A Sub-Nanostructural Transformable Nanozyme for Tumor Photocatalytic Therapy
Corresponding Author: Fangyuan Li
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 101
Abstract
The structural change-mediated catalytic activity regulation plays a significant role in the biological functions of natural enzymes. However, there is virtually no artificial nanozyme reported that can achieve natural enzyme-like stringent spatiotemporal structure-based catalytic activity regulation. Here, we report a sub-nanostructural transformable gold@ceria (STGC-PEG) nanozyme that performs tunable catalytic activities via near-infrared (NIR) light-mediated sub-nanostructural transformation. The gold core in STGC-PEG can generate energetic hot electrons upon NIR irradiation, wherein an internal sub-nanostructural transformation is initiated by the conversion between CeO2 and electron-rich state of CeO2−x, and active oxygen vacancies generation via the hot-electron injection. Interestingly, the sub-nanostructural transformation of STGC-PEG enhances peroxidase-like activity and unprecedentedly activates plasmon-promoted oxidase-like activity, allowing highly efficient low-power NIR light (50 mW cm−2)-activated photocatalytic therapy of tumors. Our atomic-level design and fabrication provide a platform to precisely regulate the catalytic activities of nanozymes via a light-mediated sub-nanostructural transformation, approaching natural enzyme-like activity control in complex living systems.
Highlights:
1 An internal sub-nanostructural transformation of sub-nanostructural transformable gold@ceria (STGC-PEG) is initiated by the conversion between CeO2 and electron-rich state of CeO2−x, and active oxygen vacancies generation via the hot-electron injection from gold to ceria.
2 The sub-nanostructural transformation of STGC-PEG enhances the peroxidase-like activity and activates the plasmon-promoted oxidase-like activity, resulting in an augmented reactive oxygen species output.
3 STGC-PEG successfully achieves excellent low power (50 mW cm−2) near-infrared light-activated photocatalytic ablation of tumors in vivo.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Srinivasan, C.D. Smolke, Biosynthesis of medicinal tropane alkaloids in yeast. Nature 585(7826), 614–619 (2020). https://doi.org/10.1038/s41586-020-2650-9
- J.C. Ullman, A. Arguello, J.A. Getz, A. Bhalla, C.S. Mahon et al., Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci. Transl. Med. 12(545), eaay1163 (2020). https://doi.org/10.1126/scitranslmed.aay1163
- Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
- Y. Li, J. Liu, Nanozyme’s catching up: activity, specificity, reaction conditions and reaction types. Mater. Horiz. 8(2), 336–350 (2021). https://doi.org/10.1039/D0MH01393E
- T. Kang, Y.G. Kim, D. Kim, T. Hyeon, Inorganic nanops with enzyme-mimetic activities for biomedical applications. Coordin. Chem. Rev. 403, 213092 (2020). https://doi.org/10.1016/j.ccr.2019.213092
- S. Li, L. Shang, B. Xu, S. Wang, K. Gu et al., A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem. Int. Ed. 58(36), 12624–12631 (2019). https://doi.org/10.1002/ange.201904751
- S. Zhao, M. Riedel, J. Patarroyo, N. Bastus, V. Puntes et al., Introducing visible-light sensitivity into photocatalytic CeO2 nanops by hybrid p preparation exploiting plasmonic properties of gold: enhanced photoelectrocatalysis exemplified for hydrogen peroxide sensing. Nanoscale 13(2), 980–990 (2021). https://doi.org/10.1039/D0NR06356H
