Hydrolysis-Engineered Robust Porous Micron Silicon Anode for High-Energy Lithium-Ion Batteries
Corresponding Author: Liuzhang Ouyang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 297
Abstract
Micro-silicon (Si) anode that features high theoretical capacity and fine tap density is ideal for energy-dense lithium-ion batteries. However, the substantial localized mechanical strain caused by the large volume expansion often results in electrode disintegration and capacity loss. Herein, a microporous Si anode with the SiOx/C layer functionalized all-surface and high tap density (~ 0.65 g cm⁻3) is developed by the hydrolysis-driven strategy that avoids the common use of corrosive etchants and toxic siloxane reagents. The functionalized inner pore with superior structural stability can effectively alleviate the volume change and enhance the electrolyte contact. Simultaneously, the outer particle surface forms a continuous network that prevents electrolyte parasitic decomposition, disperses the interface stress of Si matrix and facilitates electron/ion transport. As a result, the micron-sized Si anode shows only ~ 9.94 GPa average stress at full lithiation state and delivers an impressive capacity of 901.1 mAh g⁻1 after 500 cycles at 1 A g⁻1. It also performs excellent rate performance of 1123.0 mAh g⁻1 at 5 A g⁻1 and 850.4 at 8 A g⁻1, far exceeding most of reported literatures. Furthermore, when paired with a commercial LiNi0.8Co0.1Mn0.1O2, the pouch cell demonstrates high capacity and desirable cyclic performance.
Highlights:
1 There is a novel “hydrolysis-driven synthesis” approach for the preparation of a dual-surface functionalized micron-sized Si anode with a SiOx/C layer.
2 The functionalized inner pores and dual-functional SiOx/C layer synergistically alleviate volume change of Si lithiation, minimize stress concentration and improve electrochemical reaction kinetics.
3 The optimized micron-Si anode performs impressive lifespan, excellent high rate capacity and outstanding stack cell volumetric energy density.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Zhu, G. Liu, G. Lv, Y. Mu, Y. Zhao et al., Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes. Sci. Adv. 5(11), eaax0651 (2019). https://doi.org/10.1126/sciadv.aax0651
- Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- T. Liu, T. Dong, M. Wang, X. Du, Y. Sun et al., Recycled micro-sized silicon anode for high-voltage lithium-ion batteries. Nat. Sustain. 7(8), 1057–1066 (2024). https://doi.org/10.1038/s41893-024-01393-9
- H. Huo, M. Jiang, Y. Bai, S. Ahmed, K. Volz et al., Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23(4), 543–551 (2024). https://doi.org/10.1038/s41563-023-01792-x
- S. Chae, S. Park, K. Ahn, G. Nam, T. Lee et al., Gas phase synthesis of amorphous silicon nitride nanops for high-energy LIBs. Energy Environ. Sci. 13(4), 1212–1221 (2020). https://doi.org/10.1039/c9ee03857d
- D.H.S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan et al., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373(6562), 1494–1499 (2021). https://doi.org/10.1126/science.abg7217
- S.I. Kim, W.J. Kim, J.G. Kang, D.W. Kim, Boosted lithium-ion transport kinetics in n-type siloxene anodes enabled by selective nucleophilic substitution of phosphorus. Nano-Micro Lett. 16(1), 219 (2024). https://doi.org/10.1007/s40820-024-01428-y
- J. Sung, N. Kim, J. Ma, J.H. Lee, S.H. Joo et al., Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nat. Energy 6(12), 1164–1175 (2021). https://doi.org/10.1038/s41560-021-00945-z
- W. Li, J.H. Wang, Y. Li, H. Hsueh, X. Liu et al., Element screening of high-entropy silicon anodes for superior Li-storage performance of Li-ion batteries. J. Am. Chem. Soc. 146(31), 21320–21334 (2024). https://doi.org/10.1021/jacs.4c01711
