Ultralight Magnetic and Dielectric Aerogels Achieved by Metal–Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption
Corresponding Author: Gaofeng Shao
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 107
Abstract
The development of a convenient methodology for synthesizing the hierarchically porous aerogels comprising metal–organic frameworks (MOFs) and graphene oxide (GO) building blocks that exhibit an ultralow density and uniformly distributed MOFs on GO sheets is important for various applications. Herein, we report a facile route for synthesizing MOF/reduced GO (rGO) aerogels based on the gelation of GO, which is directly initiated using MOF crystals. Free metal ions exposed on the surface of MIL-88A nanorods act as linkers that bind GO nanosheets to a three-dimensional porous network via metal–oxygen covalent or electrostatic interactions. The MOF/rGO-derived magnetic and dielectric aerogels Fe3O4@C/rGO and Ni-doped Fe3O4@C/rGO show notable microwave absorption (MA) performance, simultaneously achieving strong absorption and broad bandwidth at low thickness of 2.5 (− 58.1 dB and 6.48 GHz) and 2.8 mm (− 46.2 dB and 7.92 GHz) with ultralow filling contents of 0.7 and 0.6 wt%, respectively. The microwave attenuation ability of the prepared aerogels is further confirmed via a radar cross-sectional simulation, which is attributed to the synergistic effects of their hierarchically porous structures and heterointerface engineering. This work provides an effective pathway for fabricating hierarchically porous MOF/rGO hybrid aerogels and offers magnetic and dielectric aerogels for ultralight MA.
Highlights:
1 Metal–organic frameworks (MOFs) are used to directly initiate the gelation of graphene oxide (GO), producing MOF/rGO aerogels.
2 The ultralight magnetic and dielectric aerogels show remarkable microwave absorption performance with ultralow filling contents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16(1), 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
- J. Yang, J. Wang, H. Li, Z. Wu, Y. Xing et al., MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 9(7), 2101988 (2022). https://doi.org/10.1002/advs.202101988
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao et al., From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14(5), 1495–1501 (2021). https://doi.org/10.1007/s12274-020-3208-8
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
- J. Cheng, H. Zhang, Y. Xiong, L. Gao, B. Wen et al., Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics 7(6), 1233–1263 (2021). https://doi.org/10.1016/j.jmat.2021.02.017
- J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao et al., Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 33(5), 1789–1798 (2021). https://doi.org/10.1021/acs.chemmater.0c04734
- Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal–organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
- H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
- S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin et al., State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 14, 68 (2022). https://doi.org/10.1007/s40820-022-00808-6
- J. Shu, X. Yang, X. Zhang, X. Huang, M. Cao et al., Tailoring mof-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020). https://doi.org/10.1016/j.carbon.2020.02.047
- M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16(14), 2000158 (2020). https://doi.org/10.1002/smll.202000158
- J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201129
- S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang et al., MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 88, 56–65 (2021). https://doi.org/10.1016/j.jmst.2021.02.011
- Z. Sui, P. Zhang, M. Xu, Y. Liu, Z. Wei et al., Metal-organic framework-derived metal oxide embedded in nitrogen-doped graphene network for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9(49), 43171–43178 (2017). https://doi.org/10.1021/acsami.7b15315
- J. Cheng, S. Chen, D. Chen, L. Dong, J. Wang et al., Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers. J. Mater. Chem. A 6(41), 20254–20266 (2018). https://doi.org/10.1039/C8TA06785F