- W. Zhen, Y. Liu, W. Wang, M. Zhang, W. Hu et al., Specific “unlocking” of a nanozyme-based butterfly effect to break the evolutionary fitness of chaotic tumors. Angew. Chem. Int. Ed. 59(24), 9491–9497 (2020). https://doi.org/10.1002/ange.201916142
- G. Tang, J. He, J. Liu, X. Yan, K. Fan, Nanozyme for tumor therapy: surface modification matters. Exploration 1, 75–89 (2021). https://doi.org/10.1002/EXP.20210005
- B. Das, J. Franco, N. Logan, P. Balasubramanian, M. Kim et al., Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 13, 193 (2021). https://doi.org/10.1007/s40820-021-00717-0
- J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
- Y. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. Yu et al., Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6(29), eabb2695 (2020). https://doi.org/10.1126/sciadv.abb2695
- K. Fan, J. Xi, L. Fan, P. Wang, C. Zhu et al., In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9, 1440 (2018). https://doi.org/10.1038/s41467-018-03903-8
- T. Liu, B. Xiao, F. Xiang, J. Tan, Z. Chen et al., Ultrasmall copper-based nanops for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11, 2788 (2020). https://doi.org/10.1038/s41467-020-16544-7
- F. Wang, E. Ju, Y. Guan, J. Ren, X. Qu, Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small 13(25), 1603051 (2017). https://doi.org/10.1002/smll.201603051
- F. Wang, Y. Zhang, Z. Du, J. Ren, X. Qu, Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat. Commun. 9, 1209 (2018). https://doi.org/10.1038/s41467-018-03617-x
- D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48(14), 3683–3704 (2019). https://doi.org/10.1039/C8CS00718G
- H. Ye, K. Yang, J. Tao, Y. Liu, Q. Zhang et al., An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11(2), 2052–2059 (2017). https://doi.org/10.1021/acsnano.6b08232
- M. Huo, L. Wang, Y. Chen, J. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 357 (2017). https://doi.org/10.1038/s41467-017-00424-8
- K. Xu, Y. Cheng, J. Yan, Y. Feng, R. Zheng et al., Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanops for synergistic tumor therapy. Nano Res. 12(12), 2947–2953 (2019). https://doi.org/10.1007/s12274-019-2532-3
- T. Pan, Y. Wang, X. Xue, C. Zhang, Rational design of allosteric switchable catalysts. Exploration (2022). https://doi.org/10.1002/EXP.20210095
- M. Wegener, M.J. Hansen, A.J. Driessen, W. Szymanski, B.L. Feringa et al., Photocontrol of antibacterial activity: shifting from UV to red light activation. J. Am. Chem. Soc. 139(49), 17979–17986 (2017). https://doi.org/10.1021/jacs.7b09281
- K. Singh, B. Graf, A. Linden, V. Sautner, H. Urlaub et al., Discovery of a regulatory subunit of the yeast fatty acid synthase. Cell 180(6), 1130–1143 (2020). https://doi.org/10.1016/j.cell.2020.02.034
- J. Kuriyan, D. Eisenberg, The origin of protein interactions and allostery in colocalization. Nature 450(7172), 983–990 (2007). https://doi.org/10.1038/nature06524
- M.J. Comstock, K.D. Whitley, H. Jia, J. Sokoloski, T.M. Lohman et al., Direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 348(6232), 352–354 (2015). https://doi.org/10.1126/science.aaa0130
- R. Szmola, M. Sahin-Tóth, Pancreatitis-associated chymotrypsinogen C (CTRC) mutant elicits endoplasmic reticulum stress in pancreatic acinar cells. Gut 59(3), 365–372 (2010). https://doi.org/10.1136/gut.2009.198903