- N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee et al., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9(3), 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
- J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
- A.-M. Li, Z. Wang, T. Lee, N. Zhang, T. Li et al., Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes. Nat. Energy 9(12), 1551–1560 (2024). https://doi.org/10.1038/s41560-024-01619-2
- Y.-F. Tian, S.-J. Tan, C. Yang, Y.-M. Zhao, D.-X. Xu et al., Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. Nat. Commun. 14(1), 7247 (2023). https://doi.org/10.1038/s41467-023-43093-6
- S.A. Ahad, T. Kennedy, H. Geaney, Si nanowires: from model system to practical Li-ion anode material and beyond. ACS Energy Lett. 9(4), 1548–1561 (2024). https://doi.org/10.1021/acsenergylett.4c00262
- H. Jia, X. Li, J. Song, X. Zhang, L. Luo et al., Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 11(1), 1474 (2020). https://doi.org/10.1038/s41467-020-15217-9
- Z. Cheng, H. Jiang, X. Zhang, F. Cheng, M. Wu et al., Fundamental understanding and facing challenges in structural design of porous Si-based anodes for lithium-ion batteries. Adv. Funct. Mater. 33(26), 2301109 (2023). https://doi.org/10.1002/adfm.202301109
- M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
- N. Yang, J. Sun, R. Shao, Z. Cao, Z. Zhang et al., Stable and conductive carbon networks enabling high-performance silicon anodes for lithium-ion batteries. Cell Rep. Phys. Sci. 3(5), 100862 (2022). https://doi.org/10.1016/j.xcrp.2022.100862
- M. Han, Y. Mu, L. Wei, L. Zeng, T. Zhao, Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries. Carbon Energy 6(4), e377 (2024). https://doi.org/10.1002/cey2.377
- M. Je, D.-Y. Han, J. Ryu, S. Park, Constructing pure Si anodes for advanced lithium batteries. Acc. Chem. Res. 56(16), 2213–2224 (2023). https://doi.org/10.1021/acs.accounts.3c00308
- G. Zhu, D. Luo, X. Chen, J. Yang, H. Zhang, Emerging multiscale porous anodes toward fast charging lithium-ion batteries. ACS Nano 17(21), 20850–20874 (2023). https://doi.org/10.1021/acsnano.3c07424
- O. Wang, Z. Chen, X. Ma, Advancing sustainable end-of-life strategies for photovoltaic modules with silicon reclamation for lithium-ion battery anodes. Green Chem. 26(7), 3688–3697 (2024). https://doi.org/10.1039/D4GC00357H
- R. Guo, S. Zhang, H. Ying, W. Yang, J. Wang et al., New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 11(15), 14051–14058 (2019). https://doi.org/10.1021/acsami.8b21936
- Y. Li, Y. Tian, Y. Fu, L. Pang, Y. Li et al., Dual immobilization of porous Si by graphene supported anatase TiO2/carbon for high-performance and safe lithium storage. J. Colloid Interface Sci. 658, 12–21 (2024). https://doi.org/10.1016/j.jcis.2023.12.010
- H. Li, Z. Chen, Z. Kang, W. Liu, Y. Chen, High-density crack-resistant Si-C microps for lithium ion batteries. Energy Storage Mater. 56, 40–49 (2023). https://doi.org/10.1016/j.ensm.2022.12.045
- C. Xu, L. Shen, W. Zhang, Y. Huang, Z. Sun et al., Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes. Energy Storage Mater. 56, 319–330 (2023). https://doi.org/10.1016/j.ensm.2023.01.025
- Y. Zhang, R. Zhang, S. Chen, H. Gao, M. Li et al., Diatomite-derived hierarchical porous crystalline-AmorphousNetwork for high-performance and sustainable Si anodes. Adv. Funct. Mater. 30(50), 2005956 (2020). https://doi.org/10.1002/adfm.202005956
- P. Yu, Z. Li, D. Zhang, Q. Xiong, J. Yu et al., Hierarchical yolk-shell silicon/carbon anode materials enhanced by vertical graphene sheets for commercial lithium-ion battery applications. Adv. Funct. Mater. 35(2), 2413081 (2025). https://doi.org/10.1002/adfm.202413081
