Molecular Design of Conjugated Small Molecule Nanoparticles for Synergistically Enhanced PTT/ PDT
Corresponding Author: Fangyuan Li
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 147
Abstract
Simultaneous photothermal therapy (PTT) and photodynamic therapy (PDT) is beneficial for enhanced cancer therapy due to the synergistic effect. Conventional materials developed for synergistic PTT/PDT are generally multicomponent agents that need complicated preparation procedures and be activated by multiple laser sources. The emerging monocomponent diketopyrrolopyrrole (DPP)-based conjugated small molecular agents enable dual PTT/PDT under a single laser irradiation, but suffer from low singlet oxygen quantum yield, which severely restricts the therapeutic efficacy. Herein, we report acceptor-oriented molecular design of a donor–acceptor–donor (D–A–D) conjugated small molecule (IID-ThTPA)-based phototheranostic agent, with isoindigo (IID) as selective acceptor and triphenylamine (TPA) as donor. The strong D–A strength and narrow singlet–triplet energy gap endow IID-ThTPA nanoparticles (IID-ThTPA NPs) high mass extinction coefficient (18.2 L g−1 cm−1), competitive photothermal conversion efficiency (35.4%), and a dramatically enhanced singlet oxygen quantum yield (84.0%) comparing with previously reported monocomponent PTT/PDT agents. Such a high PTT/PDT performance of IID-ThTPA NPs achieved superior tumor cooperative eradicating capability in vitro and in vivo.
Highlights:
1 A donor–acceptor–donor (D–A–D) conjugated small molecule IID-ThTPA with narrow singlet–triplet energy gap is synthesized via acceptor-oriented molecular design.
2 IID-ThTPA nanoparticles exhibit not only competitive photothermal conversion efficiency (35.4%), but also a dramatically high singlet oxygen quantum yield (84.0%).
3 IID-ThTPA nanoparticles enable superior cooperative tumor PTT/PDT eradicating capability both in vitro and in vivo.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005). https://doi.org/10.1038/nrc1566
- Y. Cai, W. Si, W. Huang, P. Chen, J. Shao, X. Dong, Organic dye based nanoparticles for cancer phototheranostics. Small 14, 1704247 (2018). https://doi.org/10.1002/smll.201704247
- L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939 (2014). https://doi.org/10.1021/cr400532z
- S. Gai, G. Yang, P. Yang, F. He, J. Lin, D. Jin, B. Xing, Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today 19, 146–187 (2018). https://doi.org/10.1016/j.nantod.2018.02.010
- D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007). https://doi.org/10.1038/nnano.2007.387
- Z. Meng, W. Hou, H. Zhou, L. Zhou, H. Chen, C. Wu, Therapeutic considerations and conjugated polymer-based photosensitizers for photodynamic therapy. Macromol. Rapid Commun. 39, 1700614 (2018). https://doi.org/10.1002/marc.201700614
- B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5, 7000–7009 (2011). https://doi.org/10.1021/nn201560b
- M.R. Younis, C. Wang, R. An, S. Wang, M.A. Younis et al., Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 13, 2544–2557 (2019). https://doi.org/10.1021/acsnano.8b09552
- M. Guo, H. Mao, Y. Li, A. Zhu, H. He et al., Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35, 4656–4666 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.018