- O. Berntsson, R. Rodriguez, L. Henry, M.R. Panman, A.J. Hughes et al., Photoactivation of drosophila melanogaster cryptochrome through sequential conformational transitions. Sci. Adv. 5(7), eaaw1531 (2019). https://doi.org/10.1126/sciadv.aaw1531
- R. Nussinov, C.J. Tsai, Allostery in disease and in drug discovery. Cell 153(2), 293–305 (2013). https://doi.org/10.1016/j.cell.2013.03.034
- H.G. Saavedra, J.O. Wrabl, J.A. Anderson, J. Li, V.J. Hilser, Dynamic allostery can drive cold adaptation in enzymes. Nature 558(7709), 324–328 (2018). https://doi.org/10.1038/s41586-018-0183-2
- U. Aslam, V.G. Rao, S. Chavez, S. Linic, Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1(9), 656–665 (2018). https://doi.org/10.1038/s41929-018-0138-x
- M. Ha, J.H. Kim, M. You, Q. Li, C. Fan et al., Multicomponent plasmonic nanops: from heterostructured nanops to colloidal composite nanostructures. Chem. Rev. 119(24), 12208–12278 (2019). https://doi.org/10.1021/acs.chemrev.9b00234
- Y. Chang, Y. Cheng, Y. Feng, H. Jian, L. Wang et al., Resonance energy transfer-promoted photothermal and photodynamic performance of gold-copper sulfide yolk-shell nanops for chemophototherapy of cancer. Nano Lett. 18(2), 886–897 (2018). https://doi.org/10.1021/acs.nanolett.7b04162
- S.S. Wang, L. Jiao, Y. Qian, W.C. Hu, G.Y. Xu et al., Boosting electrocatalytic hydrogen evolution over metal-organic frameworks by plasmon-induced hot-electron injection. Angew. Chem. Int. Ed. 58(31), 10713–10717 (2019). https://doi.org/10.1002/ange.201906134
- L. Wang, X. Xu, Q. Cheng, S.X. Dou, Y. Du, Near-infrared-driven photocatalysts: design, construction, and applications. Small 17(9), 1904107 (2019). https://doi.org/10.1002/smll.201904107
- B.H. Lee, S. Park, M. Kim, A.K. Sinha, S.C. Lee et al., Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18(6), 620–626 (2019). https://doi.org/10.1038/s41563-019-0344-1
- Y. Li, X. He, J. Yin, Y. Ma, P. Zhang et al., Acquired superoxide-scavenging ability of ceria nanops. Angew. Chem. Int. Ed. 54(6), 1832–1835 (2015). https://doi.org/10.1002/anie.201410398
- G.H. Ryu, A. France-Lanord, Y. Wen, S. Zhou, J.C. Grossman et al., Atomic structure and dynamics of self-limiting sub-nanometer pores in monolayer WS2. ACS Nano 12(11), 11638–11647 (2018). https://doi.org/10.1021/acsnano.8b07051
- C. Xu, X. Qu, Cerium oxide nanop: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6, e90 (2014). https://doi.org/10.1038/am.2013.88
- B. Li, T. Gu, T. Ming, J. Wang, P. Wang et al., (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 8(8), 8152–8162 (2014). https://doi.org/10.1021/nn502303h
- B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15(10), 1957–1962 (2003). https://doi.org/10.1021/cm020732l
- Z.Y. Yang, S.L. Luo, H. Li, S.W. Dong, J. He et al., Alendronate as a robust anchor for ceria nanop surface coating: facile binding and improved biological properties. RSC Adv. 4(104), 59965–59969 (2014). https://doi.org/10.1039/C4RA12007H
- Y. Zhao, Y. Wang, A. Mathur, Y. Wang, V. Maheshwari et al., Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 11(38), 17841–17850 (2019). https://doi.org/10.1039/C9NR05346H
- T. Saravanan, M. Shanmugam, P. Anandan, M. Azhagurajan, K. Pazhanivel et al., Facile synthesis of graphene-CeO2 nanocomposites with enhanced electrochemical properties for supercapacitors. Dalton Trans. 44(21), 9901–9908 (2015). https://doi.org/10.1039/C5DT01235J
- X. Guo, X. Li, S. Kou, X. Yang, X. Hu et al., Plasmon-enhanced electrocatalytic hydrogen/oxygen evolution by Pt/Fe-Au nanorods. J. Mater. Chem. A 6(17), 7364–7369 (2018). https://doi.org/10.1039/C8TA00499D
