dual functions—a technique to provide sustaining power by harvesting intermittent mechanical energy from surroundings. Nano Energy 21, 209–216 (2016). https://doi.org/10.1016/j.nanoen.2016.01.018
- K. Parida, V. Bhavanasi, V. Kumar, J.X. Wang, P.S. Lee, Fast charging self-powered electric double layer capacitor. J. Power Sources 342, 70–78 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.083
- B.S. Lee, J. Yoon, C. Jung, D.Y. Kim, S.Y. Jeon et al., Silicon/carbon nanotube/BaTiO3 nanocomposite anode: evidence for enhanced lithium-ion mobility induced by the local piezoelectric potential. ACS Nano 10, 2617–2627 (2016). https://doi.org/10.1021/acsnano.5b07674
- S. Kim, S.J. Choi, K.J. Zhao, H. Yang, G. Gobbi, S.L. Zhang, J. Li, Electrochemically driven mechanical energy harvesting. Nat. Commun. 7, 10146 (2016). https://doi.org/10.1038/ncomms10146
- S.B. Lang, S.A.M. Tofail, A.L. Kholkin, M. Wojtas, M. Gregor et al., Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Sci. Rep. 3, 2215 (2013). https://doi.org/10.1038/srep02215
- F.R. Baxter, C.R. Bowen, I.G. Turner, A.C.E. Dent, Electrically active bioceramics: a review of interfacial responses. Ann. Biomed. Eng. 38, 2079–2092 (2010). https://doi.org/10.1007/s10439-010-9977-6
- N. Touach, V.M. Ortiz-Martinez, M.J. Salar-Garcia, A. Benzaouak, F. Hernandez-Fernandez et al., On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuology 34, 147–155 (2017). https://doi.org/10.1016/j.partic.2017.02.006
- E. Jacques, M.H. Kjell, D. Zenkert, G. Lindbergh, Piezo-electrochemical effect in lithium-intercalated carbon fibres. Electrochem. Commun. 35, 65–67 (2013). https://doi.org/10.1016/j.elecom.2013.07.040
- E. Jacques, G. Lindbergh, D. Zenkert, S. Leijonmarck, M.H. Kjell, Piezo-electrochemical energy harvesting with lithium-intercalating carbon fibers. ACS Appl. Mater. Interfaces. 7, 13898–13904 (2015). https://doi.org/10.1021/acsami.5b02585
- S. Ikeda, T. Takata, T. Kondo, G. Hitoki, M. Hara et al., Mechano-catalytic overall water splitting. Chem. Commun. 20, 2185–2186 (1998). https://doi.org/10.1039/A804549F
- E. Asadian, M. Ghalkhani, S. Shahrokhian, Electrochemical sensing based on carbon nanoparticles: a review. Sens. Actuator B 293, 183–209 (2019). https://doi.org/10.1016/j.snb.2019.04.075
- L. Rossner, M. Armbruster, Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal. 9, 2018–2062 (2019). https://doi.org/10.1021/acscatal.8b04566
- V. Vogiazi, A. de la Cruz, S. Mishra, V. Shanov, W.R. Heineman, D.D. Dionysiou, A comprehensive review: development of electrochemical biosensors for detection of cyanotoxins in freshwater. ACS Sens. 4, 1151–1173 (2019). https://doi.org/10.1021/acssensors.9b00376
- J. Kim, R. Kumar, A.J. Bandodkar, J. Wang, Advanced materials for printed wearable electrochemical devices: a review. Adv. Electron. Mater. 3, 1600260 (2017). https://doi.org/10.1002/aelm.201600260
- E. Fresta, R.D. Costa, Beyond traditional light-emitting electrochemical cells—a review of new device designs and emitters. J. Mater. Chem. C 5, 5643–5675 (2017). https://doi.org/10.1039/C7TC00202E
- X.C. Tian, J. Jin, S.Q. Yuan, C.K. Chua, S.B. Tor, K. Zhou, Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv. Energy Mater. 7, 100127 (2017). https://doi.org/10.1002/aenm.201700127
- P.K. Nayak, E.M. Erickson, F. Schipper, T.R. Penki, N. Munichandraiah et al., Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for li-ion batteries. Adv. Energy Mater. 8, 1702397 (2018). https://doi.org/10.1002/aenm.201702397
- R.G. Saratale, G.D. Saratale, A. Pugazhendhi, G.Y. Zhen, G. Kumar, A. Kadier, P. Sivagurunathan, Microbiome involved in microbial electrochemical systems (MESs): a review. Chemosphere 177, 176–188 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.143
- M.B. Starr, J. Shi, X.D. Wang, Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem. Int. Ed. 51, 5962–5966 (2012). https://doi.org/10.1002/ange.201201424
- J. Zhang, Z. Wu, Y.M. Jia, J.W. Kan, G.M. Cheng, Piezoelectric bimorph cantilever for vibration-producing-hydrogen. Sensors 13, 367–374 (2013). https://doi.org/10.3390/s130100367
- H. Lin, Z. Wu, Y.M. Jia, W.J. Li, R.K. Zheng, H.S. Luo, Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers. Appl. Phys. Lett. 104, 162907 (2014). https://doi.org/10.1063/1.4873522
- M.K. Lo, S.Y. Lee, K.S. Chang, Study of ZnSnO3-nanowire piezophotocatalyst using two-step hydrothermal synthesis. J. Phys. Chem. C 119, 5218–5224 (2015). https://doi.org/10.1021/acs.jpcc.5b00282
- C.F. Tan, W.L. Ong, G.W. Ho, Self-biased hybrid piezoelectric-photoelectrochemical cell with photocatalytic functionalities. ACS Nano 9, 7661–7670 (2015). https://doi.org/10.1021/acsnano.5b03075
- H.L. You, Y.M. Jia, Z. Wu, X.L. Xu, W.Q. Qian, Y.T. Xia, M. Ismail, Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis. Electrochem. Commun. 79, 55–58 (2017). https://doi.org/10.1016/j.elecom.2017.04.017
- H.L. You, Z. Wu, L.H. Zhang, Y.R. Ying, Y. Liu et al., Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew. Chem. Int. Ed. 58, 11779–11784 (2019). https://doi.org/10.1002/anie.201906181
- J.M. Wu, W.E. Chang, Y.T. Chang, C.K. Chang, Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Adv. Mater. 28, 3718–3725 (2016). https://doi.org/10.1002/adma.201505785
- J.H. Lin, Y.H. Tsao, M.H. Wu, T.M. Chou, Z.H. Lin, J.M. Wu, Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy 31, 575–581 (2017). https://doi.org/10.1016/j.nanoen.2016.12.013
- N.V. Burbure, P.A. Salvador, G.S. Rohrer, Photochemical reactivity of titania films on BaTiO3 substrates: origin of spatial selectivity. Chem. Mater. 22, 5823–5830 (2010). https://doi.org/10.1021/cm1018025
- S.Y. Lan, J.X. Feng, Y. Xiong, S.H. Tian, S.W. Liu, L.J. Kong, Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination. Environ. Sci. Technol. 51, 6560–6569 (2017). https://doi.org/10.1021/acs.est.6b06426
- W. Lv, L.J. Kong, S.Y. Lan, J.X. Feng, Y. Xiong, S.H. Tian, Enhancement effect in the piezoelectric degradation of organic pollutants by piezo-Fenton process. J. Chem. Technol. Biotechnol. 92, 152–156 (2017). https://doi.org/10.1002/jctb.4981
- D. Tiwari, S. Dunn, Q. Zhang, Impact of Zr/Ti ratio in the PZT on the photoreduction of silver nanoparticles. Mater. Res. Bull. 44, 1219–1224 (2009). https://doi.org/10.1016/j.materresbull.2009.01.016
- F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer et al., Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation. Science 4, 236–246 (2018). https://doi.org/10.1016/j.isci.2018.06.003
- C. Sun, Y.M. Fu, Q. Wang, L.L. Xing, B.D. Liu, X.Y. Xue, Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag2O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure. RSC Adv. 6, 87446–87453 (2016). https://doi.org/10.1039/C6RA13464E
- D.Y. Hong, W.L. Zang, X. Guo, Y.M. Fu, H.X. He et al., High piezo-photocatalytic efficiency of CuS/ZnO nanowires using both solar and mechanical energy for degrading organic dye. ACS Appl. Mater. Interfaces. 8, 21302–21314 (2016). https://doi.org/10.1021/acsami.6b05252
- M.H. Wu, J.T. Lee, Y.J. Chung, M. Srinivaas, J.M. Wu, Ultrahigh efficient degradation activity of single- and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect. Nano Energy 40, 369–375 (2017). https://doi.org/10.1016/j.nanoen.2017.08.042
- S. Masimukku, Y.C. Hu, Z.H. Lin, S.W. Chan, T.M. Chou, J.M. Wu, High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance. Nano Energy 46, 338–346 (2018). https://doi.org/10.1016/j.nanoen.2018.02.008
- L.L. Xing, Y.X. Nie, X.Y. Xue, Y. Zhang, PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell. Nano Energy 10, 44–52 (2014). https://doi.org/10.1016/j.nanoen.2014.09.004
- Y.S. Kim, Y.N. Xie, X.N. Wen, S.H. Wang, S.J. Kim, H.K. Song, Z.L. Wang, Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy 14, 77–86 (2015). https://doi.org/10.1016/j.nanoen.2015.01.006
- K. Noris-Suarez, J. Lira-Olivares, A.M. Ferreira, A. Graterol, J.L. Feijoo, S.W. Lee, Electrochemical influence of collagen piezoelectric effect in bone healing. Mater. Sci. Forum 544–545, 981–984 (2007). https://doi.org/10.4028/www.scientific.net/MSF.544-545.981
- J.L. Giocondi, G.S. Rohrer, The influence of the dipolar field effect on the photochemical reactivity of Sr2Nb2O7 and BaTiO3 microcrystals. Top. Catal. 49, 18–23 (2008). https://doi.org/10.1007/s11244-008-9067-2
- K.S. Hong, H.F. Xu, H. Konishi, X.C. Li, Piezoelectrochemical effect: a new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. J. Phys. Chem. C 116, 13045–13051 (2012). https://doi.org/10.1021/jp211455z
- X.Y. Xue, W.L. Zang, P. Deng, Q. Wang, L.L. Xing, Y. Zhang, Z.L. Wang, Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 13, 414–422 (2015). https://doi.org/10.1016/j.nanoen.2015.02.029
- Y.T. Wang, K.S. Chang, Piezopotential-induced schottky behavior of Zn1-xSnO3 nanowire arrays and piezophotocatalytic applications. J. Am. Ceram. Soc. 99, 2593–2600 (2016). https://doi.org/10.1111/jace.14264
- H.L. Zhang, S.J. Zhang, G. Yao, Z.L. Huang, Y.H. Xie et al., Simultaneously harvesting thermal and mechanical energies based on flexible hybrid nanogenerator for self-powered cathodic protection. ACS Appl. Mater. Interfaces. 7, 28142–28147 (2015). https://doi.org/10.1021/acsami.5b10923
- X.F. Bai, J. Wei, B.B. Tian, Y. Liu, T. Reiss et al., Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles. J. Phys. Chem. C 120, 3595–3601 (2016). https://doi.org/10.1021/acs.jpcc.5b09945
- T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007). https://doi.org/10.1021/nl063039w
- S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, C.W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114, 2903–2908 (2010). https://doi.org/10.1021/jp910401u
- H.D. Espinosa, R.A. Bernal, M. Minary-Jolandan, A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 24, 4656–4675 (2012). https://doi.org/10.1002/adma.201104810