- J. Cheng, J. Liang, L. Dong, J. Chai, N. Zhao et al., Self-assembly of 2D-metal–organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs+ from aqueous solutions. RSC Adv. 8(71), 40813–40822 (2018). https://doi.org/10.1039/C8RA08410F
- J. Cheng, K. Liu, X. Li, L. Huang, J. Liang et al., Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr2+ removal from aqueous solution. Environ. Sci. Ecotechnol. 3, 100035 (2020). https://doi.org/10.1016/j.ese.2020.100035
- W. Xia, C. Qu, Z. Liang, B. Zhao, S. Dai et al., High-performance energy storage and conversion materials derived from a single metal organic framework/graphene aerogel composite. Nano Lett. 17(5), 2788–2795 (2017). https://doi.org/10.1021/acs.nanolett.6b05004
- P. Xiao, S. Li, C. Yu, Y. Wang, Y. Xu, Interface engineering between the metal–organic framework nanocrystal and graphene toward ultrahigh potassium-ion storage performance. ACS Nano 14(8), 10210–10218 (2020). https://doi.org/10.1021/acsnano.0c03488
- X. Xu, W. Shi, P. Li, S. Ye, C. Ye et al., Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem. Mater. 29(14), 6058–6065 (2017). https://doi.org/10.1021/acs.chemmater.7b01947
- G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications. Adv. Mater. 32(17), 1907176 (2020). https://doi.org/10.1002/adma.201907176
- X.F. Lu, L. Yu, X.W. Lou, Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 5(2), eaav6009 (2019). https://doi.org/10.1126/sciadv.aav6009
- D. Zhu, J. Liang, Y. Ding, G. Xue, L. Liu, Effect of heat treatment on far infrared emission properties of tourmaline powders modified with a rare earth. J. Am. Ceram. Soc. 91(8), 2588–2592 (2008). https://doi.org/10.1111/j.1551-2916.2008.02487.x
- Y. Zhang, C. Liu, K. Peng, Y. Cao, G. Fang et al., Synthesis of broad microwave absorption bandwidth Zr4+-Ni2+ ions gradient-substituted barium ferrite. Ceram. Int. 46(16), 25808–25816 (2020). https://doi.org/10.1016/j.ceramint.2020.07.062
- G. Shao, O. Ovsianytskyi, M.F. Bekheet, A. Gurlo, On-chip assembly of 3D graphene-based aerogels for chemiresistive gas sensing. Chem. Commun. 56(3), 450–453 (2020). https://doi.org/10.1039/C9CC09092D
- G. Shao, D.A.H. Hanaor, J. Wang, D. Kober, S. Li et al., Polymer-derived SiOC integrated with a graphene aerogel as a highly stable Li-ion battery anode. ACS Appl. Mater. Interfaces 12(41), 46045–46056 (2020). https://doi.org/10.1021/acsami.0c12376
- G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
- X. Huang, M. Qiao, X. Lu, Y. Li, Y. Ma et al., Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 14(11), 4006–4013 (2021). https://doi.org/10.1007/s12274-021-3327-x
- R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- X. Zhou, Z. Jia, X. Zhang, B. Wang, X. Liu et al., Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 420, 129907 (2021). https://doi.org/10.1016/j.cej.2021.129907
- D. Zhi, T. Li, J. Li, H. Ren, F. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. Part B Eng. 211, 108642 (2021). https://doi.org/10.1016/j.compositesb.2021.108642
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- X. Xu, S. Shi, Y. Tang, G. Wang, M. Zhou et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8(5), 2002658 (2021). https://doi.org/10.1002/advs.202002658
- J. Xu, X. Zhang, Z. Zhao, H. Hu, B. Li et al., Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 17(33), 2102032 (2021). https://doi.org/10.1002/smll.202102032
- X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
- X. Huang, Y. Ma, H. Lai, Q. Jia, L. Zhu et al., Conductive substrates-based component tailoring via thermal conversion of metal organic framework for enhanced microwave absorption performances. J. Colloid Interface Sci. 608, 1323–1333 (2022). https://doi.org/10.1016/j.jcis.2021.10.137
- H. Zhao, X. Xu, D. Fan, P. Xu, F. Wang et al., Anchoring porous carbon nanops on carbon nanotubes as a high-performance composite with a unique core-sheath structure for electromagnetic pollution precaution. J. Mater. Chem. A 9(39), 22489–22500 (2021). https://doi.org/10.1039/D1TA06147J