- Y. Temerk, H. Ibrahim, A new sensor based on In doped CeO2 nanops modified glassy carbon paste electrode for sensitive determination of uric acid in biological fluids. Sens. Actuators B Chem. 224, 868–877 (2016). https://doi.org/10.1016/j.snb.2015.11.029
- C.T. Campbell, C.H. Peden, Oxygen vacancies and catalysis on ceria surfaces. Science 309(5735), 713–714 (2005). https://doi.org/10.1126/science.1113955
- Y.J. Wang, H. Dong, G.M. Lyu, H.Y. Zhang, J. Ke et al., Engineering the defect state and reducibility of ceria based nanops for improved anti-oxidation performance. Nanoscale 7(33), 13981–13990 (2015). https://doi.org/10.1039/C5NR02588E
- D. Ni, H. Wei, W. Chen, Q. Bao, Z.T. Rosenkrans et al., Ceria nanops meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv. Mater. 31(40), 1902956 (2019). https://doi.org/10.1002/adma.201902956
- F. Scholes, A. Hughes, S. Hardin, P. Lynch, P.R. Miller, Influence of hydrogen peroxide in the preparation of nanocrystalline ceria. Chem. Mater. 19(9), 2321–2328 (2007). https://doi.org/10.1021/cm063024z
- X. Sun, X. Luo, X. Zhang, J. Xie, S. Jin et al., Enhanced superoxide generation on defective surfaces for selective photooxidation. J. Am. Chem. Soc. 141(9), 3797–3801 (2019). https://doi.org/10.1021/jacs.8b13051
- N. Zhang, X. Li, H. Ye, S. Chen, H. Ju et al., Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138(28), 8928–8935 (2016). https://doi.org/10.1021/jacs.6b04629
- Z. Wang, X. Shen, X. Gao, Y. Zhao, Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Nanoscale 11(28), 13289–13299 (2019). https://doi.org/10.1039/c9nr03473k
- J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 28(39), 1801983 (2018). https://doi.org/10.1002/adfm.201801983
- S.I. Han, S. Lee, M.G. Cho, J.M. Yoo, M.H. Oh et al., Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv. Mater. 32(31), 2001566 (2020). https://doi.org/10.1002/adma.202001566
- A.M. Nauth, E. Schechtel, R. Dören, W. Tremel, T. Opatz, TiO2 nanops functionalized with non-innocent ligands allow oxidative photocyanation of amines with visible/near-infrared photons. J. Am. Chem. Soc. 140(43), 14169–14177 (2018). https://doi.org/10.1021/jacs.8b07539
- H. Zhu, Y. Fang, Q. Miao, X. Qi, D. Ding et al., Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 11(9), 8998–9009 (2017). https://doi.org/10.1021/acsnano.7b03507
- G. Lan, K. Ni, S.S. Veroneau, X. Feng, G.T. Nash et al., Titanium-based nanoscale meta-organic framework for type I photodynamic therapy. J. Am. Chem. Soc. 141(10), 4204–4208 (2019). https://doi.org/10.1021/jacs.8b13804
- Z. Tian, J. Li, Z. Zhang, W. Gao, X. Zhou et al., Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials 59, 116–124 (2015). https://doi.org/10.1016/j.biomaterials.2015.04.039
- L. Jiang, S. Fernandez-Garcia, M. Tinoco, Z. Yan, Q. Xue et al., Improved oxidase mimetic activity by praseodymium incorporation into ceria nanocubes. ACS Appl. Mater. Interfaces 9(22), 18595–18608 (2017). https://doi.org/10.1021/acsami.7b05036
- Z. Wang, X. Shen, X. Gao, Density functional theory mechanistic insight into the peroxidase- and oxidase-like activities of nanoceria. J. Phys. Chem. C 125(42), 23098–23104 (2021). https://doi.org/10.1021/acs.jpcc.1c04878
- X. Xu, S. Kou, X. Guo, X. Li, X. Ma et al., The enhanced photocatalytic properties for water oxidation over Bi/BiVO4/V2O5 Composite. J. Phys. Chem. C 121(30), 16257–16265 (2017). https://doi.org/10.1021/acs.jpcc.7b03119