- S.K. Singh, H. Ishiwara, K. Maruyama, Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett. 88, 262908–262910 (2006). https://doi.org/10.1063/1.2218819
- J.M. Park, S. Nakashima, M. Sohgawa, T. Kanashima, M. Okuyama, Ferroelectric and piezoelectric properties of polycrystalline BiFeO3 thin films prepared by pulsed laser deposition under magnetic field. Jpn. J. Appl. Phys. 51, 09MD05 (2012). https://doi.org/10.1143/JJAP.51.09MD05
- G. Mantini, Y.F. Gao, A. D’Amico, C. Falconi, Z.L. Wang, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Res. 2, 624–629 (2009). https://doi.org/10.1007/s12274-009-9063-2
- M.Y. Choi, D. Choi, M.J. Jin, I. Kim, S.H. Kim, J.Y. Choi et al., Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21, 2185–2189 (2009). https://doi.org/10.1002/adma.200803605
- Z.Y. Gao, J. Zhou, Y.D. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. 106, 113707–113712 (2009). https://doi.org/10.1063/1.3125449
- Y.W. Feng, L.L. Ling, Y.X. Wang, Z.M. Xu, F.L. Cao, H.X. Li, Z.F. Bian, Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy 40, 481–486 (2017). https://doi.org/10.1016/j.nanoen.2017.08.058
- J. Wu, N. Qin, D.H. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 45, 44–51 (2018). https://doi.org/10.1016/j.nanoen.2017.12.034
- M.C. Junger, D. Feit, Sound, Structures, and Their Interaction, 2nd ed. (MIT Press, Cambridge, 1986). http://hdl.handle.net/1721.1/1740
- O.E. Gulin, V.I. Klyatskin, Generation of a low-frequency acoustical noise in the layered ocean by the surface sources. Nat. Phys. Sources Underw. Sound (1993). https://doi.org/10.1007/978-94-011-1626-8_19. Accessed 11 Aug 2019
- J.A. Scrimger, D.J. Evans, W. Yee, Underwater noise due to rain—open ocean measurements. J. Acoust. Soc. Am. 85, 726–731 (1989). https://doi.org/10.1121/1.397598
- Y.G. Adewuyi, Sonochemistry: environmental science and engineering applications. Ind. Eng. Chem. Res. 40, 4681–4715 (2001). https://doi.org/10.1021/ie010096l
- N.H. Ince, G. Tezcanli, R.K. Belen, I.G. Apikyan, Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B 29, 167–176 (2001). https://doi.org/10.1016/s0926-3373(00)00224-1
- G. Tezcanli-Guyer, N.H. Ince, Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics 42, 603–609 (2004). https://doi.org/10.1016/j.ultras.2004.01.096
- Y.F. Li, Z.P. Liu, Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. J. Am. Chem. Soc. 133, 15743–15752 (2011). https://doi.org/10.1021/ja206153v
- H.L. You, Z. Wu, Y.M. Jia, X.L. Xu, Y.T. Xia, Z.C. Han, Y. Wang, High-efficiency and mechano-/photo-bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition. Chemosphere 183, 528–535 (2017). https://doi.org/10.1016/j.chemosphere.2017.05.130
- S.C. Rai, K. Wang, J.J. Chen, J.K. Marmon, M. Bhatt et al., Enhanced broad band photodetection through piezo-phototronic effect in CdSe/ZnTe core/shell nanowire array. Adv. Electron. Mater. 1, 1400050 (2015). https://doi.org/10.1002/aelm.201570009
- C. Han, M.Q. Yang, N. Zhang, Y.J. Xu, Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. J. Mater. Chem. A 2, 19156–19166 (2014). https://doi.org/10.1039/c4ta04151h
- R.E. Brandt, M. Young, H.H. Park, A. Dameron, D. Chua et al., Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics. Appl. Phys. Lett. 105, 263901–263905 (2014). https://doi.org/10.1063/1.4905180
- L.J. Meng, A.F. Ma, P.L. Ying, Z.C. Feng, C. Li, Sputtered highly ordered TiO2 nanorod arrays and their applications as the electrode in dye-sensitized solar cells. J. Nanosci. Nanotechnol. 11, 929–934 (2011). https://doi.org/10.1166/jnn.2011.3084
- S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5, 2543–2554 (2014). https://doi.org/10.1021/jz501030x
- C.C. Chen, P.X. Lei, H.W. Ji, W.H. Ma, J.C. Zhao, H. Hidaka, N. Serpone, Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study. Environ. Sci. Technol. 38, 329–337 (2004). https://doi.org/10.1021/es034384f
- J. Shi, M.B. Starr, H. Xiang, Y. Hara, M.A. Anderson, J.H. Seo, Z.Q. Ma, X.D. Wang, Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 11, 5587–5593 (2011). https://doi.org/10.1021/nl203729j
- L.W. Lu, M.L. Lv, G. Liu, X.X. Xu, Photocatalytic hydrogen production over solid solutions between BiFeO3 and SrTiO3. Appl. Surf. Sci. 391, 535–541 (2017). https://doi.org/10.1016/j.apsusc.2016.06.160
- N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol., A 162, 317–322 (2004). https://doi.org/10.1016/S1010-6030(03)00378-2
- W.Q. Qian, Z. Wu, Y.M. Jia, Y.T. Hong, X.L. Xu et al., Thermo-electrochemical coupling for room temperature thermocatalysis in pyroelectric ZnO nanorods. Electrochem. Commun. 81, 124–127 (2017). https://doi.org/10.1016/j.elecom.2017.06.017
- I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010
- C. Galindo, P. Jacques, A. Kalt, Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations. Chemosphere 45, 997–1005 (2001). https://doi.org/10.1016/S0045-6535(01)00118-7
- J. Bandara, J.A. Mielczarski, J. Kiwi, Photosensitized degradation of azo dyes on Fe, Ti, and Al oxides. Mechanism of charge transfer during the degradation. Langmuir 15, 7680–7687 (1999). https://doi.org/10.1021/la990030j
- M. Stylidi, D.I. Kondarides, X.E. Verykios, Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B 40, 271–286 (2003). https://doi.org/10.1016/S0926-3373(02)00163-7
- B. Jaffe, R.S. Roth, S. Marzullo, Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25, 809–810 (1954). https://doi.org/10.1063/1.1721741
- D. Damjanovic, Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Trans. Ultrason. Ferroelectr. 56, 1574–1585 (2009). https://doi.org/10.1109/TUFFC.2009.1222
- W.Q. Liao, D.W. Zhao, Y.Y. Tang, Y. Zhang, P.F. Li et al., A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science 363, 1206–1210 (2019). https://doi.org/10.1126/science.aav3057
- T.M. Borman, S.W. Ko, P. Mardilovich, S.E. Trolier-McKinstry, Development of crystallographic texture in chemical solution deposited lead zirconate titanate seed layers. J. Am. Ceram. Soc. 100, 4476–4482 (2017). https://doi.org/10.1111/jace.15019
- M.D. Nguyen, E.P. Houwman, M. Dekkers, G. Rijnders, Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically aligned columnar grains. ACS Appl. Mater. Interfaces. 9, 9849–9861 (2017). https://doi.org/10.1021/acsami.6b16470
- A. Schatz, D. Pantel, T. Hanemann, Pulsed laser deposition of piezoelectric lead zirconate titanate thin films maintaining a post-CMOS compatible thermal budget. J. Appl. Phys. 122, 114502–114509 (2017). https://doi.org/10.1063/1.5000367
- T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 113–126 (2007). https://doi.org/10.1007/s10832-007-9047-0
- K. Brajesh, K. Tanwar, M. Abebe, R. Ranjan, Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba, Ca)(Ti, Zr)O3. Phys. Rev. B 92, 224112 (2015). https://doi.org/10.1103/PhysRevB.92.224112
- R.F. Cheng, Z.J. Xu, R.Q. Chu, J.G. Hao, J. Du, G.R. Li, Structure and electrical properties of Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics. RSC Adv. 5, 41646–41652 (2015). https://doi.org/10.1039/C5RA03997E
- K.N. Kim, J. Chun, S.A. Chae, C.W. Ahn, I.W. Kim et al., Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy 14, 87–94 (2015). https://doi.org/10.1016/j.nanoen.2015.01.004
- H.G. Wei, H. Wang, Y.J. Xia, D.P. Cui, Y.P. Shi et al., An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C 6, 12446–12467 (2018). https://doi.org/10.1039/C8TC04515A
- J. Chen, S.K. Oh, H.Y. Zou, S. Shervin, W.J. Wang et al., High-output lead-free flexible piezoelectric generator using single-crystalline GaN thin film. ACS Appl. Mater. Interfaces. 10, 12839–12846 (2018). https://doi.org/10.1021/acsami.8b01281
- A. Akbarzadeh, K. Brajesh, Y. Nahas, N. Kumar, S. Prokhorenko et al., Quantum-fluctuation-stabilized orthorhombic ferroelectric ground state in lead-free piezoelectric (Ba, Ca)(Zr, Ti)O3. Phys. Rev. B 98, 104101 (2018). https://doi.org/10.1103/PhysRevB.98.104101
- Y.M. Wang, H.J. Wu, X. Qin, K. Yao, S.J. Pennycook, F.E.H. Tay, Outstanding piezoelectric performance in lead-free 0.95(K, Na)(Sb, Nb)O-3-0.05(Bi, Na, K)ZrO3 thick films with oriented nanophase coexistence. Adv. Electron. Mater. 5, 1800691 (2019). https://doi.org/10.1002/aelm.201800691
- J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
- D.K. Kushvaha, S.K. Rout, B. Tiwari, Structural, piezoelectric and highdensity energy storage properties of lead-free BNKT-BCZT solid solution. J. Alloys Compd. 782, 270–276 (2019). https://doi.org/10.1016/j.jallcom.2018.12.196
- C. Moure, O. Pena, Recent advances in perovskites: processing and properties. Prog. Solid State Chem. 43, 123–148 (2015). https://doi.org/10.1016/j.progsolidstchem.2015.09.001
- S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997). https://doi.org/10.1126/science.276.5310.238
- K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker et al., Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004). https://doi.org/10.1126/science.1103218
- H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili et al., Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004). https://doi.org/10.1126/science.1094207
- G.H. Jonker, J.H. Vansanten, Properties of barium titanate in connection with its crystal structure. Science 109, 632–635 (1949). https://doi.org/10.1126/science.109.2843.632
- H.F. Kay, R.G. Rhodes, Barium titanate crystals. Nature 160, 126–127 (1947). https://doi.org/10.1038/160126a0
- J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003). https://doi.org/10.1126/science.1080615
- W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307, 1203 (2005). https://doi.org/10.1126/science.1105422
- J. Wang, A. Scholl, H. Zheng, S.B. Ogale, D. Viehland et al., Response to comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307, 1203 (2005). https://doi.org/10.1126/science.1103959
- R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He et al., A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977–980 (2009). https://doi.org/10.1126/science.1177046