- L. Li, Y. Liu, P. Hao, Z. Wang, L. Fu, Z. Ma, J. Zhou, PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR I and II window. Biomaterials 41, 132–140 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.075
- Y. Cao, H. Dong, Z. Yang, X. Zhong, Y. Chen, W. Dai, X. Zhang, Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microrna detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Appl. Mater. Interfaces 9, 159–166 (2017). https://doi.org/10.1021/acsami.6b13150
- H.S. Han, K.Y. Choi, H. Lee, M. Lee, J.Y. An et al., Gold-nanoclustered hyaluronan nano-assemblies for photothermally maneuvered photodynamic tumor ablation. ACS Nano 10, 10858–10868 (2016). https://doi.org/10.1021/acsnano.6b05113
- Q. Jia, J. Ge, W. Liu, S. Liu, G. Niu, L. Guo, H. Zhang, P. Wang, Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale 8, 13067–13077 (2016). https://doi.org/10.1039/c6nr03459d
- Y.K. Kim, H.K. Na, S. Kim, H. Jang, S.J. Chang, D.H. Min, One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small 11, 2527–2535 (2015). https://doi.org/10.1002/smll.201402269
- L. Dou, Y. Liu, Z. Hong, G. Li, Y. Yang, Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015). https://doi.org/10.1021/acs.chemrev.5b00165
- Z. Liu, G. Zhang, D. Zhang, Modification of side chains of conjugated molecules and polymers for charge mobility enhancement and sensing functionality. Acc. Chem. Res. 51, 1422–1432 (2018). https://doi.org/10.1021/acs.accounts.8b00069
- A.L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong et al., A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016). https://doi.org/10.1038/nmat4476
- Q. Yang, Z. Hu, S. Zhu, R. Ma, H. Ma et al., Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 140, 1715–1724 (2018). https://doi.org/10.1021/jacs.7b10334
- Q. Yang, Z. Ma, H. Wang, B. Zhou, S. Zhu et al., Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater. 29, 1605497 (2017). https://doi.org/10.1002/adma.201605497
- M. Gsänger, D. Bialas, L. Huang, M. Stolte, F. Würthner, Organic semiconductors based on dyes and color pigments. Adv. Mater. 28, 3615–3645 (2016). https://doi.org/10.1002/adma.201505440
- Y. Cai, P. Liang, W. Si, B. Zhao, J. Shao et al., A selenophene substituted diketopyrrolopyrrole nanotheranostic agent for highly efficient photoacoustic/infrared-thermal imaging-guided phototherapy. Org. Chem. Front. 5, 98–105 (2018). https://doi.org/10.1039/c7qo00755h
- Y. Cai, P. Liang, Q. Tang, X. Yang, W. Si, W. Huang, Q. Zhang, X. Dong, Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano 11, 1054–1063 (2017). https://doi.org/10.1021/acsnano.6b07927
- P. Liang, Y. Wang, P. Wang, J. Zou, H. Xu, Y. Zhang, W. Si, X. Dong, Triphenylamine flanked furan-diketopyrrolopyrrole for multi-imaging guided photothermal/photodynamic cancer therapy. Nanoscale 9, 18890–18896 (2017). https://doi.org/10.1039/c7nr07204j
- Y. Lyu, J. Zeng, Y. Jiang, X. Zhen, T. Wang, S. Qiu, X. Lou, M. Gao, K. Pu, Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano 12, 1801–1810 (2018). https://doi.org/10.1021/acsnano.7b08616
- J. Shen, J. Chen, Z. Ke, D. Zou, L. Sun, J. Zou, Heavy atom-free semiconducting polymer with high singlet oxygen quantum yield for prostate cancer synergistic phototherapy. Mater. Chem. Front. 3, 1123–1127 (2019). https://doi.org/10.1039/c9qm00158a
- Q. Wang, Y. Dai, J. Xu, J. Cai, X. Niu, L. Zhang, R. Chen, Q. Shen, W. Huang, Q. Fan, All-in-one phototheranostics: single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Funct. Mater. 29, 1901480 (2019). https://doi.org/10.1002/adfm.201901480