- Z. Li, M. Han, P. Yu, J. Lin, J. Yu, Macroporous directed and interconnected carbon architectures endow amorphous silicon nanodots as low-strain and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 16(1), 98 (2024). https://doi.org/10.1007/s40820-023-01308-x
- M. Zhao, J. Zhang, X. Zhang, K. Duan, H. Dong et al., Application of high-strength, high-density, isotropic Si/C composites in commercial lithium-ion batteries. Energy Storage Mater. 61, 102857 (2023). https://doi.org/10.1016/j.ensm.2023.102857
- C. Sun, X. Xu, C. Gui, F. Chen, Y. Wang et al., High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage. Nano-Micro Lett. 15(1), 202 (2023). https://doi.org/10.1007/s40820-023-01175-6
- G. Zheng, Y. Xiang, L. Xu, H. Luo, B. Wang et al., Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 8(29), 1801718 (2018). https://doi.org/10.1002/aenm.201801718
- X. Bai, Y. Yu, H.H. Kung, B. Wang, J. Jiang, Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power. Sources 306, 42–48 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.102
- B. Zhang, L. Wu, Y. Hu, X. Yang, Y. Liu et al., Modulating porous silicon-carbon anode stability: Carbon/silicon carbide semipermeable layer mitigates silicon-fluorine reaction and enhances lithium-ion transport. J. Colloid Interface Sci. 674, 643–652 (2024). https://doi.org/10.1016/j.jcis.2024.06.223
- R. Yu, Y. Pan, Y. Jiang, L. Zhou, D. Zhao et al., Regulating lithium transfer pathway to avoid capacity fading of nano Si through sub-nano scale interfused SiOx/C coating. Adv. Mater. 35(49), 2306504 (2023). https://doi.org/10.1002/adma.202306504
- G. Hu, R. Yu, Z. Liu, Q. Yu, Y. Zhang et al., Surface oxidation layer-mediated conformal carbon coating on Si nanops for enhanced lithium storage. ACS Appl. Mater. Interfaces 13(3), 3991–3998 (2021). https://doi.org/10.1021/acsami.0c19673
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- D. Dang, Y. Wang, M. Wang, J. Hu, C. Ban et al., Lithium substituted poly(acrylic acid) as a mechanically robust binder for low-cost silicon microp electrodes. ACS Appl. Energy Mater. 3(11), 10940–10949 (2020). https://doi.org/10.1021/acsaem.0c01923
- Y. Wang, D. Dang, D. Li, J. Hu, X. Zhan et al., Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling. J. Power. Sources 438, 226938 (2019). https://doi.org/10.1016/j.jpowsour.2019.226938
- Y. Wang, Q. Zhang, D. Li, J. Hu, J. Xu et al., Mechanical property evolution of silicon composite electrodes studied by environmental nanoindentation. Adv. Energy Mater. 8(10), 1702578 (2018). https://doi.org/10.1002/aenm.201702578
- J. Luan, H. Yuan, J. Liu, N. Zhao, W. Hu et al., Amorphous AlPO4 layer coating vacuum thermal reduced SiOx with fine silicon grains to enhance the anode stability. Adv. Sci. 11(36), 2405116 (2024). https://doi.org/10.1002/advs.202405116
- Y. Li, G. Chen, H. Yang, X. Geng, Z. Luo et al., Three-dimensional porous Si@SiOx/Ag/CN anode derived from deposition silicon waste toward high-performance Li-ion batteries. ACS Appl. Mater. Interfaces 15(37), 43887–43898 (2023). https://doi.org/10.1021/acsami.3c09561
- X. Fan, T. Cai, S. Wang, Z. Yang, W. Zhang, Carbon nanotube-reinforced dual carbon stress-buffering for highly stable silicon anode material in lithium-ion battery. Small 19(30), 2300431 (2023). https://doi.org/10.1002/smll.202300431
- J. Shi, H. Gao, G. Hu, Q. Zhang, Interfacial self-assembled Si@SiOX@C microclusters with high tap density for high-performance Li-ion batteries. Mater. Today Energy 29, 101090 (2022). https://doi.org/10.1016/j.mtener.2022.101090
- S. Guo, C. Pang, P. He, X. He, J. Ren et al., Effective coating of polydopamine-mediated polyacrylamide on SiOx microps enables stable interface chemistry. Appl. Surf. Sci. 651, 159255 (2024). https://doi.org/10.1016/j.apsusc.2023.159255