- J.H. Sun, S.Y. Dong, Y.K. Wang, S.P. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. J. Hazard. Mater. 172, 1520–1526 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.022
- Y.T. Xia, Y.M. Jia, W.Q. Qian, X.L. Xu, Z. Wu et al., Pyroelectrically induced pyro-electro-chemical catalytic activity of BaTiO3 nanofibers under room-temperature cold-hot cycle excitations. Metals 7(4), 122–130 (2017). https://doi.org/10.3390/met7040122
- S.G. Yuan, Z.B. Yang, C. Xie, F. Yan, J.Y. Dai et al., Ferroelectric-driven performance enhancement of graphene field-effect transistors based on vertical tunneling heterostructures. Adv. Mater. 28, 10048–10054 (2016). https://doi.org/10.1002/adma.201601489
- M.C. Wong, L. Chen, M.K. Tsang, Y. Zhang, J.H. Hao, Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 27, 4488–4495 (2015). https://doi.org/10.1002/adma.201570203
- J.P. Ma, J. Ren, Y.M. Jia, Z. Wu, L. Chen et al., High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 62, 376–383 (2019). https://doi.org/10.1016/j.nanoen.2019.05.058
- A. Khan, M.A. Abbasi, M. Hussain, Z.H. Ibupoto, J. Wissting, O. Nur, M. Willander, Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl. Phys. Lett. 101, 193506–193509 (2012). https://doi.org/10.1063/1.4766921
- A. Mahmud, A.A. Khan, P. Voss, T. Das, E. Abdel-Rahman, D. Ban, A high performance and consolidated piezoelectric energy harvester based on 1D/2D hybrid zinc oxide nanostructures. Adv. Mater. Interfaces 5, 1801167 (2018). https://doi.org/10.1002/admi.201801167
- Z.W. Wang, Z.M. Zhang, W. Liu, Z.L. Wang, Investigating fold structures of 2D materials by quantitative transmission electron microscopy. Micron 95, 16–22 (2017). https://doi.org/10.1016/j.micron.2017.01.001
- K.A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012). https://doi.org/10.1021/jz3012436
- K.J. Huang, L. Wang, Y.J. Liu, H.B. Wang, Y.M. Liu, L.L. Wang, Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim. Acta 109, 587–594 (2013). https://doi.org/10.1016/j.electacta.2013.07.168
- J. Mann, Q. Ma, P.M. Odenthal, M. Isarraraz, D. Le et al., 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1-x)Se2x monolayers. Adv. Mater. 26, 1399–1404 (2014). https://doi.org/10.1002/adma.201304389
- C.N.R. Rao, U. Maitra, U.V. Waghmare, Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chem. Phys. Lett. 609, 172–183 (2014). https://doi.org/10.1016/j.cplett.2014.06.003
- S.L. Shi, Z.X. Sun, Y.H. Hu, Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 6, 23932–23977 (2018). https://doi.org/10.1039/C8TA08152B
- K. Nowakowski, R. van Bremen, H.J.W. Zandvliet, P. Bampoulis, Control of the metal/WS2 contact properties using 2-dimensional buffer layers. Nanoscale 11, 5548–5556 (2019). https://doi.org/10.1039/C9NR00574A
- X. Yu, C.G. Pei, W.S. Chen, L.G. Feng, 2 dimensional WS2 tailored nitrogen-doped carbon nanofiber as a highly pseudocapacitive anode material for lithium-ion battery. Electrochim. Acta 272, 119–126 (2018). https://doi.org/10.1016/j.electacta.2018.03.201
- S.J. Xu, Z.Y. Lei, P.Y. Wu, Facile preparation of 3D MoS2/MoSe2 nanosheet-graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 16337–16347 (2015). https://doi.org/10.1039/C5TA02637G
- X.S. Chen, G.B. Liu, W. Zheng, W. Feng, W.W. Cao, W.P. Hu, P.A. Hu, Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 26, 8537–8544 (2016). https://doi.org/10.1002/adfm.201603674
- X.S. Geng, Y.Q. Yu, X.L. Zhou, C.D. Wang, K.W. Xu et al., Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Nano Res. 9, 2641–2651 (2016). https://doi.org/10.1007/s12274-016-1151-5
- H. Peng, C.D. Wei, K. Wang, T.Y. Meng, G.F. Ma, Z.Q. Lei, X. Gong, Ni0.85Se@MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 9, 17068–17076 (2017). https://doi.org/10.1021/acsami.7b02776
- L.Z. He, T.Q. Nie, X.J. Xia, T. Liu, Y.Y. Huang, X.J. Wang, T.F. Chen, Designing bioinspired 2D MoSe2 nanosheet for efficient photothermal-triggered cancer immunotherapy with reprogramming tumor-associated macrophages. Adv. Funct. Mater. 29, 1901240 (2019). https://doi.org/10.1002/adfm.201901240
- V. Cauda, S. Stassi, K. Bejtka, G. Canayese, Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl. Mater. Interfaces. 5, 6430–6437 (2013). https://doi.org/10.1021/am4016878
- Z.Y. Pi, J.W. Zhang, C.Y. Wen, Z.B. Zhang, D.P. Wu, Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 7, 33–41 (2014). https://doi.org/10.1016/j.nanoen.2014.04.016
- N.R. Alluri, B. Saravanakumar, S.J. Kim, Flexible, hybrid piezoelectric film (BaTi(1-x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces. 7, 9831–9840 (2015). https://doi.org/10.1021/acsami.5b01760
- S.K. Karan, D. Mandal, B.B. Khatua, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7, 10655–10666 (2015). https://doi.org/10.1039/c5nr02067k
- G. Tian, W.L. Deng, Y.Y. Gao, D. Xiong, C. Yan et al., Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 59, 574–581 (2019). https://doi.org/10.1016/j.nanoen.2019.03.013
- Q.Q. Li, W.Y. Ke, T.X. Chang, Z.J. Hu, A molecular ferroelectrics induced electroactive β-phase in solution processed PVDF films for flexible piezoelectric sensors. J. Mater. Chem. C 7, 1532–1543 (2019). https://doi.org/10.1039/C8TC05090B
- L. Knott, A.J. Bailey, Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22, 181–187 (1998). https://doi.org/10.1016/s8756-3282(97)00279-2
- C.C. Silva, C.G.A. Lima, A.G. Pinheiro, J.C. Goes, S.D. Figueiro, A.S.B. Sombra, On the piezoelectricity of collagen-chitosan film. Phys. Chem. Chem. Phys. 3, 4154–4157 (2001). https://doi.org/10.1039/b100189m
- S.K. Ghosh, D. Mandal, Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring. ACS Sustain. Chem. Eng 5, 8836–8843 (2017). https://doi.org/10.1021/acssuschemeng.7b01617
- P.M. Jones, D.E. Gallardo, S. Dunn, Photochemical investigation of a polarizable semiconductor, lead-zirconate-titanate. Chem. Mater. 20, 5901–5906 (2008). https://doi.org/10.1021/cm8015116
- X.Y. Xue, P. Deng, S. Yuan, Y.X. Nie, B. He, L.L. Xing, Y. Zhang, CuO/PVDF nanocomposite anode for a piezo-driven self-charging lithium battery. Energy Environ. Sci. 6, 2615–2620 (2013). https://doi.org/10.1039/C3EE41648H
- Y. Zhang, Y.J. Zhang, X.Y. Xue, C.X. Cui, B. He et al., PVDF-PZT nanocomposite film based self-charging power cell. Nanotechnology 25, 2615–2620 (2014). https://doi.org/10.1088/0957-4484/25/10/105401
- Z.Y. Wang, J. Hu, M.F. Yu, One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett. 89, 263119–263121 (2006). https://doi.org/10.1063/1.2425047
- D. Yu, M.L. Zhao, C.L. Wang, L.H. Wang, W.B. Su et al., Enhanced piezoelectricity in plastically deformed nearly amorphous Bi12TiO20-BaTiO3 nanocomposites. Appl. Phys. Lett. 109, 032904–032908 (2016). https://doi.org/10.1063/1.4959248
- X.L. Xu, Y.M. Jia, L.B. Xiao, Z. Wu, Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere 193, 1143–1148 (2018). https://doi.org/10.1016/j.chemosphere.2017.11.116
- S.M. Guralnick, Contexts of faraday electrochemical laws. Isis 70, 59–75 (1979). https://doi.org/10.2307/230878
- MathSciNet
- P. Soroushian, R.U.D. Nassar, A.M. Balachandra, Piezo-driven self-healing by electrochemical phenomena. J. Intell. Mater. Syst. Struct. 24, 441–453 (2013). https://doi.org/10.1177/1045389X12461081
- C. Ribeiro, V. Sencadas, D.M. Correia, S. Lanceros-Mendez, Piezoelectric polymers as biomaterials for tissue engineering applications. Colloid Surface B 136, 46–55 (2015). https://doi.org/10.1016/j.colsurfb.2015.08.043
- M.H. Shamos, L.S. Lavine, Piezoelectricity as a fundamental property of biological tissues. Nature 213, 267–269 (1967). https://doi.org/10.1038/213267a0
- H. Athenstaedt, Pyroelectric and piezoelectric behaviour of human dental hard tissues. Arch. Oral Biol. 16, 495–501 (1971). https://doi.org/10.1016/0003-9969(71)90194-4
- J. Hofkens, M.B.J. Roeffaers, Electrochemistry: photocatalysts in close-up. Nature 530, 36–37 (2016). https://doi.org/10.1038/530036a
- J.W. Richards, The continuous advance of electrochemistry. Science 19, 0905–0912 (1904). https://doi.org/10.1126/science.19.494.905
- V.M. Fridkin, Photoferroelectrics (Springer, Berlin, 1979). https://doi.org/10.1007/978-3-642-81351-1
- Google Scholar
- A.J. Bard, A.B. Bocarsly, F.R.F. Fan, E.G. Walton, M.S. Wrighton, The concept of Fermi level pinning at semiconductor-liquid junctions—consequences for energy-conversion efficiency and selection of useful solution redox couples in solar devices. J. Am. Chem. Soc. 102, 3671–3677 (1980). https://doi.org/10.1021/ja00531a001
- S. Dunn, D. Tiwari, P.M. Jones, D.E. Gallardo, Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured. J. Mater. Chem. 17, 4460–4463 (2007). https://doi.org/10.1039/b710894j
- W.A. Smith, I.D. Sharp, N.C. Strandwitz, J. Bisquert, Interfacial band-edge energetics for solar fuels production. Energy Environ. Sci. 8, 2851–2862 (2015). https://doi.org/10.1039/C5EE01822F
- P. Salvador, Semiconductors’ photoelectrochemistry: a kinetic and thermodynamic analysis in the light of equilibrium and nonequilibrium models. J. Phys. Chem. B 105, 6128–6141 (2001). https://doi.org/10.1021/jp0033869
- M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley, Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 98, 2774–2779 (1976). https://doi.org/10.1002/chin.197631008
- L. Green Jr., Energy needs versus environmental pollution: a reconciliation? Science 156, 1448–1450 (1967). https://doi.org/10.1126/science.156.3781.1448
- D. Berg, R.G. Hickman, A. Kovats, Energy without pollution. Science 170, 17–18 (1970). https://doi.org/10.1126/science.170.3953.17
- J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004). https://doi.org/10.1126/science.1103197
- S. Park, W.J. Chang, C.W. Lee, S. Park, H.Y. Ahn, K.T. Nam, Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2, 16185 (2017). https://doi.org/10.1038/nenergy.2016.185