- J. Zou, L. Xue, N. Yang, Y. Ren, Z. Fan et al., A glutathione responsive pyrrolopyrrolidone nanotheranostic agent for turn-on fluorescence imaging guided photothermal/photodynamic cancer therapy. Mater. Chem. Front. 3, 2143–2150 (2019). https://doi.org/10.1039/c9qm00471h
- J. Zou, J. Zhu, Z. Yang, L. Li, W. Fan et al., A photo theranostic strategy to continuously deliver singlet oxygen in the dark and hypoxic tumor microenvironment. Angew. Chem. Int. Ed. 59, 8833–8838 (2020). https://doi.org/10.1002/anie.201914384
- K. Lu, C. He, W. Lin, Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 136, 16712–16715 (2014). https://doi.org/10.1021/ja508679h
- X. Miao, W. Hu, T. He, H. Tao, Q. Wang et al., Deciphering the intersystem crossing in near-infrared bodipy photosensitizers for highly efficient photodynamic therapy. Chem. Sci. 10, 3096–3102 (2019). https://doi.org/10.1039/c8sc04840a
- M. Schulze, A. Steffen, F. Wurthner, Near-IR phosphorescent ruthenium(ii) and iridium(iii) perylene bisimide metal complexes. Angew. Chem. Int. Ed. 54, 1570–1573 (2015). https://doi.org/10.1002/anie.201410437
- K. Wen, X. Xu, J. Chen, L. Lv, L. Wu et al., Triplet tellurophene-based semiconducting polymer nanoparticles for near-infrared-mediated cancer theranostics. ACS Appl. Mater. Interfaces 11, 17884–17893 (2019). https://doi.org/10.1021/acsami.9b05196
- T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano, Highly efficient and photostable photosensitizer based on bodipy chromophore. J. Am. Chem. Soc. 127, 12162–12163 (2005). https://doi.org/10.1021/ja0528533
- J. Zou, Z. Yin, P. Wang, D. Chen, J. Shao, Q. Zhang, L. Sun, W. Huang, X. Dong, Photosensitizer synergistic effects: D–A–D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy. Chem. Sci. 9, 2188–2194 (2018). https://doi.org/10.1039/c7sc04694d
- Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen et al., Designing excited states: theory-guided access to efficient photosensitizers for photodynamic action. Angew. Chem. Int. Ed. 50, 11937–11941 (2011). https://doi.org/10.1002/anie.201105736
- S. Kolemen, M. Isik, G.M. Kim, D. Kim, H. Geng et al., Intracellular modulation of excited-state dynamics in a chromophore dyad: differential enhancement of photocytotoxicity targeting cancer cells. Angew. Chem. Int. Ed. 54, 5340–5344 (2015). https://doi.org/10.1002/anie.201411962
- S.H. Lim, C. Thivierge, P. Nowak-Sliwinska, J. Han, H. van den Bergh, G. Wagnieres, K. Burgess, H.B. Lee, In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy. J. Med. Chem. 53, 2865–2874 (2010). https://doi.org/10.1021/jm901823u
- V.N. Nguyen, S. Qi, S. Kim, N. Kwon, G. Kim, Y. Yim, S. Park, J. Yoon, An emerging molecular design approach to heavy-atom-free photosensitizers for enhanced photodynamic therapy under hypoxia. J. Am. Chem. Soc. 141, 16243–16248 (2019). https://doi.org/10.1021/jacs.9b09220
- T. Lei, J.Y. Wang, J. Pei, Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res. 47, 1117–1126 (2014). https://doi.org/10.1021/ar400254j
- R. Stalder, J. Mei, K.R. Graham, L.A. Estrada, J.R. Reynolds, Isoindigo, a versatile electron-deficient unit for high-performance organic electronics. Chem. Mater. 26, 664–678 (2013). https://doi.org/10.1021/cm402219v