- M.-Y. Yan, G. Li, J. Zhang, Y.-F. Tian, Y.-X. Yin et al., Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 12(24), 27202–27209 (2020). https://doi.org/10.1021/acsami.0c05153
- Y. Zhu, W. Hu, J. Zhou, W. Cai, Y. Lu et al., Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage. ACS Appl. Mater. Interfaces 11(20), 18305–18312 (2019). https://doi.org/10.1021/acsami.8b22507
- R. Zhu, L. Li, Z. Wang, S. Zhang, J. Dang et al., Adjustable dimensionality of microaggregates of silicon in hollow carbon nanospheres: an efficient pathway for high-performance lithium-ion batteries. ACS Nano 16(1), 1119–1133 (2022). https://doi.org/10.1021/acsnano.1c08866
- Q. Ma, Z. Zhao, Y. Zhao, H. Xie, P. Xing et al., A self-driven alloying/dealloying approach to nanostructuring micro-silicon for high-performance lithium-ion battery anodes. Energy Storage Mater. 34, 768–777 (2021). https://doi.org/10.1016/j.ensm.2020.10.021
- Y. Wei, Z. Xiao, Y. Huang, Y. Zhu, Z. Zhu et al., Insights into the SiO2 stress effect on the electrochemical performance of Si anode. Small 20(20), 2310240 (2024). https://doi.org/10.1002/smll.202310240
- M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014). https://doi.org/10.1021/cr500207g
- Y. Zhang, N. Du, D. Yang, Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries. Nanoscale 11(41), 19086–19104 (2019). https://doi.org/10.1039/C9NR05748J
- J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, rowing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
- M. Liu, Y. Ying, J. Liu, C. Li, R. Hu et al., Catalytic strategies enabled rapid formation of homogeneous and mechanically robust inorganic-rich cathode electrolyte interface for high-rate and high-stability lithium-ion batteries. Adv. Energy Mater. 14(48), 2403696 (2024). https://doi.org/10.1002/aenm.202403696
- F. Li, Z. Liu, C. Liao, X. Xu, M. Zhu et al., Gradient boracic polyanion doping-derived surface lattice modulation of high-voltage Ni-rich layered cathodes for high-energy-density Li-ion batteries. ACS Energy Lett. 8(11), 4903–4914 (2023). https://doi.org/10.1021/acsenergylett.3c02072
- L. Wang, G. Liu, R. Xu, X. Wang, L. Wang et al., Enabling an intrinsically safe and high-energy-density 4.5 V-class lithium-ion battery with synergistically incorporated fast ion conductors. Adv. Energy Mater. 13(18), 2203999 (2023). https://doi.org/10.1002/aenm.202203999
- P. Zou, W. Jiang, L. Ma, L. Ouyang, Highly reversible lithium metal anodes enabled by a lithium sulfamate layer with high ionic conductivity and a low surface diffusion barrier. J. Mater. Chem. A 12(20), 11960–11967 (2024). https://doi.org/10.1039/D4TA00093E
- X. Li, Z. Chen, X. Liu, L. Guo, A. Li et al., Efficient lithium transport and reversible lithium plating in silicon anodes: synergistic design of porous structure and LiF-rich SEI for fast charging. Adv. Funct. Mater. 34(33), 2401686 (2024). https://doi.org/10.1002/adfm.202401686
References
B. Zhu, G. Liu, G. Lv, Y. Mu, Y. Zhao et al., Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes. Sci. Adv. 5(11), eaax0651 (2019). https://doi.org/10.1126/sciadv.aax0651
Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
T. Liu, T. Dong, M. Wang, X. Du, Y. Sun et al., Recycled micro-sized silicon anode for high-voltage lithium-ion batteries. Nat. Sustain. 7(8), 1057–1066 (2024). https://doi.org/10.1038/s41893-024-01393-9
H. Huo, M. Jiang, Y. Bai, S. Ahmed, K. Volz et al., Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23(4), 543–551 (2024). https://doi.org/10.1038/s41563-023-01792-x
S. Chae, S. Park, K. Ahn, G. Nam, T. Lee et al., Gas phase synthesis of amorphous silicon nitride nanops for high-energy LIBs. Energy Environ. Sci. 13(4), 1212–1221 (2020). https://doi.org/10.1039/c9ee03857d