- P. Zhang, Y.J. Guo, J.B. Chen, Y.R. Zhao, J. Chang, H. Junge, M. Beller, Y. Li, Streamlined hydrogen production from biomass. Nat. Catal. 1, 332–338 (2018). https://doi.org/10.1038/s41929-018-0062-0
- A. Sartbaeva, V.L. Kuznetsov, S.A. Wells, P.P. Edwards, Hydrogen nexus in a sustainable energy future. Energy Environ. Sci. 1, 79–85 (2008). https://doi.org/10.1039/b810104n
- L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang et al., Low-temperature hydrogen production from water and methanol using Pt/alpha-MoC catalysts. Nature 544, 80–83 (2017). https://doi.org/10.1038/nature21672
- Q. Hu, D.Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, H.K. Mao, FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles. Nature 534, 241–244 (2016). https://doi.org/10.1038/nature18018
- H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B 39, 75–90 (2002). https://doi.org/10.1016/S0926-3373(02)00078-4
- P.D. Petrolekas, G. Maggenakis, Kinetic studies of the liquid-phase adsorption of a reactive dye onto activated lignite. Ind. Eng. Chem. Res. 46, 1326–1332 (2007). https://doi.org/10.1021/ie061222u
- Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, J. Li, Two-step kinetic study on the adsorption and desorption of reactive dyes at cationic polymer/bentonite. J. Hazard. Mater. 165, 1170–1178 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.110
- J. Li, J. Cai, L. Zhong, H. Wang, H. Cheng, Q. Ma, Adsorption of reactive dyes onto chitosan/montmorillonite intercalated composite: multi-response optimization, kinetic, isotherm and thermodynamic study. Water Sci. Technol. 77, 2598–2612 (2018). https://doi.org/10.2166/wst.2018.221
- H.M. Khan, M. Anwar, G. Ahmad, Effect of temperature and light on the response of an aqueous coumarin dosimeter. J. Radioanal. Nucl. Chem. Lett. 200, 521–527 (1995). https://doi.org/10.1007/BF02162501
- F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren et al., Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 19, 2889–2892 (2007). https://doi.org/10.1002/adma.200602377
- A.B. Prevot, C. Baiocchi, M.C. Brussino, E. Pramauro, P. Savarino et al., Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environ. Sci. Technol. 35, 971–976 (2001). https://doi.org/10.1021/es000162v
- A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
- S.S. Patil, V.M. Shinde, Biodegradation studies of aniline and nitrobenzene in aniline plant wastewater by gas chromatography. Environ. Sci. Technol. 22, 1160–1165 (1988). https://doi.org/10.1021/es00175a005
- I. Arslan, I.A. Balcioglu, Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study. Dyes Pigments 43, 95–108 (1999). https://doi.org/10.1016/S0143-7208(99)00048-0
- A.T. Moore, A. Vira, S. Fogel, Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator. Environ. Sci. Technol. 23, 403–406 (1989). https://doi.org/10.1021/es00181a003
- E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Gratzel, Photochemical cleavage of water by photocatalysis. Nature 289, 158–160 (1981). https://doi.org/10.1038/289158a0
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001). https://doi.org/10.1126/science.1061051
- Y. Peng, K.K. Wang, T. Liu, J. Xu, B. Xu, Synthesis of one-dimensional Bi2O3-Bi2O2.33 heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of high-concentration phenol and MO dyes. Appl. Catal. B 203, 946–954 (2017). https://doi.org/10.1016/j.apcatb.2016.11.011
- R.S. Yang, Y. Qin, L.M. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009). https://doi.org/10.1038/nnano.2008.314
- Y.F. Hu, Y. Zhang, C. Xu, L. Lin, R.L. Snyder, Z.L. Wang, Self-powered system with wireless data transmission. Nano Lett. 11, 2572–2577 (2011). https://doi.org/10.1021/nl201505c
- C.E. Chang, V.H. Tran, J.B. Wang, Y.K. Fuh, L.W. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010). https://doi.org/10.1021/nl9040719
- C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
- Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276, 1395–1397 (1997). https://doi.org/10.1126/science.276.5317.1395
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045
- P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). https://doi.org/10.1002/anie.200702505
- G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati, TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18, 2597–2600 (2006). https://doi.org/10.1002/adma.200601232
- Y.C. Mao, P. Zhao, G. McConohy, H. Yang, Y.X. Tong, X.D. Wang, Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv. Energy Mater. 4, 1301624 (2014). https://doi.org/10.1002/aenm.201301624
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo et al., On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016). https://doi.org/10.1126/science.aad3345
- T.F. Qin, S.L. Peng, J.X. Hao, Y.X. Wen, Z.L. Wang et al., Flexible and wearable all-solid-state supercapacitors with ultrahigh energy density based on a carbon fiber fabric electrode. Adv. Energy Mater. 7, 1700409 (2017). https://doi.org/10.1002/aenm.201700409
- C.Y. Cao, Y.H. Zhou, S. Ubnoske, J.F. Zang, Y.T. Cao et al., Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater. 9, 1900618 (2019). https://doi.org/10.1002/aenm.201900618
- P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008). https://doi.org/10.1038/nature06669
- L. Zhang, J.B. Bailey, R.H. Subramanian, A. Groisman, F.A. Tezcan, Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature 557, 86–91 (2018). https://doi.org/10.1038/s41586-018-0057-7
- E. Acome, S.K. Mitchell, T.G. Morrissey, M.B. Emmett, C. Benjamin et al., Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018). https://doi.org/10.1126/science.aao6139
- B.S. Sumerlin, Next-generation self-healing materials. Science 362, 150–151 (2018). https://doi.org/10.1126/science.aau6453
- D.M. Goldenberg, H.J. Hansen, Electric enhancement of bone healing. Science 175, 1118–1120 (1972). https://doi.org/10.1126/science.175.4026.1118
References
P. Curie, J. Curie, Development, via compression, of electric polarization in hemihedral crystals with inclined faces. Bull. Soc. Minerol. Fr. 3, 90–93 (1880)
Google Scholar
Z. Liang, C.F. Yan, S. Rtimi, J. Bandara, Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook. Appl. Catal. B 241, 256–269 (2019). https://doi.org/10.1016/j.apcatb.2018.09.028
M.B. Starr, X.D. Wang, Coupling of piezoelectric effect with electrochemical processes. Nano Energy 14, 296–311 (2015). https://doi.org/10.1016/j.nanoen.2015.01.035
R.S. Dahiya, A. Adami, C. Collini, L. Lorenzelli, POSFET tactile sensing arrays using CMOS technology. Sens. Actuat. A 202, 226–232 (2013). https://doi.org/10.1016/j.sna.2013.02.007
C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014). https://doi.org/10.1039/C3EE42454E
D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998). https://doi.org/10.1088/0034-4885/61/9/002
J. Wu, Z. Wu, W.Q. Qian, Y.M. Jia, Y. Wang, H.S. Luo, lectric-field-treatment-induced enhancement of photoluminescence in Er3+-doped (Ba0.95Sr0.05)(Zr0.1Ti0.9)O3 piezoelectric ceramic. Mater. Lett. 184, 131–133 (2016). https://doi.org/10.1016/j.matlet.2016.07.061
P.P. Shi, Y.Y. Tang, P.F. Li, W.Q. Liao, Z.X. Wang, Q. Ye, R.G. Xiong, Symmetry breaking in molecular ferroelectrics. Chem. Soc. Rev. 45, 3811–3827 (2016). https://doi.org/10.1039/C5CS00308C
A.L. Kholkin, N.A. Pertsev, A.V. Goltsev, Piezoelectricity and crystal symmetry, in Piezoelectric and Acoustic Materials for Transducer Applications, ed. by A. Safari, E.K. Akdogan (Springer, Berlin, 2008), pp. 17–38. https://doi.org/10.1007/978-0-387-76540-2
Google Scholar
A.A. Marino, R.O. Becker, Piezoelectric effect and growth control in bone. Nature 228, 473–474 (1970). https://doi.org/10.1038/228473a0
I. Katsouras, K. Asadi, M.Y. Li, T.B. van Driel, K.S. Kjaer et al., The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78–84 (2016). https://doi.org/10.1038/nmat4423
P.S. Brody, Large polarization-dependent photovoltages in ceramic BaTiO3 + 5 wt% CaTiO3. Solid State Commun. 12, 673–676 (1973). https://doi.org/10.1016/0038-1098(73)90310-4
P.S. Brody, High-voltage photovoltaic effect in barium-titanate and lead titanate lead zirconate ceramics. J. Solid State Chem. 12, 193–200 (1975). https://doi.org/10.1016/0022-4596(75)90305-9
V.M. Fridkin, Review of recent work on the bulk photovoltaic effect in ferro and piezoelectrics. Ferroelectrics 53, 169–187 (1984). https://doi.org/10.1080/00150198408245047
J.L. Giocondi, G.S. Rohrer, Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem. Mater. 13, 241–242 (2001). https://doi.org/10.1021/cm000890h
J.L. Giocondi, G.S. Rohrer, Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3. J. Phys. Chem. B 105, 8275–8277 (2001). https://doi.org/10.1021/jp011804j
A. Bhardwaj, N.V. Burbure, A. Gamalski, G.S. Rohrer, Composition dependence of the photochemical reduction of Ag by Ba1-xSrxTiO3. Chem. Mater. 22, 3527–3534 (2010). https://doi.org/10.1021/cm100718t
W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013). https://doi.org/10.1126/science.1234855
Y. Zhang, M.Y. Xie, V. Adamaki, H. Khanbareh, C.R. Bowen, Control of electro-chemical processes using energy harvesting materials and devices. Chem. Soc. Rev. 46, 7757–7786 (2017). https://doi.org/10.1039/c7cs00387k
G. Sebald, D. Guyomar, A. Agbossou, On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 18(12), 125006–125007 (2009). https://doi.org/10.1088/0964-1726/18/12/125006
Z.Y. Fei, W.J. Zhao, T.A. Palomaki, B.S. Sun, M.K. Miller et al., Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018). https://doi.org/10.1038/s41586-018-0336-3
W. Li, L.J. Ji, Perovskite ferroelectrics go metal free. Science 361, 132 (2018). https://doi.org/10.1126/science.aat5729
C.H. Ahn, K.M. Rabe, J.M. Triscone, Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004). https://doi.org/10.1126/science.1092508