- S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10(12), 911–921 (2011). https://doi.org/10.1038/NMAT3151
- J. Wang, M. Chen, Z. Luo, L. Ma, Y. Zhang et al., Ceria-coated gold nanorods for plasmon-enhanced near-infrared photocatalytic and photoelectrochemical performances. J. Phys. Chem. C 120(27), 14805–14812 (2016). https://doi.org/10.1021/acs.jpcc.6b03753
- Y. Du, C. Yang, F. Li, H. Liao, Z. Chen et al., Core-shell-satellite nanomaces as remotely controlled self-fueling fenton reagents for imaging-guided triple-negative breast cancer-specific therapy. Small 16(31), 2002537 (2020). https://doi.org/10.1002/smll.202002537
- D. Ling, B. Bae, W. Park, K. Na, Photodynamic efficacy of photosensitizers under an attenuated light dose via lipid nano-carrier-mediated nuclear targeting. Biomaterials 33(21), 5478–5486 (2012). https://doi.org/10.1016/j.biomaterials.2012.04.023
- J. Li, X. Liu, L. Tan, Z. Cui, X. Yang et al., Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat. Commun. 10, 4490 (2019). https://doi.org/10.1038/s41467-019-12429-6
References
P. Srinivasan, C.D. Smolke, Biosynthesis of medicinal tropane alkaloids in yeast. Nature 585(7826), 614–619 (2020). https://doi.org/10.1038/s41586-020-2650-9
J.C. Ullman, A. Arguello, J.A. Getz, A. Bhalla, C.S. Mahon et al., Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci. Transl. Med. 12(545), eaay1163 (2020). https://doi.org/10.1126/scitranslmed.aay1163
Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
Y. Li, J. Liu, Nanozyme’s catching up: activity, specificity, reaction conditions and reaction types. Mater. Horiz. 8(2), 336–350 (2021). https://doi.org/10.1039/D0MH01393E
T. Kang, Y.G. Kim, D. Kim, T. Hyeon, Inorganic nanops with enzyme-mimetic activities for biomedical applications. Coordin. Chem. Rev. 403, 213092 (2020). https://doi.org/10.1016/j.ccr.2019.213092
S. Li, L. Shang, B. Xu, S. Wang, K. Gu et al., A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem. Int. Ed. 58(36), 12624–12631 (2019). https://doi.org/10.1002/ange.201904751
S. Zhao, M. Riedel, J. Patarroyo, N. Bastus, V. Puntes et al., Introducing visible-light sensitivity into photocatalytic CeO2 nanops by hybrid p preparation exploiting plasmonic properties of gold: enhanced photoelectrocatalysis exemplified for hydrogen peroxide sensing. Nanoscale 13(2), 980–990 (2021). https://doi.org/10.1039/D0NR06356H
W. Zhen, Y. Liu, W. Wang, M. Zhang, W. Hu et al., Specific “unlocking” of a nanozyme-based butterfly effect to break the evolutionary fitness of chaotic tumors. Angew. Chem. Int. Ed. 59(24), 9491–9497 (2020). https://doi.org/10.1002/ange.201916142
G. Tang, J. He, J. Liu, X. Yan, K. Fan, Nanozyme for tumor therapy: surface modification matters. Exploration 1, 75–89 (2021). https://doi.org/10.1002/EXP.20210005
B. Das, J. Franco, N. Logan, P. Balasubramanian, M. Kim et al., Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 13, 193 (2021). https://doi.org/10.1007/s40820-021-00717-0
J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
Y. Liu, Y. Cheng, H. Zhang, M. Zhou, Y. Yu et al., Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 6(29), eabb2695 (2020). https://doi.org/10.1126/sciadv.abb2695
K. Fan, J. Xi, L. Fan, P. Wang, C. Zhu et al., In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9, 1440 (2018). https://doi.org/10.1038/s41467-018-03903-8