- D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9(8), 5086–5096 (2021). https://doi.org/10.1039/D0TA10942H
- R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 224–234 (2022). https://doi.org/10.1016/j.jcis.2021.11.197
- Y. Wang, X. Di, Z. Lu, R. Cheng, X. Wu et al., Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon 187, 404–414 (2022). https://doi.org/10.1016/j.carbon.2021.11.027
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
- R. Xu, D. Xu, Z. Zeng, D. Liu, CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption. Chem. Eng. J. 427, 130796 (2022). https://doi.org/10.1016/j.cej.2021.130796
- J. Xu, M. Liu, X. Zhang, B. Li, X. Zhang et al., Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. 9(1), 011402 (2022). https://doi.org/10.1063/5.0067791
References
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
P. Liu, S. Gao, G. Zhang, Y. Huang, W. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16(1), 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
J. Yang, J. Wang, H. Li, Z. Wu, Y. Xing et al., MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 9(7), 2101988 (2022). https://doi.org/10.1002/advs.202101988
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao et al., From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14(5), 1495–1501 (2021). https://doi.org/10.1007/s12274-020-3208-8
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194
J. Cheng, H. Zhang, Y. Xiong, L. Gao, B. Wen et al., Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: a review. J. Materiomics 7(6), 1233–1263 (2021). https://doi.org/10.1016/j.jmat.2021.02.017
J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao et al., Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 33(5), 1789–1798 (2021). https://doi.org/10.1021/acs.chemmater.0c04734
Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal–organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
H. Zhao, F. Wang, L. Cui, X. Xu, X. Han et al., Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z
S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin et al., State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 14, 68 (2022). https://doi.org/10.1007/s40820-022-00808-6
J. Shu, X. Yang, X. Zhang, X. Huang, M. Cao et al., Tailoring mof-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 162, 157–171 (2020). https://doi.org/10.1016/j.carbon.2020.02.047
M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16(14), 2000158 (2020). https://doi.org/10.1002/smll.202000158
J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201129
S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang et al., MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 88, 56–65 (2021). https://doi.org/10.1016/j.jmst.2021.02.011
Z. Sui, P. Zhang, M. Xu, Y. Liu, Z. Wei et al., Metal-organic framework-derived metal oxide embedded in nitrogen-doped graphene network for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9(49), 43171–43178 (2017). https://doi.org/10.1021/acsami.7b15315
J. Cheng, S. Chen, D. Chen, L. Dong, J. Wang et al., Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal–organic framework/reduced graphene oxide self-assembled papers. J. Mater. Chem. A 6(41), 20254–20266 (2018). https://doi.org/10.1039/C8TA06785F
J. Cheng, J. Liang, L. Dong, J. Chai, N. Zhao et al., Self-assembly of 2D-metal–organic framework/graphene oxide membranes as highly efficient adsorbents for the removal of Cs+ from aqueous solutions. RSC Adv. 8(71), 40813–40822 (2018). https://doi.org/10.1039/C8RA08410F
J. Cheng, K. Liu, X. Li, L. Huang, J. Liang et al., Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr2+ removal from aqueous solution. Environ. Sci. Ecotechnol. 3, 100035 (2020). https://doi.org/10.1016/j.ese.2020.100035
W. Xia, C. Qu, Z. Liang, B. Zhao, S. Dai et al., High-performance energy storage and conversion materials derived from a single metal organic framework/graphene aerogel composite. Nano Lett. 17(5), 2788–2795 (2017). https://doi.org/10.1021/acs.nanolett.6b05004