Y.M. You, W.Q. Liao, D.W. Zhao, H.Y. Ye, Y. Zhang et al., An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357, 306–309 (2017). https://doi.org/10.1126/science.aai8535
Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
S.C. Masmanidis, R.B. Karabalin, I. De Vlaminck, G. Borghs, M.R. Freeman, M.L. Roukes, Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007). https://doi.org/10.1126/science.1144793
M.B. Starr, X.D. Wang, Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Sci. Rep. 3, 2160 (2013). https://doi.org/10.1038/srep02160
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
D. Das, T.N. Veziroglu, Hydrogen production by biological processes: a survey of literature. Int. J. Hydrog. Energy 26, 13–28 (2001). https://doi.org/10.1016/s0360-3199(00)00058-6
S.A. Grigoriev, V.I. Porembsky, V.N. Fateev, Pure hydrogen production by PEM electrolysis for hydrogen energy. Int. J. Hydrog. Energy 31, 171–175 (2006). https://doi.org/10.1016/j.ijhydene.2005.04.038
A. Mostafaeipour, M. Khayyami, A. Sedaghat, K. Mohammadi, S. Shamshirband, M.A. Sehati, E. Gorakifard, Evaluating the wind energy potential for hydrogen production: a case study. Int. J. Hydrog. Energy 41, 6200–6210 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.038
K.S. Hong, H.F. Xu, H. Konishi, X.C. Li, Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett. 1, 997–1102 (2010). https://doi.org/10.1021/jz100027t
M.Z. Jacobson, G.M. Masters, Energy: exploiting wind versus coal. Science 293, 1438 (2001). https://doi.org/10.1126/science.1063376
W.D. Metz, Wind energy: large and small systems competing. Science 197, 971–973 (1977). https://doi.org/10.1126/science.197.4307.971
M. Qolipour, A. Mostafaeipour, O.M. Tousi, Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: a case study. Renew. Sustain. Energy Rev. 78, 113–123 (2017). https://doi.org/10.1016/j.rser.2017.04.088
H.D. Li, Y.H. Sang, S.J. Chang, X. Huang, Y. Zhang et al., Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 15, 2372–2379 (2015). https://doi.org/10.1021/nl504630j
W. Qian, K. Zhao, D. Zhang, C.R. Bowen, Y. Wang, Y. Yang, Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. ACS Appl. Mater. Interfaces. 11, 27862–27869 (2019). https://doi.org/10.1021/acsami.9b07857
Y.L. Zhang, A.M. Schultz, P.A. Salvador, G.S. Rohrer, Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. J. Mater. Chem. 21, 4168–4174 (2011). https://doi.org/10.1039/c0jm04313c
V. Bermudez, F. Caccavale, C. Sada, F. Segato, E. Dieguez, Etching effect on periodic domain structures of lithium niobate crystals. J. Cryst. Growth 191, 589–593 (1998). https://doi.org/10.1016/S0022-0248(98)00394-7
F. Kubel, H. Schmid, Growth, twinning and etch figures of ferroelectric ferroelastic dendritic BiFeO3 single domain crystals. J. Cryst. Growth 129, 515–524 (1993). https://doi.org/10.1016/0022-0248(93)90485-f
W.L. Holstein, Etching study of ferroelectric microdomains in LiNbO3 and MgO:LiNbO3. J. Cryst. Growth 171, 477–484 (1997). https://doi.org/10.1016/S0022-0248(96)00681-1
O.Y. Gorobets, S.V. Gorobets, O.K. Dvoynenko, Correlation between the sizing features of domain structure and the etching figures of a steel cylinder. Metallofiz Nov. Tekh. 34, 1027–1034 (2012). https://doi.org/10.1063/1.1754147
C.L. Sones, S. Mailis, W.S. Brocklesby, R.W. Eason, J.R. Owen, Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J. Mater. Chem. 12, 295–298 (2002). https://doi.org/10.1039/b106279b
X.Y. Xue, S.H. Wang, W.X. Guo, Y. Zhang, Z.L. Wang, Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12, 5048–5054 (2012). https://doi.org/10.1021/nl302879t
A. Ramadoss, B. Saravanakumar, S.W. Lee, Y.S. Kim, S.J. Kim, Z.L. Wang, Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 9, 4337–4345 (2015). https://doi.org/10.1021/acsnano.5b00759
R.B. Song, H.Y. Jin, X. Li, L.F. Fei, Y.D. Zhao et al., A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J. Mater. Chem. A 3, 14963–14970 (2015). https://doi.org/10.1039/c5ta03349g
F. Wang, C.M. Jiang, C.L. Tang, S. Bi, Q.H. Wang, D.F. Du, J.H. Song, High output nano-energy cell with piezoelectric nanogenerator and porous supercapacitor dual functions—a technique to provide sustaining power by harvesting intermittent mechanical energy from surroundings. Nano Energy 21, 209–216 (2016). https://doi.org/10.1016/j.nanoen.2016.01.018
K. Parida, V. Bhavanasi, V. Kumar, J.X. Wang, P.S. Lee, Fast charging self-powered electric double layer capacitor. J. Power Sources 342, 70–78 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.083
B.S. Lee, J. Yoon, C. Jung, D.Y. Kim, S.Y. Jeon et al., Silicon/carbon nanotube/BaTiO3 nanocomposite anode: evidence for enhanced lithium-ion mobility induced by the local piezoelectric potential. ACS Nano 10, 2617–2627 (2016). https://doi.org/10.1021/acsnano.5b07674
S. Kim, S.J. Choi, K.J. Zhao, H. Yang, G. Gobbi, S.L. Zhang, J. Li, Electrochemically driven mechanical energy harvesting. Nat. Commun. 7, 10146 (2016). https://doi.org/10.1038/ncomms10146
S.B. Lang, S.A.M. Tofail, A.L. Kholkin, M. Wojtas, M. Gregor et al., Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Sci. Rep. 3, 2215 (2013). https://doi.org/10.1038/srep02215
F.R. Baxter, C.R. Bowen, I.G. Turner, A.C.E. Dent, Electrically active bioceramics: a review of interfacial responses. Ann. Biomed. Eng. 38, 2079–2092 (2010). https://doi.org/10.1007/s10439-010-9977-6
N. Touach, V.M. Ortiz-Martinez, M.J. Salar-Garcia, A. Benzaouak, F. Hernandez-Fernandez et al., On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuology 34, 147–155 (2017). https://doi.org/10.1016/j.partic.2017.02.006
E. Jacques, M.H. Kjell, D. Zenkert, G. Lindbergh, Piezo-electrochemical effect in lithium-intercalated carbon fibres. Electrochem. Commun. 35, 65–67 (2013). https://doi.org/10.1016/j.elecom.2013.07.040
E. Jacques, G. Lindbergh, D. Zenkert, S. Leijonmarck, M.H. Kjell, Piezo-electrochemical energy harvesting with lithium-intercalating carbon fibers. ACS Appl. Mater. Interfaces. 7, 13898–13904 (2015). https://doi.org/10.1021/acsami.5b02585
S. Ikeda, T. Takata, T. Kondo, G. Hitoki, M. Hara et al., Mechano-catalytic overall water splitting. Chem. Commun. 20, 2185–2186 (1998). https://doi.org/10.1039/A804549F
E. Asadian, M. Ghalkhani, S. Shahrokhian, Electrochemical sensing based on carbon nanoparticles: a review. Sens. Actuator B 293, 183–209 (2019). https://doi.org/10.1016/j.snb.2019.04.075
L. Rossner, M. Armbruster, Electrochemical energy conversion on intermetallic compounds: a review. ACS Catal. 9, 2018–2062 (2019). https://doi.org/10.1021/acscatal.8b04566
V. Vogiazi, A. de la Cruz, S. Mishra, V. Shanov, W.R. Heineman, D.D. Dionysiou, A comprehensive review: development of electrochemical biosensors for detection of cyanotoxins in freshwater. ACS Sens. 4, 1151–1173 (2019). https://doi.org/10.1021/acssensors.9b00376
J. Kim, R. Kumar, A.J. Bandodkar, J. Wang, Advanced materials for printed wearable electrochemical devices: a review. Adv. Electron. Mater. 3, 1600260 (2017). https://doi.org/10.1002/aelm.201600260
E. Fresta, R.D. Costa, Beyond traditional light-emitting electrochemical cells—a review of new device designs and emitters. J. Mater. Chem. C 5, 5643–5675 (2017). https://doi.org/10.1039/C7TC00202E
X.C. Tian, J. Jin, S.Q. Yuan, C.K. Chua, S.B. Tor, K. Zhou, Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv. Energy Mater. 7, 100127 (2017). https://doi.org/10.1002/aenm.201700127
P.K. Nayak, E.M. Erickson, F. Schipper, T.R. Penki, N. Munichandraiah et al., Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for li-ion batteries. Adv. Energy Mater. 8, 1702397 (2018). https://doi.org/10.1002/aenm.201702397
R.G. Saratale, G.D. Saratale, A. Pugazhendhi, G.Y. Zhen, G. Kumar, A. Kadier, P. Sivagurunathan, Microbiome involved in microbial electrochemical systems (MESs): a review. Chemosphere 177, 176–188 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.143
M.B. Starr, J. Shi, X.D. Wang, Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem. Int. Ed. 51, 5962–5966 (2012). https://doi.org/10.1002/ange.201201424
J. Zhang, Z. Wu, Y.M. Jia, J.W. Kan, G.M. Cheng, Piezoelectric bimorph cantilever for vibration-producing-hydrogen. Sensors 13, 367–374 (2013). https://doi.org/10.3390/s130100367
H. Lin, Z. Wu, Y.M. Jia, W.J. Li, R.K. Zheng, H.S. Luo, Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers. Appl. Phys. Lett. 104, 162907 (2014). https://doi.org/10.1063/1.4873522
M.K. Lo, S.Y. Lee, K.S. Chang, Study of ZnSnO3-nanowire piezophotocatalyst using two-step hydrothermal synthesis. J. Phys. Chem. C 119, 5218–5224 (2015). https://doi.org/10.1021/acs.jpcc.5b00282
C.F. Tan, W.L. Ong, G.W. Ho, Self-biased hybrid piezoelectric-photoelectrochemical cell with photocatalytic functionalities. ACS Nano 9, 7661–7670 (2015). https://doi.org/10.1021/acsnano.5b03075
H.L. You, Y.M. Jia, Z. Wu, X.L. Xu, W.Q. Qian, Y.T. Xia, M. Ismail, Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis. Electrochem. Commun. 79, 55–58 (2017). https://doi.org/10.1016/j.elecom.2017.04.017
H.L. You, Z. Wu, L.H. Zhang, Y.R. Ying, Y. Liu et al., Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew. Chem. Int. Ed. 58, 11779–11784 (2019). https://doi.org/10.1002/anie.201906181
J.M. Wu, W.E. Chang, Y.T. Chang, C.K. Chang, Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Adv. Mater. 28, 3718–3725 (2016). https://doi.org/10.1002/adma.201505785
J.H. Lin, Y.H. Tsao, M.H. Wu, T.M. Chou, Z.H. Lin, J.M. Wu, Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy 31, 575–581 (2017). https://doi.org/10.1016/j.nanoen.2016.12.013
N.V. Burbure, P.A. Salvador, G.S. Rohrer, Photochemical reactivity of titania films on BaTiO3 substrates: origin of spatial selectivity. Chem. Mater. 22, 5823–5830 (2010). https://doi.org/10.1021/cm1018025
S.Y. Lan, J.X. Feng, Y. Xiong, S.H. Tian, S.W. Liu, L.J. Kong, Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination. Environ. Sci. Technol. 51, 6560–6569 (2017). https://doi.org/10.1021/acs.est.6b06426