- J. Yang, Z. Zhao, H. Geng, C. Cheng, J. Chen et al., Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors. Adv. Mater. 29, 1702115 (2017). https://doi.org/10.1002/adma.201702115
- L. Zhu, M. Wang, B. Li, C. Jiang, Q. Li, High efficiency organic photovoltaic devices based on isoindigo conjugated polymers with a thieno[3,2-b]thiophene π-bridge. J. Mater. Chem. A 4, 16064–16072 (2016). https://doi.org/10.1039/c6ta07138d
- R. Ngoune, A. Peters, D. von Elverfeldt, K. Winkler, G. Pütz, Accumulating nanoparticles by EPR: a route of no return. J. Controlled Release 238, 58–70 (2016). https://doi.org/10.1016/j.jconrel.2016.07.028
- D.K. Roper, W. Ahn, M. Hoepfner, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111, 3636–3641 (2007). https://doi.org/10.1021/jp064341w
- L. Guo, G. Niu, X. Zheng, J. Ge, W. Liu, Q. Jia, P. Zhang, H. Zhang, P. Wang, Single near-infrared emissive polymer nanoparticles as versatile phototheranostics. Adv. Sci. 4, 1700085 (2017). https://doi.org/10.1002/advs.201700085
- P. Sun, X. Wang, G. Wang, W. Deng, Q. Shen, R. Jiang, W. Wang, Q. Fan, W. Huang, A perylene diimide zwitterionic polymer for photoacoustic imaging guided photothermal/photodynamic synergistic therapy with single near-infrared irradiation. J. Mater. Chem. B 6, 3395–3403 (2018). https://doi.org/10.1039/c8tb00845k
- Q. Wang, B. Xia, J. Xu, X. Niu, J. Cai, Q. Shen, W. Wang, W. Huang, Q. Fan, Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy. Mater. Chem. Front. 3, 650–655 (2019). https://doi.org/10.1039/c9qm00036d
- Q. Wang, J. Xu, R. Geng, J. Cai, J. Li, C. Xie, W. Tang, Q. Shen, W. Huang, Q. Fan, High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation. Biomaterials 231, 119671 (2020). https://doi.org/10.1016/j.biomaterials.2019.119671
- X. Yang, Q. Yu, N. Yang, L. Xue, J. Shao, B. Li, J. Shao, X. Dong, Thieno[3,2-b]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. J. Mater. Chem. B 7, 2454–2462 (2019). https://doi.org/10.1039/c8tb03185a
- S. Ye, J. Rao, S. Qiu, J. Zhao, H. He et al., Rational design of conjugated photosensitizers with controllable photoconversion for dually cooperative phototherapy. Adv. Mater. 30, 1801216 (2018). https://doi.org/10.1002/adma.201801216
- J. Zhu, J. Zou, Z. Zhang, J. Zhang, Y. Sun, X. Dong, Q. Zhang, An NIR triphenylamine grafted BODIPY derivative with high photothermal conversion efficiency and singlet oxygen generation for imaging guided phototherapy. Mater. Chem. Front. 3, 1523–1531 (2019). https://doi.org/10.1039/c9qm00044e
- J. Chen, K. Wen, H. Chen, S. Jiang, X. Wu, L. Lv, A. Peng, S. Zhang, H. Huang, Achieving high-performance photothermal and photodynamic effects upon combining D–A structure and nonplanar conformation. Small 16, 2000909 (2020). https://doi.org/10.1002/smll.202000909
References
M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005). https://doi.org/10.1038/nrc1566
Y. Cai, W. Si, W. Huang, P. Chen, J. Shao, X. Dong, Organic dye based nanoparticles for cancer phototheranostics. Small 14, 1704247 (2018). https://doi.org/10.1002/smll.201704247
L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939 (2014). https://doi.org/10.1021/cr400532z
S. Gai, G. Yang, P. Yang, F. He, J. Lin, D. Jin, B. Xing, Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today 19, 146–187 (2018). https://doi.org/10.1016/j.nantod.2018.02.010
D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007). https://doi.org/10.1038/nnano.2007.387