P. Xiao, S. Li, C. Yu, Y. Wang, Y. Xu, Interface engineering between the metal–organic framework nanocrystal and graphene toward ultrahigh potassium-ion storage performance. ACS Nano 14(8), 10210–10218 (2020). https://doi.org/10.1021/acsnano.0c03488
X. Xu, W. Shi, P. Li, S. Ye, C. Ye et al., Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem. Mater. 29(14), 6058–6065 (2017). https://doi.org/10.1021/acs.chemmater.7b01947
G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications. Adv. Mater. 32(17), 1907176 (2020). https://doi.org/10.1002/adma.201907176
X.F. Lu, L. Yu, X.W. Lou, Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 5(2), eaav6009 (2019). https://doi.org/10.1126/sciadv.aav6009
D. Zhu, J. Liang, Y. Ding, G. Xue, L. Liu, Effect of heat treatment on far infrared emission properties of tourmaline powders modified with a rare earth. J. Am. Ceram. Soc. 91(8), 2588–2592 (2008). https://doi.org/10.1111/j.1551-2916.2008.02487.x
Y. Zhang, C. Liu, K. Peng, Y. Cao, G. Fang et al., Synthesis of broad microwave absorption bandwidth Zr4+-Ni2+ ions gradient-substituted barium ferrite. Ceram. Int. 46(16), 25808–25816 (2020). https://doi.org/10.1016/j.ceramint.2020.07.062
G. Shao, O. Ovsianytskyi, M.F. Bekheet, A. Gurlo, On-chip assembly of 3D graphene-based aerogels for chemiresistive gas sensing. Chem. Commun. 56(3), 450–453 (2020). https://doi.org/10.1039/C9CC09092D
G. Shao, D.A.H. Hanaor, J. Wang, D. Kober, S. Li et al., Polymer-derived SiOC integrated with a graphene aerogel as a highly stable Li-ion battery anode. ACS Appl. Mater. Interfaces 12(41), 46045–46056 (2020). https://doi.org/10.1021/acsami.0c12376
G. Sun, B. Dong, M. Cao, B. Wei, C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23(6), 1587–1593 (2011). https://doi.org/10.1021/cm103441u
X. Huang, M. Qiao, X. Lu, Y. Li, Y. Ma et al., Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 14(11), 4006–4013 (2021). https://doi.org/10.1007/s12274-021-3327-x
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
X. Zhou, Z. Jia, X. Zhang, B. Wang, X. Liu et al., Electromagnetic wave absorption performance of NiCo2X4 (X = O, S, Se, Te) spinel structures. Chem. Eng. J. 420, 129907 (2021). https://doi.org/10.1016/j.cej.2021.129907
D. Zhi, T. Li, J. Li, H. Ren, F. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. Part B Eng. 211, 108642 (2021). https://doi.org/10.1016/j.compositesb.2021.108642
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
X. Xu, S. Shi, Y. Tang, G. Wang, M. Zhou et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 8(5), 2002658 (2021). https://doi.org/10.1002/advs.202002658
J. Xu, X. Zhang, Z. Zhao, H. Hu, B. Li et al., Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 17(33), 2102032 (2021). https://doi.org/10.1002/smll.202102032
X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
X. Huang, Y. Ma, H. Lai, Q. Jia, L. Zhu et al., Conductive substrates-based component tailoring via thermal conversion of metal organic framework for enhanced microwave absorption performances. J. Colloid Interface Sci. 608, 1323–1333 (2022). https://doi.org/10.1016/j.jcis.2021.10.137
H. Zhao, X. Xu, D. Fan, P. Xu, F. Wang et al., Anchoring porous carbon nanops on carbon nanotubes as a high-performance composite with a unique core-sheath structure for electromagnetic pollution precaution. J. Mater. Chem. A 9(39), 22489–22500 (2021). https://doi.org/10.1039/D1TA06147J
D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9(8), 5086–5096 (2021). https://doi.org/10.1039/D0TA10942H
R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J. Colloid Interface Sci. 609, 224–234 (2022). https://doi.org/10.1016/j.jcis.2021.11.197
Y. Wang, X. Di, Z. Lu, R. Cheng, X. Wu et al., Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation. Carbon 187, 404–414 (2022). https://doi.org/10.1016/j.carbon.2021.11.027
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195
R. Xu, D. Xu, Z. Zeng, D. Liu, CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption. Chem. Eng. J. 427, 130796 (2022). https://doi.org/10.1016/j.cej.2021.130796
J. Xu, M. Liu, X. Zhang, B. Li, X. Zhang et al., Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. 9(1), 011402 (2022). https://doi.org/10.1063/5.0067791