W. Lv, L.J. Kong, S.Y. Lan, J.X. Feng, Y. Xiong, S.H. Tian, Enhancement effect in the piezoelectric degradation of organic pollutants by piezo-Fenton process. J. Chem. Technol. Biotechnol. 92, 152–156 (2017). https://doi.org/10.1002/jctb.4981
D. Tiwari, S. Dunn, Q. Zhang, Impact of Zr/Ti ratio in the PZT on the photoreduction of silver nanoparticles. Mater. Res. Bull. 44, 1219–1224 (2009). https://doi.org/10.1016/j.materresbull.2009.01.016
F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer et al., Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation. Science 4, 236–246 (2018). https://doi.org/10.1016/j.isci.2018.06.003
C. Sun, Y.M. Fu, Q. Wang, L.L. Xing, B.D. Liu, X.Y. Xue, Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag2O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure. RSC Adv. 6, 87446–87453 (2016). https://doi.org/10.1039/C6RA13464E
D.Y. Hong, W.L. Zang, X. Guo, Y.M. Fu, H.X. He et al., High piezo-photocatalytic efficiency of CuS/ZnO nanowires using both solar and mechanical energy for degrading organic dye. ACS Appl. Mater. Interfaces. 8, 21302–21314 (2016). https://doi.org/10.1021/acsami.6b05252
M.H. Wu, J.T. Lee, Y.J. Chung, M. Srinivaas, J.M. Wu, Ultrahigh efficient degradation activity of single- and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect. Nano Energy 40, 369–375 (2017). https://doi.org/10.1016/j.nanoen.2017.08.042
S. Masimukku, Y.C. Hu, Z.H. Lin, S.W. Chan, T.M. Chou, J.M. Wu, High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance. Nano Energy 46, 338–346 (2018). https://doi.org/10.1016/j.nanoen.2018.02.008
L.L. Xing, Y.X. Nie, X.Y. Xue, Y. Zhang, PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell. Nano Energy 10, 44–52 (2014). https://doi.org/10.1016/j.nanoen.2014.09.004
Y.S. Kim, Y.N. Xie, X.N. Wen, S.H. Wang, S.J. Kim, H.K. Song, Z.L. Wang, Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy 14, 77–86 (2015). https://doi.org/10.1016/j.nanoen.2015.01.006
K. Noris-Suarez, J. Lira-Olivares, A.M. Ferreira, A. Graterol, J.L. Feijoo, S.W. Lee, Electrochemical influence of collagen piezoelectric effect in bone healing. Mater. Sci. Forum 544–545, 981–984 (2007). https://doi.org/10.4028/www.scientific.net/MSF.544-545.981
J.L. Giocondi, G.S. Rohrer, The influence of the dipolar field effect on the photochemical reactivity of Sr2Nb2O7 and BaTiO3 microcrystals. Top. Catal. 49, 18–23 (2008). https://doi.org/10.1007/s11244-008-9067-2
K.S. Hong, H.F. Xu, H. Konishi, X.C. Li, Piezoelectrochemical effect: a new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. J. Phys. Chem. C 116, 13045–13051 (2012). https://doi.org/10.1021/jp211455z
X.Y. Xue, W.L. Zang, P. Deng, Q. Wang, L.L. Xing, Y. Zhang, Z.L. Wang, Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 13, 414–422 (2015). https://doi.org/10.1016/j.nanoen.2015.02.029
Y.T. Wang, K.S. Chang, Piezopotential-induced schottky behavior of Zn1-xSnO3 nanowire arrays and piezophotocatalytic applications. J. Am. Ceram. Soc. 99, 2593–2600 (2016). https://doi.org/10.1111/jace.14264
H.L. Zhang, S.J. Zhang, G. Yao, Z.L. Huang, Y.H. Xie et al., Simultaneously harvesting thermal and mechanical energies based on flexible hybrid nanogenerator for self-powered cathodic protection. ACS Appl. Mater. Interfaces. 7, 28142–28147 (2015). https://doi.org/10.1021/acsami.5b10923
X.F. Bai, J. Wei, B.B. Tian, Y. Liu, T. Reiss et al., Size effect on optical and photocatalytic properties in BiFeO3 nanoparticles. J. Phys. Chem. C 120, 3595–3601 (2016). https://doi.org/10.1021/acs.jpcc.5b09945
T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007). https://doi.org/10.1021/nl063039w
S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, C.W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114, 2903–2908 (2010). https://doi.org/10.1021/jp910401u
H.D. Espinosa, R.A. Bernal, M. Minary-Jolandan, A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 24, 4656–4675 (2012). https://doi.org/10.1002/adma.201104810
S.K. Singh, H. Ishiwara, K. Maruyama, Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett. 88, 262908–262910 (2006). https://doi.org/10.1063/1.2218819
J.M. Park, S. Nakashima, M. Sohgawa, T. Kanashima, M. Okuyama, Ferroelectric and piezoelectric properties of polycrystalline BiFeO3 thin films prepared by pulsed laser deposition under magnetic field. Jpn. J. Appl. Phys. 51, 09MD05 (2012). https://doi.org/10.1143/JJAP.51.09MD05
G. Mantini, Y.F. Gao, A. D’Amico, C. Falconi, Z.L. Wang, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Res. 2, 624–629 (2009). https://doi.org/10.1007/s12274-009-9063-2
M.Y. Choi, D. Choi, M.J. Jin, I. Kim, S.H. Kim, J.Y. Choi et al., Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21, 2185–2189 (2009). https://doi.org/10.1002/adma.200803605
Z.Y. Gao, J. Zhou, Y.D. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J. Appl. Phys. 106, 113707–113712 (2009). https://doi.org/10.1063/1.3125449
Y.W. Feng, L.L. Ling, Y.X. Wang, Z.M. Xu, F.L. Cao, H.X. Li, Z.F. Bian, Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy 40, 481–486 (2017). https://doi.org/10.1016/j.nanoen.2017.08.058
J. Wu, N. Qin, D.H. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 45, 44–51 (2018). https://doi.org/10.1016/j.nanoen.2017.12.034
M.C. Junger, D. Feit, Sound, Structures, and Their Interaction, 2nd ed. (MIT Press, Cambridge, 1986). http://hdl.handle.net/1721.1/1740
O.E. Gulin, V.I. Klyatskin, Generation of a low-frequency acoustical noise in the layered ocean by the surface sources. Nat. Phys. Sources Underw. Sound (1993). https://doi.org/10.1007/978-94-011-1626-8_19. Accessed 11 Aug 2019
J.A. Scrimger, D.J. Evans, W. Yee, Underwater noise due to rain—open ocean measurements. J. Acoust. Soc. Am. 85, 726–731 (1989). https://doi.org/10.1121/1.397598
Y.G. Adewuyi, Sonochemistry: environmental science and engineering applications. Ind. Eng. Chem. Res. 40, 4681–4715 (2001). https://doi.org/10.1021/ie010096l
N.H. Ince, G. Tezcanli, R.K. Belen, I.G. Apikyan, Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B 29, 167–176 (2001). https://doi.org/10.1016/s0926-3373(00)00224-1
G. Tezcanli-Guyer, N.H. Ince, Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics 42, 603–609 (2004). https://doi.org/10.1016/j.ultras.2004.01.096
Y.F. Li, Z.P. Liu, Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. J. Am. Chem. Soc. 133, 15743–15752 (2011). https://doi.org/10.1021/ja206153v
H.L. You, Z. Wu, Y.M. Jia, X.L. Xu, Y.T. Xia, Z.C. Han, Y. Wang, High-efficiency and mechano-/photo-bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition. Chemosphere 183, 528–535 (2017). https://doi.org/10.1016/j.chemosphere.2017.05.130
S.C. Rai, K. Wang, J.J. Chen, J.K. Marmon, M. Bhatt et al., Enhanced broad band photodetection through piezo-phototronic effect in CdSe/ZnTe core/shell nanowire array. Adv. Electron. Mater. 1, 1400050 (2015). https://doi.org/10.1002/aelm.201570009
C. Han, M.Q. Yang, N. Zhang, Y.J. Xu, Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. J. Mater. Chem. A 2, 19156–19166 (2014). https://doi.org/10.1039/c4ta04151h
R.E. Brandt, M. Young, H.H. Park, A. Dameron, D. Chua et al., Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics. Appl. Phys. Lett. 105, 263901–263905 (2014). https://doi.org/10.1063/1.4905180
L.J. Meng, A.F. Ma, P.L. Ying, Z.C. Feng, C. Li, Sputtered highly ordered TiO2 nanorod arrays and their applications as the electrode in dye-sensitized solar cells. J. Nanosci. Nanotechnol. 11, 929–934 (2011). https://doi.org/10.1166/jnn.2011.3084
S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5, 2543–2554 (2014). https://doi.org/10.1021/jz501030x
C.C. Chen, P.X. Lei, H.W. Ji, W.H. Ma, J.C. Zhao, H. Hidaka, N. Serpone, Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study. Environ. Sci. Technol. 38, 329–337 (2004). https://doi.org/10.1021/es034384f
J. Shi, M.B. Starr, H. Xiang, Y. Hara, M.A. Anderson, J.H. Seo, Z.Q. Ma, X.D. Wang, Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 11, 5587–5593 (2011). https://doi.org/10.1021/nl203729j
L.W. Lu, M.L. Lv, G. Liu, X.X. Xu, Photocatalytic hydrogen production over solid solutions between BiFeO3 and SrTiO3. Appl. Surf. Sci. 391, 535–541 (2017). https://doi.org/10.1016/j.apsusc.2016.06.160
N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol., A 162, 317–322 (2004). https://doi.org/10.1016/S1010-6030(03)00378-2
W.Q. Qian, Z. Wu, Y.M. Jia, Y.T. Hong, X.L. Xu et al., Thermo-electrochemical coupling for room temperature thermocatalysis in pyroelectric ZnO nanorods. Electrochem. Commun. 81, 124–127 (2017). https://doi.org/10.1016/j.elecom.2017.06.017
I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004). https://doi.org/10.1016/j.apcatb.2003.11.010
C. Galindo, P. Jacques, A. Kalt, Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations. Chemosphere 45, 997–1005 (2001). https://doi.org/10.1016/S0045-6535(01)00118-7
J. Bandara, J.A. Mielczarski, J. Kiwi, Photosensitized degradation of azo dyes on Fe, Ti, and Al oxides. Mechanism of charge transfer during the degradation. Langmuir 15, 7680–7687 (1999). https://doi.org/10.1021/la990030j
M. Stylidi, D.I. Kondarides, X.E. Verykios, Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B 40, 271–286 (2003). https://doi.org/10.1016/S0926-3373(02)00163-7
B. Jaffe, R.S. Roth, S. Marzullo, Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25, 809–810 (1954). https://doi.org/10.1063/1.1721741
D. Damjanovic, Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Trans. Ultrason. Ferroelectr. 56, 1574–1585 (2009). https://doi.org/10.1109/TUFFC.2009.1222
W.Q. Liao, D.W. Zhao, Y.Y. Tang, Y. Zhang, P.F. Li et al., A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science 363, 1206–1210 (2019). https://doi.org/10.1126/science.aav3057