D.H.S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan et al., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373(6562), 1494–1499 (2021). https://doi.org/10.1126/science.abg7217
S.I. Kim, W.J. Kim, J.G. Kang, D.W. Kim, Boosted lithium-ion transport kinetics in n-type siloxene anodes enabled by selective nucleophilic substitution of phosphorus. Nano-Micro Lett. 16(1), 219 (2024). https://doi.org/10.1007/s40820-024-01428-y
J. Sung, N. Kim, J. Ma, J.H. Lee, S.H. Joo et al., Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nat. Energy 6(12), 1164–1175 (2021). https://doi.org/10.1038/s41560-021-00945-z
W. Li, J.H. Wang, Y. Li, H. Hsueh, X. Liu et al., Element screening of high-entropy silicon anodes for superior Li-storage performance of Li-ion batteries. J. Am. Chem. Soc. 146(31), 21320–21334 (2024). https://doi.org/10.1021/jacs.4c01711
N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee et al., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9(3), 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi et al., Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
A.-M. Li, Z. Wang, T. Lee, N. Zhang, T. Li et al., Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes. Nat. Energy 9(12), 1551–1560 (2024). https://doi.org/10.1038/s41560-024-01619-2
Y.-F. Tian, S.-J. Tan, C. Yang, Y.-M. Zhao, D.-X. Xu et al., Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. Nat. Commun. 14(1), 7247 (2023). https://doi.org/10.1038/s41467-023-43093-6
S.A. Ahad, T. Kennedy, H. Geaney, Si nanowires: from model system to practical Li-ion anode material and beyond. ACS Energy Lett. 9(4), 1548–1561 (2024). https://doi.org/10.1021/acsenergylett.4c00262
H. Jia, X. Li, J. Song, X. Zhang, L. Luo et al., Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 11(1), 1474 (2020). https://doi.org/10.1038/s41467-020-15217-9
Z. Cheng, H. Jiang, X. Zhang, F. Cheng, M. Wu et al., Fundamental understanding and facing challenges in structural design of porous Si-based anodes for lithium-ion batteries. Adv. Funct. Mater. 33(26), 2301109 (2023). https://doi.org/10.1002/adfm.202301109
M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng et al., Innovative solutions for high-performance silicon anodes in lithium-ion batteries: overcoming challenges and real-world applications. Nano-Micro Lett. 16(1), 179 (2024). https://doi.org/10.1007/s40820-024-01388-3
N. Yang, J. Sun, R. Shao, Z. Cao, Z. Zhang et al., Stable and conductive carbon networks enabling high-performance silicon anodes for lithium-ion batteries. Cell Rep. Phys. Sci. 3(5), 100862 (2022). https://doi.org/10.1016/j.xcrp.2022.100862
M. Han, Y. Mu, L. Wei, L. Zeng, T. Zhao, Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries. Carbon Energy 6(4), e377 (2024). https://doi.org/10.1002/cey2.377
M. Je, D.-Y. Han, J. Ryu, S. Park, Constructing pure Si anodes for advanced lithium batteries. Acc. Chem. Res. 56(16), 2213–2224 (2023). https://doi.org/10.1021/acs.accounts.3c00308
G. Zhu, D. Luo, X. Chen, J. Yang, H. Zhang, Emerging multiscale porous anodes toward fast charging lithium-ion batteries. ACS Nano 17(21), 20850–20874 (2023). https://doi.org/10.1021/acsnano.3c07424
O. Wang, Z. Chen, X. Ma, Advancing sustainable end-of-life strategies for photovoltaic modules with silicon reclamation for lithium-ion battery anodes. Green Chem. 26(7), 3688–3697 (2024). https://doi.org/10.1039/D4GC00357H
R. Guo, S. Zhang, H. Ying, W. Yang, J. Wang et al., New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 11(15), 14051–14058 (2019). https://doi.org/10.1021/acsami.8b21936
Y. Li, Y. Tian, Y. Fu, L. Pang, Y. Li et al., Dual immobilization of porous Si by graphene supported anatase TiO2/carbon for high-performance and safe lithium storage. J. Colloid Interface Sci. 658, 12–21 (2024). https://doi.org/10.1016/j.jcis.2023.12.010