T. Liu, B. Xiao, F. Xiang, J. Tan, Z. Chen et al., Ultrasmall copper-based nanops for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11, 2788 (2020). https://doi.org/10.1038/s41467-020-16544-7
F. Wang, E. Ju, Y. Guan, J. Ren, X. Qu, Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small 13(25), 1603051 (2017). https://doi.org/10.1002/smll.201603051
F. Wang, Y. Zhang, Z. Du, J. Ren, X. Qu, Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat. Commun. 9, 1209 (2018). https://doi.org/10.1038/s41467-018-03617-x
D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48(14), 3683–3704 (2019). https://doi.org/10.1039/C8CS00718G
H. Ye, K. Yang, J. Tao, Y. Liu, Q. Zhang et al., An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11(2), 2052–2059 (2017). https://doi.org/10.1021/acsnano.6b08232
M. Huo, L. Wang, Y. Chen, J. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 357 (2017). https://doi.org/10.1038/s41467-017-00424-8
K. Xu, Y. Cheng, J. Yan, Y. Feng, R. Zheng et al., Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanops for synergistic tumor therapy. Nano Res. 12(12), 2947–2953 (2019). https://doi.org/10.1007/s12274-019-2532-3
T. Pan, Y. Wang, X. Xue, C. Zhang, Rational design of allosteric switchable catalysts. Exploration (2022). https://doi.org/10.1002/EXP.20210095
M. Wegener, M.J. Hansen, A.J. Driessen, W. Szymanski, B.L. Feringa et al., Photocontrol of antibacterial activity: shifting from UV to red light activation. J. Am. Chem. Soc. 139(49), 17979–17986 (2017). https://doi.org/10.1021/jacs.7b09281
K. Singh, B. Graf, A. Linden, V. Sautner, H. Urlaub et al., Discovery of a regulatory subunit of the yeast fatty acid synthase. Cell 180(6), 1130–1143 (2020). https://doi.org/10.1016/j.cell.2020.02.034
J. Kuriyan, D. Eisenberg, The origin of protein interactions and allostery in colocalization. Nature 450(7172), 983–990 (2007). https://doi.org/10.1038/nature06524
M.J. Comstock, K.D. Whitley, H. Jia, J. Sokoloski, T.M. Lohman et al., Direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 348(6232), 352–354 (2015). https://doi.org/10.1126/science.aaa0130
R. Szmola, M. Sahin-Tóth, Pancreatitis-associated chymotrypsinogen C (CTRC) mutant elicits endoplasmic reticulum stress in pancreatic acinar cells. Gut 59(3), 365–372 (2010). https://doi.org/10.1136/gut.2009.198903
O. Berntsson, R. Rodriguez, L. Henry, M.R. Panman, A.J. Hughes et al., Photoactivation of drosophila melanogaster cryptochrome through sequential conformational transitions. Sci. Adv. 5(7), eaaw1531 (2019). https://doi.org/10.1126/sciadv.aaw1531
R. Nussinov, C.J. Tsai, Allostery in disease and in drug discovery. Cell 153(2), 293–305 (2013). https://doi.org/10.1016/j.cell.2013.03.034
H.G. Saavedra, J.O. Wrabl, J.A. Anderson, J. Li, V.J. Hilser, Dynamic allostery can drive cold adaptation in enzymes. Nature 558(7709), 324–328 (2018). https://doi.org/10.1038/s41586-018-0183-2
U. Aslam, V.G. Rao, S. Chavez, S. Linic, Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1(9), 656–665 (2018). https://doi.org/10.1038/s41929-018-0138-x
M. Ha, J.H. Kim, M. You, Q. Li, C. Fan et al., Multicomponent plasmonic nanops: from heterostructured nanops to colloidal composite nanostructures. Chem. Rev. 119(24), 12208–12278 (2019). https://doi.org/10.1021/acs.chemrev.9b00234
Y. Chang, Y. Cheng, Y. Feng, H. Jian, L. Wang et al., Resonance energy transfer-promoted photothermal and photodynamic performance of gold-copper sulfide yolk-shell nanops for chemophototherapy of cancer. Nano Lett. 18(2), 886–897 (2018). https://doi.org/10.1021/acs.nanolett.7b04162