T.M. Borman, S.W. Ko, P. Mardilovich, S.E. Trolier-McKinstry, Development of crystallographic texture in chemical solution deposited lead zirconate titanate seed layers. J. Am. Ceram. Soc. 100, 4476–4482 (2017). https://doi.org/10.1111/jace.15019
M.D. Nguyen, E.P. Houwman, M. Dekkers, G. Rijnders, Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically aligned columnar grains. ACS Appl. Mater. Interfaces. 9, 9849–9861 (2017). https://doi.org/10.1021/acsami.6b16470
A. Schatz, D. Pantel, T. Hanemann, Pulsed laser deposition of piezoelectric lead zirconate titanate thin films maintaining a post-CMOS compatible thermal budget. J. Appl. Phys. 122, 114502–114509 (2017). https://doi.org/10.1063/1.5000367
T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 113–126 (2007). https://doi.org/10.1007/s10832-007-9047-0
K. Brajesh, K. Tanwar, M. Abebe, R. Ranjan, Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba, Ca)(Ti, Zr)O3. Phys. Rev. B 92, 224112 (2015). https://doi.org/10.1103/PhysRevB.92.224112
R.F. Cheng, Z.J. Xu, R.Q. Chu, J.G. Hao, J. Du, G.R. Li, Structure and electrical properties of Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics. RSC Adv. 5, 41646–41652 (2015). https://doi.org/10.1039/C5RA03997E
K.N. Kim, J. Chun, S.A. Chae, C.W. Ahn, I.W. Kim et al., Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy 14, 87–94 (2015). https://doi.org/10.1016/j.nanoen.2015.01.004
H.G. Wei, H. Wang, Y.J. Xia, D.P. Cui, Y.P. Shi et al., An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C 6, 12446–12467 (2018). https://doi.org/10.1039/C8TC04515A
J. Chen, S.K. Oh, H.Y. Zou, S. Shervin, W.J. Wang et al., High-output lead-free flexible piezoelectric generator using single-crystalline GaN thin film. ACS Appl. Mater. Interfaces. 10, 12839–12846 (2018). https://doi.org/10.1021/acsami.8b01281
A. Akbarzadeh, K. Brajesh, Y. Nahas, N. Kumar, S. Prokhorenko et al., Quantum-fluctuation-stabilized orthorhombic ferroelectric ground state in lead-free piezoelectric (Ba, Ca)(Zr, Ti)O3. Phys. Rev. B 98, 104101 (2018). https://doi.org/10.1103/PhysRevB.98.104101
Y.M. Wang, H.J. Wu, X. Qin, K. Yao, S.J. Pennycook, F.E.H. Tay, Outstanding piezoelectric performance in lead-free 0.95(K, Na)(Sb, Nb)O-3-0.05(Bi, Na, K)ZrO3 thick films with oriented nanophase coexistence. Adv. Electron. Mater. 5, 1800691 (2019). https://doi.org/10.1002/aelm.201800691
J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
D.K. Kushvaha, S.K. Rout, B. Tiwari, Structural, piezoelectric and highdensity energy storage properties of lead-free BNKT-BCZT solid solution. J. Alloys Compd. 782, 270–276 (2019). https://doi.org/10.1016/j.jallcom.2018.12.196
C. Moure, O. Pena, Recent advances in perovskites: processing and properties. Prog. Solid State Chem. 43, 123–148 (2015). https://doi.org/10.1016/j.progsolidstchem.2015.09.001
S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997). https://doi.org/10.1126/science.276.5310.238
K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker et al., Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004). https://doi.org/10.1126/science.1103218
H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili et al., Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004). https://doi.org/10.1126/science.1094207
G.H. Jonker, J.H. Vansanten, Properties of barium titanate in connection with its crystal structure. Science 109, 632–635 (1949). https://doi.org/10.1126/science.109.2843.632
H.F. Kay, R.G. Rhodes, Barium titanate crystals. Nature 160, 126–127 (1947). https://doi.org/10.1038/160126a0
J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003). https://doi.org/10.1126/science.1080615
W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307, 1203 (2005). https://doi.org/10.1126/science.1105422
J. Wang, A. Scholl, H. Zheng, S.B. Ogale, D. Viehland et al., Response to comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307, 1203 (2005). https://doi.org/10.1126/science.1103959
R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He et al., A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977–980 (2009). https://doi.org/10.1126/science.1177046
J.H. Sun, S.Y. Dong, Y.K. Wang, S.P. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. J. Hazard. Mater. 172, 1520–1526 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.022
Y.T. Xia, Y.M. Jia, W.Q. Qian, X.L. Xu, Z. Wu et al., Pyroelectrically induced pyro-electro-chemical catalytic activity of BaTiO3 nanofibers under room-temperature cold-hot cycle excitations. Metals 7(4), 122–130 (2017). https://doi.org/10.3390/met7040122
S.G. Yuan, Z.B. Yang, C. Xie, F. Yan, J.Y. Dai et al., Ferroelectric-driven performance enhancement of graphene field-effect transistors based on vertical tunneling heterostructures. Adv. Mater. 28, 10048–10054 (2016). https://doi.org/10.1002/adma.201601489
M.C. Wong, L. Chen, M.K. Tsang, Y. Zhang, J.H. Hao, Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 27, 4488–4495 (2015). https://doi.org/10.1002/adma.201570203
J.P. Ma, J. Ren, Y.M. Jia, Z. Wu, L. Chen et al., High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 62, 376–383 (2019). https://doi.org/10.1016/j.nanoen.2019.05.058
A. Khan, M.A. Abbasi, M. Hussain, Z.H. Ibupoto, J. Wissting, O. Nur, M. Willander, Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric. Appl. Phys. Lett. 101, 193506–193509 (2012). https://doi.org/10.1063/1.4766921
A. Mahmud, A.A. Khan, P. Voss, T. Das, E. Abdel-Rahman, D. Ban, A high performance and consolidated piezoelectric energy harvester based on 1D/2D hybrid zinc oxide nanostructures. Adv. Mater. Interfaces 5, 1801167 (2018). https://doi.org/10.1002/admi.201801167
Z.W. Wang, Z.M. Zhang, W. Liu, Z.L. Wang, Investigating fold structures of 2D materials by quantitative transmission electron microscopy. Micron 95, 16–22 (2017). https://doi.org/10.1016/j.micron.2017.01.001
K.A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012). https://doi.org/10.1021/jz3012436
K.J. Huang, L. Wang, Y.J. Liu, H.B. Wang, Y.M. Liu, L.L. Wang, Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim. Acta 109, 587–594 (2013). https://doi.org/10.1016/j.electacta.2013.07.168
J. Mann, Q. Ma, P.M. Odenthal, M. Isarraraz, D. Le et al., 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1-x)Se2x monolayers. Adv. Mater. 26, 1399–1404 (2014). https://doi.org/10.1002/adma.201304389
C.N.R. Rao, U. Maitra, U.V. Waghmare, Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chem. Phys. Lett. 609, 172–183 (2014). https://doi.org/10.1016/j.cplett.2014.06.003
S.L. Shi, Z.X. Sun, Y.H. Hu, Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 6, 23932–23977 (2018). https://doi.org/10.1039/C8TA08152B
K. Nowakowski, R. van Bremen, H.J.W. Zandvliet, P. Bampoulis, Control of the metal/WS2 contact properties using 2-dimensional buffer layers. Nanoscale 11, 5548–5556 (2019). https://doi.org/10.1039/C9NR00574A
X. Yu, C.G. Pei, W.S. Chen, L.G. Feng, 2 dimensional WS2 tailored nitrogen-doped carbon nanofiber as a highly pseudocapacitive anode material for lithium-ion battery. Electrochim. Acta 272, 119–126 (2018). https://doi.org/10.1016/j.electacta.2018.03.201
S.J. Xu, Z.Y. Lei, P.Y. Wu, Facile preparation of 3D MoS2/MoSe2 nanosheet-graphene networks as efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 16337–16347 (2015). https://doi.org/10.1039/C5TA02637G
X.S. Chen, G.B. Liu, W. Zheng, W. Feng, W.W. Cao, W.P. Hu, P.A. Hu, Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 26, 8537–8544 (2016). https://doi.org/10.1002/adfm.201603674
X.S. Geng, Y.Q. Yu, X.L. Zhou, C.D. Wang, K.W. Xu et al., Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Nano Res. 9, 2641–2651 (2016). https://doi.org/10.1007/s12274-016-1151-5
H. Peng, C.D. Wei, K. Wang, T.Y. Meng, G.F. Ma, Z.Q. Lei, X. Gong, Ni0.85Se@MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 9, 17068–17076 (2017). https://doi.org/10.1021/acsami.7b02776
L.Z. He, T.Q. Nie, X.J. Xia, T. Liu, Y.Y. Huang, X.J. Wang, T.F. Chen, Designing bioinspired 2D MoSe2 nanosheet for efficient photothermal-triggered cancer immunotherapy with reprogramming tumor-associated macrophages. Adv. Funct. Mater. 29, 1901240 (2019). https://doi.org/10.1002/adfm.201901240
V. Cauda, S. Stassi, K. Bejtka, G. Canayese, Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl. Mater. Interfaces. 5, 6430–6437 (2013). https://doi.org/10.1021/am4016878
Z.Y. Pi, J.W. Zhang, C.Y. Wen, Z.B. Zhang, D.P. Wu, Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 7, 33–41 (2014). https://doi.org/10.1016/j.nanoen.2014.04.016
N.R. Alluri, B. Saravanakumar, S.J. Kim, Flexible, hybrid piezoelectric film (BaTi(1-x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces. 7, 9831–9840 (2015). https://doi.org/10.1021/acsami.5b01760
S.K. Karan, D. Mandal, B.B. Khatua, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale 7, 10655–10666 (2015). https://doi.org/10.1039/c5nr02067k
G. Tian, W.L. Deng, Y.Y. Gao, D. Xiong, C. Yan et al., Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 59, 574–581 (2019). https://doi.org/10.1016/j.nanoen.2019.03.013
Q.Q. Li, W.Y. Ke, T.X. Chang, Z.J. Hu, A molecular ferroelectrics induced electroactive β-phase in solution processed PVDF films for flexible piezoelectric sensors. J. Mater. Chem. C 7, 1532–1543 (2019). https://doi.org/10.1039/C8TC05090B
L. Knott, A.J. Bailey, Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22, 181–187 (1998). https://doi.org/10.1016/s8756-3282(97)00279-2
C.C. Silva, C.G.A. Lima, A.G. Pinheiro, J.C. Goes, S.D. Figueiro, A.S.B. Sombra, On the piezoelectricity of collagen-chitosan film. Phys. Chem. Chem. Phys. 3, 4154–4157 (2001). https://doi.org/10.1039/b100189m
S.K. Ghosh, D. Mandal, Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring. ACS Sustain. Chem. Eng 5, 8836–8843 (2017). https://doi.org/10.1021/acssuschemeng.7b01617