H. Li, Z. Chen, Z. Kang, W. Liu, Y. Chen, High-density crack-resistant Si-C microps for lithium ion batteries. Energy Storage Mater. 56, 40–49 (2023). https://doi.org/10.1016/j.ensm.2022.12.045
C. Xu, L. Shen, W. Zhang, Y. Huang, Z. Sun et al., Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes. Energy Storage Mater. 56, 319–330 (2023). https://doi.org/10.1016/j.ensm.2023.01.025
Y. Zhang, R. Zhang, S. Chen, H. Gao, M. Li et al., Diatomite-derived hierarchical porous crystalline-AmorphousNetwork for high-performance and sustainable Si anodes. Adv. Funct. Mater. 30(50), 2005956 (2020). https://doi.org/10.1002/adfm.202005956
P. Yu, Z. Li, D. Zhang, Q. Xiong, J. Yu et al., Hierarchical yolk-shell silicon/carbon anode materials enhanced by vertical graphene sheets for commercial lithium-ion battery applications. Adv. Funct. Mater. 35(2), 2413081 (2025). https://doi.org/10.1002/adfm.202413081
Z. Li, M. Han, P. Yu, J. Lin, J. Yu, Macroporous directed and interconnected carbon architectures endow amorphous silicon nanodots as low-strain and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 16(1), 98 (2024). https://doi.org/10.1007/s40820-023-01308-x
M. Zhao, J. Zhang, X. Zhang, K. Duan, H. Dong et al., Application of high-strength, high-density, isotropic Si/C composites in commercial lithium-ion batteries. Energy Storage Mater. 61, 102857 (2023). https://doi.org/10.1016/j.ensm.2023.102857
C. Sun, X. Xu, C. Gui, F. Chen, Y. Wang et al., High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage. Nano-Micro Lett. 15(1), 202 (2023). https://doi.org/10.1007/s40820-023-01175-6
G. Zheng, Y. Xiang, L. Xu, H. Luo, B. Wang et al., Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 8(29), 1801718 (2018). https://doi.org/10.1002/aenm.201801718
X. Bai, Y. Yu, H.H. Kung, B. Wang, J. Jiang, Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power. Sources 306, 42–48 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.102
B. Zhang, L. Wu, Y. Hu, X. Yang, Y. Liu et al., Modulating porous silicon-carbon anode stability: Carbon/silicon carbide semipermeable layer mitigates silicon-fluorine reaction and enhances lithium-ion transport. J. Colloid Interface Sci. 674, 643–652 (2024). https://doi.org/10.1016/j.jcis.2024.06.223
R. Yu, Y. Pan, Y. Jiang, L. Zhou, D. Zhao et al., Regulating lithium transfer pathway to avoid capacity fading of nano Si through sub-nano scale interfused SiOx/C coating. Adv. Mater. 35(49), 2306504 (2023). https://doi.org/10.1002/adma.202306504
G. Hu, R. Yu, Z. Liu, Q. Yu, Y. Zhang et al., Surface oxidation layer-mediated conformal carbon coating on Si nanops for enhanced lithium storage. ACS Appl. Mater. Interfaces 13(3), 3991–3998 (2021). https://doi.org/10.1021/acsami.0c19673
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
D. Dang, Y. Wang, M. Wang, J. Hu, C. Ban et al., Lithium substituted poly(acrylic acid) as a mechanically robust binder for low-cost silicon microp electrodes. ACS Appl. Energy Mater. 3(11), 10940–10949 (2020). https://doi.org/10.1021/acsaem.0c01923
Y. Wang, D. Dang, D. Li, J. Hu, X. Zhan et al., Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling. J. Power. Sources 438, 226938 (2019). https://doi.org/10.1016/j.jpowsour.2019.226938
Y. Wang, Q. Zhang, D. Li, J. Hu, J. Xu et al., Mechanical property evolution of silicon composite electrodes studied by environmental nanoindentation. Adv. Energy Mater. 8(10), 1702578 (2018). https://doi.org/10.1002/aenm.201702578
J. Luan, H. Yuan, J. Liu, N. Zhao, W. Hu et al., Amorphous AlPO4 layer coating vacuum thermal reduced SiOx with fine silicon grains to enhance the anode stability. Adv. Sci. 11(36), 2405116 (2024). https://doi.org/10.1002/advs.202405116