Z. Meng, W. Hou, H. Zhou, L. Zhou, H. Chen, C. Wu, Therapeutic considerations and conjugated polymer-based photosensitizers for photodynamic therapy. Macromol. Rapid Commun. 39, 1700614 (2018). https://doi.org/10.1002/marc.201700614
B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5, 7000–7009 (2011). https://doi.org/10.1021/nn201560b
M.R. Younis, C. Wang, R. An, S. Wang, M.A. Younis et al., Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 13, 2544–2557 (2019). https://doi.org/10.1021/acsnano.8b09552
M. Guo, H. Mao, Y. Li, A. Zhu, H. He et al., Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 35, 4656–4666 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.018
L. Li, Y. Liu, P. Hao, Z. Wang, L. Fu, Z. Ma, J. Zhou, PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR I and II window. Biomaterials 41, 132–140 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.075
Y. Cao, H. Dong, Z. Yang, X. Zhong, Y. Chen, W. Dai, X. Zhang, Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microrna detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Appl. Mater. Interfaces 9, 159–166 (2017). https://doi.org/10.1021/acsami.6b13150
H.S. Han, K.Y. Choi, H. Lee, M. Lee, J.Y. An et al., Gold-nanoclustered hyaluronan nano-assemblies for photothermally maneuvered photodynamic tumor ablation. ACS Nano 10, 10858–10868 (2016). https://doi.org/10.1021/acsnano.6b05113
Q. Jia, J. Ge, W. Liu, S. Liu, G. Niu, L. Guo, H. Zhang, P. Wang, Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale 8, 13067–13077 (2016). https://doi.org/10.1039/c6nr03459d
Y.K. Kim, H.K. Na, S. Kim, H. Jang, S.J. Chang, D.H. Min, One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small 11, 2527–2535 (2015). https://doi.org/10.1002/smll.201402269
L. Dou, Y. Liu, Z. Hong, G. Li, Y. Yang, Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015). https://doi.org/10.1021/acs.chemrev.5b00165
Z. Liu, G. Zhang, D. Zhang, Modification of side chains of conjugated molecules and polymers for charge mobility enhancement and sensing functionality. Acc. Chem. Res. 51, 1422–1432 (2018). https://doi.org/10.1021/acs.accounts.8b00069
A.L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong et al., A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016). https://doi.org/10.1038/nmat4476
Q. Yang, Z. Hu, S. Zhu, R. Ma, H. Ma et al., Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 140, 1715–1724 (2018). https://doi.org/10.1021/jacs.7b10334
Q. Yang, Z. Ma, H. Wang, B. Zhou, S. Zhu et al., Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater. 29, 1605497 (2017). https://doi.org/10.1002/adma.201605497
M. Gsänger, D. Bialas, L. Huang, M. Stolte, F. Würthner, Organic semiconductors based on dyes and color pigments. Adv. Mater. 28, 3615–3645 (2016). https://doi.org/10.1002/adma.201505440
Y. Cai, P. Liang, W. Si, B. Zhao, J. Shao et al., A selenophene substituted diketopyrrolopyrrole nanotheranostic agent for highly efficient photoacoustic/infrared-thermal imaging-guided phototherapy. Org. Chem. Front. 5, 98–105 (2018). https://doi.org/10.1039/c7qo00755h
Y. Cai, P. Liang, Q. Tang, X. Yang, W. Si, W. Huang, Q. Zhang, X. Dong, Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano 11, 1054–1063 (2017). https://doi.org/10.1021/acsnano.6b07927
P. Liang, Y. Wang, P. Wang, J. Zou, H. Xu, Y. Zhang, W. Si, X. Dong, Triphenylamine flanked furan-diketopyrrolopyrrole for multi-imaging guided photothermal/photodynamic cancer therapy. Nanoscale 9, 18890–18896 (2017). https://doi.org/10.1039/c7nr07204j