P.M. Jones, D.E. Gallardo, S. Dunn, Photochemical investigation of a polarizable semiconductor, lead-zirconate-titanate. Chem. Mater. 20, 5901–5906 (2008). https://doi.org/10.1021/cm8015116
X.Y. Xue, P. Deng, S. Yuan, Y.X. Nie, B. He, L.L. Xing, Y. Zhang, CuO/PVDF nanocomposite anode for a piezo-driven self-charging lithium battery. Energy Environ. Sci. 6, 2615–2620 (2013). https://doi.org/10.1039/C3EE41648H
Y. Zhang, Y.J. Zhang, X.Y. Xue, C.X. Cui, B. He et al., PVDF-PZT nanocomposite film based self-charging power cell. Nanotechnology 25, 2615–2620 (2014). https://doi.org/10.1088/0957-4484/25/10/105401
Z.Y. Wang, J. Hu, M.F. Yu, One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett. 89, 263119–263121 (2006). https://doi.org/10.1063/1.2425047
D. Yu, M.L. Zhao, C.L. Wang, L.H. Wang, W.B. Su et al., Enhanced piezoelectricity in plastically deformed nearly amorphous Bi12TiO20-BaTiO3 nanocomposites. Appl. Phys. Lett. 109, 032904–032908 (2016). https://doi.org/10.1063/1.4959248
X.L. Xu, Y.M. Jia, L.B. Xiao, Z. Wu, Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere 193, 1143–1148 (2018). https://doi.org/10.1016/j.chemosphere.2017.11.116
S.M. Guralnick, Contexts of faraday electrochemical laws. Isis 70, 59–75 (1979). https://doi.org/10.2307/230878
MathSciNet
P. Soroushian, R.U.D. Nassar, A.M. Balachandra, Piezo-driven self-healing by electrochemical phenomena. J. Intell. Mater. Syst. Struct. 24, 441–453 (2013). https://doi.org/10.1177/1045389X12461081
C. Ribeiro, V. Sencadas, D.M. Correia, S. Lanceros-Mendez, Piezoelectric polymers as biomaterials for tissue engineering applications. Colloid Surface B 136, 46–55 (2015). https://doi.org/10.1016/j.colsurfb.2015.08.043
M.H. Shamos, L.S. Lavine, Piezoelectricity as a fundamental property of biological tissues. Nature 213, 267–269 (1967). https://doi.org/10.1038/213267a0
H. Athenstaedt, Pyroelectric and piezoelectric behaviour of human dental hard tissues. Arch. Oral Biol. 16, 495–501 (1971). https://doi.org/10.1016/0003-9969(71)90194-4
J. Hofkens, M.B.J. Roeffaers, Electrochemistry: photocatalysts in close-up. Nature 530, 36–37 (2016). https://doi.org/10.1038/530036a
J.W. Richards, The continuous advance of electrochemistry. Science 19, 0905–0912 (1904). https://doi.org/10.1126/science.19.494.905
V.M. Fridkin, Photoferroelectrics (Springer, Berlin, 1979). https://doi.org/10.1007/978-3-642-81351-1
Google Scholar
A.J. Bard, A.B. Bocarsly, F.R.F. Fan, E.G. Walton, M.S. Wrighton, The concept of Fermi level pinning at semiconductor-liquid junctions—consequences for energy-conversion efficiency and selection of useful solution redox couples in solar devices. J. Am. Chem. Soc. 102, 3671–3677 (1980). https://doi.org/10.1021/ja00531a001
S. Dunn, D. Tiwari, P.M. Jones, D.E. Gallardo, Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured. J. Mater. Chem. 17, 4460–4463 (2007). https://doi.org/10.1039/b710894j
W.A. Smith, I.D. Sharp, N.C. Strandwitz, J. Bisquert, Interfacial band-edge energetics for solar fuels production. Energy Environ. Sci. 8, 2851–2862 (2015). https://doi.org/10.1039/C5EE01822F
P. Salvador, Semiconductors’ photoelectrochemistry: a kinetic and thermodynamic analysis in the light of equilibrium and nonequilibrium models. J. Phys. Chem. B 105, 6128–6141 (2001). https://doi.org/10.1021/jp0033869
M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley, Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 98, 2774–2779 (1976). https://doi.org/10.1002/chin.197631008
L. Green Jr., Energy needs versus environmental pollution: a reconciliation? Science 156, 1448–1450 (1967). https://doi.org/10.1126/science.156.3781.1448
D. Berg, R.G. Hickman, A. Kovats, Energy without pollution. Science 170, 17–18 (1970). https://doi.org/10.1126/science.170.3953.17
J.A. Turner, Sustainable hydrogen production. Science 305, 972–974 (2004). https://doi.org/10.1126/science.1103197
S. Park, W.J. Chang, C.W. Lee, S. Park, H.Y. Ahn, K.T. Nam, Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2, 16185 (2017). https://doi.org/10.1038/nenergy.2016.185
P. Zhang, Y.J. Guo, J.B. Chen, Y.R. Zhao, J. Chang, H. Junge, M. Beller, Y. Li, Streamlined hydrogen production from biomass. Nat. Catal. 1, 332–338 (2018). https://doi.org/10.1038/s41929-018-0062-0
A. Sartbaeva, V.L. Kuznetsov, S.A. Wells, P.P. Edwards, Hydrogen nexus in a sustainable energy future. Energy Environ. Sci. 1, 79–85 (2008). https://doi.org/10.1039/b810104n
L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang et al., Low-temperature hydrogen production from water and methanol using Pt/alpha-MoC catalysts. Nature 544, 80–83 (2017). https://doi.org/10.1038/nature21672
Q. Hu, D.Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, H.K. Mao, FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles. Nature 534, 241–244 (2016). https://doi.org/10.1038/nature18018
H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B 39, 75–90 (2002). https://doi.org/10.1016/S0926-3373(02)00078-4
P.D. Petrolekas, G. Maggenakis, Kinetic studies of the liquid-phase adsorption of a reactive dye onto activated lignite. Ind. Eng. Chem. Res. 46, 1326–1332 (2007). https://doi.org/10.1021/ie061222u
Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, J. Li, Two-step kinetic study on the adsorption and desorption of reactive dyes at cationic polymer/bentonite. J. Hazard. Mater. 165, 1170–1178 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.110
J. Li, J. Cai, L. Zhong, H. Wang, H. Cheng, Q. Ma, Adsorption of reactive dyes onto chitosan/montmorillonite intercalated composite: multi-response optimization, kinetic, isotherm and thermodynamic study. Water Sci. Technol. 77, 2598–2612 (2018). https://doi.org/10.2166/wst.2018.221
H.M. Khan, M. Anwar, G. Ahmad, Effect of temperature and light on the response of an aqueous coumarin dosimeter. J. Radioanal. Nucl. Chem. Lett. 200, 521–527 (1995). https://doi.org/10.1007/BF02162501
F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren et al., Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 19, 2889–2892 (2007). https://doi.org/10.1002/adma.200602377
A.B. Prevot, C. Baiocchi, M.C. Brussino, E. Pramauro, P. Savarino et al., Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environ. Sci. Technol. 35, 971–976 (2001). https://doi.org/10.1021/es000162v
A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B 31, 145–157 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
S.S. Patil, V.M. Shinde, Biodegradation studies of aniline and nitrobenzene in aniline plant wastewater by gas chromatography. Environ. Sci. Technol. 22, 1160–1165 (1988). https://doi.org/10.1021/es00175a005
I. Arslan, I.A. Balcioglu, Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study. Dyes Pigments 43, 95–108 (1999). https://doi.org/10.1016/S0143-7208(99)00048-0
A.T. Moore, A. Vira, S. Fogel, Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator. Environ. Sci. Technol. 23, 403–406 (1989). https://doi.org/10.1021/es00181a003
E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Gratzel, Photochemical cleavage of water by photocatalysis. Nature 289, 158–160 (1981). https://doi.org/10.1038/289158a0
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001). https://doi.org/10.1126/science.1061051
Y. Peng, K.K. Wang, T. Liu, J. Xu, B. Xu, Synthesis of one-dimensional Bi2O3-Bi2O2.33 heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of high-concentration phenol and MO dyes. Appl. Catal. B 203, 946–954 (2017). https://doi.org/10.1016/j.apcatb.2016.11.011
R.S. Yang, Y. Qin, L.M. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009). https://doi.org/10.1038/nnano.2008.314
Y.F. Hu, Y. Zhang, C. Xu, L. Lin, R.L. Snyder, Z.L. Wang, Self-powered system with wireless data transmission. Nano Lett. 11, 2572–2577 (2011). https://doi.org/10.1021/nl201505c
C.E. Chang, V.H. Tran, J.B. Wang, Y.K. Fuh, L.W. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010). https://doi.org/10.1021/nl9040719
C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276, 1395–1397 (1997). https://doi.org/10.1126/science.276.5317.1395
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). https://doi.org/10.1038/35035045
P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). https://doi.org/10.1002/anie.200702505
G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati, TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18, 2597–2600 (2006). https://doi.org/10.1002/adma.200601232
Y.C. Mao, P. Zhao, G. McConohy, H. Yang, Y.X. Tong, X.D. Wang, Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv. Energy Mater. 4, 1301624 (2014). https://doi.org/10.1002/aenm.201301624
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo et al., On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691–695 (2016). https://doi.org/10.1126/science.aad3345
T.F. Qin, S.L. Peng, J.X. Hao, Y.X. Wen, Z.L. Wang et al., Flexible and wearable all-solid-state supercapacitors with ultrahigh energy density based on a carbon fiber fabric electrode. Adv. Energy Mater. 7, 1700409 (2017). https://doi.org/10.1002/aenm.201700409
C.Y. Cao, Y.H. Zhou, S. Ubnoske, J.F. Zang, Y.T. Cao et al., Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater. 9, 1900618 (2019). https://doi.org/10.1002/aenm.201900618
P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008). https://doi.org/10.1038/nature06669
L. Zhang, J.B. Bailey, R.H. Subramanian, A. Groisman, F.A. Tezcan, Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature 557, 86–91 (2018). https://doi.org/10.1038/s41586-018-0057-7
E. Acome, S.K. Mitchell, T.G. Morrissey, M.B. Emmett, C. Benjamin et al., Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018). https://doi.org/10.1126/science.aao6139
B.S. Sumerlin, Next-generation self-healing materials. Science 362, 150–151 (2018). https://doi.org/10.1126/science.aau6453
D.M. Goldenberg, H.J. Hansen, Electric enhancement of bone healing. Science 175, 1118–1120 (1972). https://doi.org/10.1126/science.175.4026.1118