S.S. Wang, L. Jiao, Y. Qian, W.C. Hu, G.Y. Xu et al., Boosting electrocatalytic hydrogen evolution over metal-organic frameworks by plasmon-induced hot-electron injection. Angew. Chem. Int. Ed. 58(31), 10713–10717 (2019). https://doi.org/10.1002/ange.201906134
L. Wang, X. Xu, Q. Cheng, S.X. Dou, Y. Du, Near-infrared-driven photocatalysts: design, construction, and applications. Small 17(9), 1904107 (2019). https://doi.org/10.1002/smll.201904107
B.H. Lee, S. Park, M. Kim, A.K. Sinha, S.C. Lee et al., Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18(6), 620–626 (2019). https://doi.org/10.1038/s41563-019-0344-1
Y. Li, X. He, J. Yin, Y. Ma, P. Zhang et al., Acquired superoxide-scavenging ability of ceria nanops. Angew. Chem. Int. Ed. 54(6), 1832–1835 (2015). https://doi.org/10.1002/anie.201410398
G.H. Ryu, A. France-Lanord, Y. Wen, S. Zhou, J.C. Grossman et al., Atomic structure and dynamics of self-limiting sub-nanometer pores in monolayer WS2. ACS Nano 12(11), 11638–11647 (2018). https://doi.org/10.1021/acsnano.8b07051
C. Xu, X. Qu, Cerium oxide nanop: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6, e90 (2014). https://doi.org/10.1038/am.2013.88
B. Li, T. Gu, T. Ming, J. Wang, P. Wang et al., (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano 8(8), 8152–8162 (2014). https://doi.org/10.1021/nn502303h
B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15(10), 1957–1962 (2003). https://doi.org/10.1021/cm020732l
Z.Y. Yang, S.L. Luo, H. Li, S.W. Dong, J. He et al., Alendronate as a robust anchor for ceria nanop surface coating: facile binding and improved biological properties. RSC Adv. 4(104), 59965–59969 (2014). https://doi.org/10.1039/C4RA12007H
Y. Zhao, Y. Wang, A. Mathur, Y. Wang, V. Maheshwari et al., Fluoride-capped nanoceria as a highly efficient oxidase-mimicking nanozyme: inhibiting product adsorption and increasing oxygen vacancies. Nanoscale 11(38), 17841–17850 (2019). https://doi.org/10.1039/C9NR05346H
T. Saravanan, M. Shanmugam, P. Anandan, M. Azhagurajan, K. Pazhanivel et al., Facile synthesis of graphene-CeO2 nanocomposites with enhanced electrochemical properties for supercapacitors. Dalton Trans. 44(21), 9901–9908 (2015). https://doi.org/10.1039/C5DT01235J
X. Guo, X. Li, S. Kou, X. Yang, X. Hu et al., Plasmon-enhanced electrocatalytic hydrogen/oxygen evolution by Pt/Fe-Au nanorods. J. Mater. Chem. A 6(17), 7364–7369 (2018). https://doi.org/10.1039/C8TA00499D
Y. Temerk, H. Ibrahim, A new sensor based on In doped CeO2 nanops modified glassy carbon paste electrode for sensitive determination of uric acid in biological fluids. Sens. Actuators B Chem. 224, 868–877 (2016). https://doi.org/10.1016/j.snb.2015.11.029
C.T. Campbell, C.H. Peden, Oxygen vacancies and catalysis on ceria surfaces. Science 309(5735), 713–714 (2005). https://doi.org/10.1126/science.1113955
Y.J. Wang, H. Dong, G.M. Lyu, H.Y. Zhang, J. Ke et al., Engineering the defect state and reducibility of ceria based nanops for improved anti-oxidation performance. Nanoscale 7(33), 13981–13990 (2015). https://doi.org/10.1039/C5NR02588E
D. Ni, H. Wei, W. Chen, Q. Bao, Z.T. Rosenkrans et al., Ceria nanops meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv. Mater. 31(40), 1902956 (2019). https://doi.org/10.1002/adma.201902956
F. Scholes, A. Hughes, S. Hardin, P. Lynch, P.R. Miller, Influence of hydrogen peroxide in the preparation of nanocrystalline ceria. Chem. Mater. 19(9), 2321–2328 (2007). https://doi.org/10.1021/cm063024z