Y. Lyu, J. Zeng, Y. Jiang, X. Zhen, T. Wang, S. Qiu, X. Lou, M. Gao, K. Pu, Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Nano 12, 1801–1810 (2018). https://doi.org/10.1021/acsnano.7b08616
J. Shen, J. Chen, Z. Ke, D. Zou, L. Sun, J. Zou, Heavy atom-free semiconducting polymer with high singlet oxygen quantum yield for prostate cancer synergistic phototherapy. Mater. Chem. Front. 3, 1123–1127 (2019). https://doi.org/10.1039/c9qm00158a
Q. Wang, Y. Dai, J. Xu, J. Cai, X. Niu, L. Zhang, R. Chen, Q. Shen, W. Huang, Q. Fan, All-in-one phototheranostics: single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Funct. Mater. 29, 1901480 (2019). https://doi.org/10.1002/adfm.201901480
J. Zou, L. Xue, N. Yang, Y. Ren, Z. Fan et al., A glutathione responsive pyrrolopyrrolidone nanotheranostic agent for turn-on fluorescence imaging guided photothermal/photodynamic cancer therapy. Mater. Chem. Front. 3, 2143–2150 (2019). https://doi.org/10.1039/c9qm00471h
J. Zou, J. Zhu, Z. Yang, L. Li, W. Fan et al., A photo theranostic strategy to continuously deliver singlet oxygen in the dark and hypoxic tumor microenvironment. Angew. Chem. Int. Ed. 59, 8833–8838 (2020). https://doi.org/10.1002/anie.201914384
K. Lu, C. He, W. Lin, Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 136, 16712–16715 (2014). https://doi.org/10.1021/ja508679h
X. Miao, W. Hu, T. He, H. Tao, Q. Wang et al., Deciphering the intersystem crossing in near-infrared bodipy photosensitizers for highly efficient photodynamic therapy. Chem. Sci. 10, 3096–3102 (2019). https://doi.org/10.1039/c8sc04840a
M. Schulze, A. Steffen, F. Wurthner, Near-IR phosphorescent ruthenium(ii) and iridium(iii) perylene bisimide metal complexes. Angew. Chem. Int. Ed. 54, 1570–1573 (2015). https://doi.org/10.1002/anie.201410437
K. Wen, X. Xu, J. Chen, L. Lv, L. Wu et al., Triplet tellurophene-based semiconducting polymer nanoparticles for near-infrared-mediated cancer theranostics. ACS Appl. Mater. Interfaces 11, 17884–17893 (2019). https://doi.org/10.1021/acsami.9b05196
T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano, Highly efficient and photostable photosensitizer based on bodipy chromophore. J. Am. Chem. Soc. 127, 12162–12163 (2005). https://doi.org/10.1021/ja0528533
J. Zou, Z. Yin, P. Wang, D. Chen, J. Shao, Q. Zhang, L. Sun, W. Huang, X. Dong, Photosensitizer synergistic effects: D–A–D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy. Chem. Sci. 9, 2188–2194 (2018). https://doi.org/10.1039/c7sc04694d
Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen et al., Designing excited states: theory-guided access to efficient photosensitizers for photodynamic action. Angew. Chem. Int. Ed. 50, 11937–11941 (2011). https://doi.org/10.1002/anie.201105736
S. Kolemen, M. Isik, G.M. Kim, D. Kim, H. Geng et al., Intracellular modulation of excited-state dynamics in a chromophore dyad: differential enhancement of photocytotoxicity targeting cancer cells. Angew. Chem. Int. Ed. 54, 5340–5344 (2015). https://doi.org/10.1002/anie.201411962
S.H. Lim, C. Thivierge, P. Nowak-Sliwinska, J. Han, H. van den Bergh, G. Wagnieres, K. Burgess, H.B. Lee, In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy. J. Med. Chem. 53, 2865–2874 (2010). https://doi.org/10.1021/jm901823u