Y. Li, G. Chen, H. Yang, X. Geng, Z. Luo et al., Three-dimensional porous Si@SiOx/Ag/CN anode derived from deposition silicon waste toward high-performance Li-ion batteries. ACS Appl. Mater. Interfaces 15(37), 43887–43898 (2023). https://doi.org/10.1021/acsami.3c09561
X. Fan, T. Cai, S. Wang, Z. Yang, W. Zhang, Carbon nanotube-reinforced dual carbon stress-buffering for highly stable silicon anode material in lithium-ion battery. Small 19(30), 2300431 (2023). https://doi.org/10.1002/smll.202300431
J. Shi, H. Gao, G. Hu, Q. Zhang, Interfacial self-assembled Si@SiOX@C microclusters with high tap density for high-performance Li-ion batteries. Mater. Today Energy 29, 101090 (2022). https://doi.org/10.1016/j.mtener.2022.101090
S. Guo, C. Pang, P. He, X. He, J. Ren et al., Effective coating of polydopamine-mediated polyacrylamide on SiOx microps enables stable interface chemistry. Appl. Surf. Sci. 651, 159255 (2024). https://doi.org/10.1016/j.apsusc.2023.159255
M.-Y. Yan, G. Li, J. Zhang, Y.-F. Tian, Y.-X. Yin et al., Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Appl. Mater. Interfaces 12(24), 27202–27209 (2020). https://doi.org/10.1021/acsami.0c05153
Y. Zhu, W. Hu, J. Zhou, W. Cai, Y. Lu et al., Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage. ACS Appl. Mater. Interfaces 11(20), 18305–18312 (2019). https://doi.org/10.1021/acsami.8b22507
R. Zhu, L. Li, Z. Wang, S. Zhang, J. Dang et al., Adjustable dimensionality of microaggregates of silicon in hollow carbon nanospheres: an efficient pathway for high-performance lithium-ion batteries. ACS Nano 16(1), 1119–1133 (2022). https://doi.org/10.1021/acsnano.1c08866
Q. Ma, Z. Zhao, Y. Zhao, H. Xie, P. Xing et al., A self-driven alloying/dealloying approach to nanostructuring micro-silicon for high-performance lithium-ion battery anodes. Energy Storage Mater. 34, 768–777 (2021). https://doi.org/10.1016/j.ensm.2020.10.021
Y. Wei, Z. Xiao, Y. Huang, Y. Zhu, Z. Zhu et al., Insights into the SiO2 stress effect on the electrochemical performance of Si anode. Small 20(20), 2310240 (2024). https://doi.org/10.1002/smll.202310240
M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014). https://doi.org/10.1021/cr500207g
Y. Zhang, N. Du, D. Yang, Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries. Nanoscale 11(41), 19086–19104 (2019). https://doi.org/10.1039/C9NR05748J
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, rowing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
M. Liu, Y. Ying, J. Liu, C. Li, R. Hu et al., Catalytic strategies enabled rapid formation of homogeneous and mechanically robust inorganic-rich cathode electrolyte interface for high-rate and high-stability lithium-ion batteries. Adv. Energy Mater. 14(48), 2403696 (2024). https://doi.org/10.1002/aenm.202403696
F. Li, Z. Liu, C. Liao, X. Xu, M. Zhu et al., Gradient boracic polyanion doping-derived surface lattice modulation of high-voltage Ni-rich layered cathodes for high-energy-density Li-ion batteries. ACS Energy Lett. 8(11), 4903–4914 (2023). https://doi.org/10.1021/acsenergylett.3c02072
L. Wang, G. Liu, R. Xu, X. Wang, L. Wang et al., Enabling an intrinsically safe and high-energy-density 4.5 V-class lithium-ion battery with synergistically incorporated fast ion conductors. Adv. Energy Mater. 13(18), 2203999 (2023). https://doi.org/10.1002/aenm.202203999
P. Zou, W. Jiang, L. Ma, L. Ouyang, Highly reversible lithium metal anodes enabled by a lithium sulfamate layer with high ionic conductivity and a low surface diffusion barrier. J. Mater. Chem. A 12(20), 11960–11967 (2024). https://doi.org/10.1039/D4TA00093E
X. Li, Z. Chen, X. Liu, L. Guo, A. Li et al., Efficient lithium transport and reversible lithium plating in silicon anodes: synergistic design of porous structure and LiF-rich SEI for fast charging. Adv. Funct. Mater. 34(33), 2401686 (2024). https://doi.org/10.1002/adfm.202401686