X. Sun, X. Luo, X. Zhang, J. Xie, S. Jin et al., Enhanced superoxide generation on defective surfaces for selective photooxidation. J. Am. Chem. Soc. 141(9), 3797–3801 (2019). https://doi.org/10.1021/jacs.8b13051
N. Zhang, X. Li, H. Ye, S. Chen, H. Ju et al., Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138(28), 8928–8935 (2016). https://doi.org/10.1021/jacs.6b04629
Z. Wang, X. Shen, X. Gao, Y. Zhao, Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Nanoscale 11(28), 13289–13299 (2019). https://doi.org/10.1039/c9nr03473k
J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 28(39), 1801983 (2018). https://doi.org/10.1002/adfm.201801983
S.I. Han, S. Lee, M.G. Cho, J.M. Yoo, M.H. Oh et al., Epitaxially strained CeO2/Mn3O4 nanocrystals as an enhanced antioxidant for radioprotection. Adv. Mater. 32(31), 2001566 (2020). https://doi.org/10.1002/adma.202001566
A.M. Nauth, E. Schechtel, R. Dören, W. Tremel, T. Opatz, TiO2 nanops functionalized with non-innocent ligands allow oxidative photocyanation of amines with visible/near-infrared photons. J. Am. Chem. Soc. 140(43), 14169–14177 (2018). https://doi.org/10.1021/jacs.8b07539
H. Zhu, Y. Fang, Q. Miao, X. Qi, D. Ding et al., Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 11(9), 8998–9009 (2017). https://doi.org/10.1021/acsnano.7b03507
G. Lan, K. Ni, S.S. Veroneau, X. Feng, G.T. Nash et al., Titanium-based nanoscale meta-organic framework for type I photodynamic therapy. J. Am. Chem. Soc. 141(10), 4204–4208 (2019). https://doi.org/10.1021/jacs.8b13804
Z. Tian, J. Li, Z. Zhang, W. Gao, X. Zhou et al., Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials 59, 116–124 (2015). https://doi.org/10.1016/j.biomaterials.2015.04.039
L. Jiang, S. Fernandez-Garcia, M. Tinoco, Z. Yan, Q. Xue et al., Improved oxidase mimetic activity by praseodymium incorporation into ceria nanocubes. ACS Appl. Mater. Interfaces 9(22), 18595–18608 (2017). https://doi.org/10.1021/acsami.7b05036
Z. Wang, X. Shen, X. Gao, Density functional theory mechanistic insight into the peroxidase- and oxidase-like activities of nanoceria. J. Phys. Chem. C 125(42), 23098–23104 (2021). https://doi.org/10.1021/acs.jpcc.1c04878
X. Xu, S. Kou, X. Guo, X. Li, X. Ma et al., The enhanced photocatalytic properties for water oxidation over Bi/BiVO4/V2O5 Composite. J. Phys. Chem. C 121(30), 16257–16265 (2017). https://doi.org/10.1021/acs.jpcc.7b03119
S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10(12), 911–921 (2011). https://doi.org/10.1038/NMAT3151
J. Wang, M. Chen, Z. Luo, L. Ma, Y. Zhang et al., Ceria-coated gold nanorods for plasmon-enhanced near-infrared photocatalytic and photoelectrochemical performances. J. Phys. Chem. C 120(27), 14805–14812 (2016). https://doi.org/10.1021/acs.jpcc.6b03753
Y. Du, C. Yang, F. Li, H. Liao, Z. Chen et al., Core-shell-satellite nanomaces as remotely controlled self-fueling fenton reagents for imaging-guided triple-negative breast cancer-specific therapy. Small 16(31), 2002537 (2020). https://doi.org/10.1002/smll.202002537
D. Ling, B. Bae, W. Park, K. Na, Photodynamic efficacy of photosensitizers under an attenuated light dose via lipid nano-carrier-mediated nuclear targeting. Biomaterials 33(21), 5478–5486 (2012). https://doi.org/10.1016/j.biomaterials.2012.04.023
J. Li, X. Liu, L. Tan, Z. Cui, X. Yang et al., Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat. Commun. 10, 4490 (2019). https://doi.org/10.1038/s41467-019-12429-6