V.N. Nguyen, S. Qi, S. Kim, N. Kwon, G. Kim, Y. Yim, S. Park, J. Yoon, An emerging molecular design approach to heavy-atom-free photosensitizers for enhanced photodynamic therapy under hypoxia. J. Am. Chem. Soc. 141, 16243–16248 (2019). https://doi.org/10.1021/jacs.9b09220
T. Lei, J.Y. Wang, J. Pei, Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res. 47, 1117–1126 (2014). https://doi.org/10.1021/ar400254j
R. Stalder, J. Mei, K.R. Graham, L.A. Estrada, J.R. Reynolds, Isoindigo, a versatile electron-deficient unit for high-performance organic electronics. Chem. Mater. 26, 664–678 (2013). https://doi.org/10.1021/cm402219v
J. Yang, Z. Zhao, H. Geng, C. Cheng, J. Chen et al., Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors. Adv. Mater. 29, 1702115 (2017). https://doi.org/10.1002/adma.201702115
L. Zhu, M. Wang, B. Li, C. Jiang, Q. Li, High efficiency organic photovoltaic devices based on isoindigo conjugated polymers with a thieno[3,2-b]thiophene π-bridge. J. Mater. Chem. A 4, 16064–16072 (2016). https://doi.org/10.1039/c6ta07138d
R. Ngoune, A. Peters, D. von Elverfeldt, K. Winkler, G. Pütz, Accumulating nanoparticles by EPR: a route of no return. J. Controlled Release 238, 58–70 (2016). https://doi.org/10.1016/j.jconrel.2016.07.028
D.K. Roper, W. Ahn, M. Hoepfner, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111, 3636–3641 (2007). https://doi.org/10.1021/jp064341w
L. Guo, G. Niu, X. Zheng, J. Ge, W. Liu, Q. Jia, P. Zhang, H. Zhang, P. Wang, Single near-infrared emissive polymer nanoparticles as versatile phototheranostics. Adv. Sci. 4, 1700085 (2017). https://doi.org/10.1002/advs.201700085
P. Sun, X. Wang, G. Wang, W. Deng, Q. Shen, R. Jiang, W. Wang, Q. Fan, W. Huang, A perylene diimide zwitterionic polymer for photoacoustic imaging guided photothermal/photodynamic synergistic therapy with single near-infrared irradiation. J. Mater. Chem. B 6, 3395–3403 (2018). https://doi.org/10.1039/c8tb00845k
Q. Wang, B. Xia, J. Xu, X. Niu, J. Cai, Q. Shen, W. Wang, W. Huang, Q. Fan, Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy. Mater. Chem. Front. 3, 650–655 (2019). https://doi.org/10.1039/c9qm00036d
Q. Wang, J. Xu, R. Geng, J. Cai, J. Li, C. Xie, W. Tang, Q. Shen, W. Huang, Q. Fan, High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation. Biomaterials 231, 119671 (2020). https://doi.org/10.1016/j.biomaterials.2019.119671
X. Yang, Q. Yu, N. Yang, L. Xue, J. Shao, B. Li, J. Shao, X. Dong, Thieno[3,2-b]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. J. Mater. Chem. B 7, 2454–2462 (2019). https://doi.org/10.1039/c8tb03185a
S. Ye, J. Rao, S. Qiu, J. Zhao, H. He et al., Rational design of conjugated photosensitizers with controllable photoconversion for dually cooperative phototherapy. Adv. Mater. 30, 1801216 (2018). https://doi.org/10.1002/adma.201801216
J. Zhu, J. Zou, Z. Zhang, J. Zhang, Y. Sun, X. Dong, Q. Zhang, An NIR triphenylamine grafted BODIPY derivative with high photothermal conversion efficiency and singlet oxygen generation for imaging guided phototherapy. Mater. Chem. Front. 3, 1523–1531 (2019). https://doi.org/10.1039/c9qm00044e
J. Chen, K. Wen, H. Chen, S. Jiang, X. Wu, L. Lv, A. Peng, S. Zhang, H. Huang, Achieving high-performance photothermal and photodynamic effects upon combining D–A structure and nonplanar conformation. Small 16, 2000909 (2020). https://doi.org/10.1002/smll.202000909