High-Performance Aqueous Zinc–Manganese Battery with Reversible Mn2+/Mn4+ Double Redox Achieved by Carbon Coated MnOx Nanoparticles
Corresponding Author: Jun Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 110
Abstract
There is an urgent need for low-cost, high-energy-density, environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage. Multi-electron redox is considerably crucial for the development of high-energy-density cathodes. Here we present high-performance aqueous zinc–manganese batteries with reversible Mn2+/Mn4+ double redox. The active Mn4+ is generated in situ from the Mn2+-containing MnOx nanoparticles and electrolyte. Benefitting from the low crystallinity of the birnessite-type MnO2 as well as the electrolyte with Mn2+ additive, the MnOx cathode achieves an ultrahigh energy density with a peak of 845.1 Wh kg−1 and an ultralong lifespan of 1500 cycles. The combination of electrochemical measurements and material characterization reveals the reversible Mn2+/Mn4+ double redox (birnessite-type MnO2 ↔ monoclinic MnOOH and spinel ZnMn2O4 ↔ Mn2+ ions). The reversible Mn2+/Mn4+ double redox electrode reaction mechanism offers new opportunities for the design of low-cost, high-energy-density cathodes for advanced rechargeable aqueous batteries.
Highlights:
1 Aqueous zinc-manganese batteries with reversible Mn2+/Mn4+ double redox are achieved by carbon-coated MnOx nanoparticles.
2 Combined with Mn2+-containing electrolyte, the MnOx cathode achieves an ultrahigh energy density with a peak of 845.1 Wh kg−1 and an ultralong lifespan of 1500 cycles.
3 The electrode behaviors and reaction mechanism are systematically discussed by combining electrochemical measurements and material characterization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- J.B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14–18 (2014). https://doi.org/10.1039/C3EE42613K
- M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004). https://doi.org/10.1021/cr020731c
- E.A. Olivetti, G. Ceder, G.G. Gaustad, X. Fu, Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017). https://doi.org/10.1016/j.joule.2017.08.019
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 448, 294–303 (2012). https://doi.org/10.1038/nature11475
- N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z. Niu, J. Chen, Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 7062–7067 (2019). https://doi.org/10.1002/anie.201902679
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
- M. Chamoun, W.R. Brant, C.-W. Tai, G. Karlsson, D. Noréus, Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater. 15, 351–360 (2018). https://doi.org/10.1016/j.ensm.2018.06.019
- B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-Ion battery. Small 14, 1703850 (2018). https://doi.org/10.1002/smll.201703850
- H. Li, C. Han, Y. Huang, M. Zhu, Z. Pei et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11, 941–951 (2018). https://doi.org/10.1039/C7EE03232C
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries. Electrochim. Acta 272, 154–160 (2018). https://doi.org/10.1016/j.electacta.2018.04.012
- Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi, Y. Wu, X. Lu, Y. Tong, Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 29, 1700274 (2017). https://doi.org/10.1002/adma.201700274
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-Ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li et al., Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A 5, 17990–17997 (2017). https://doi.org/10.1039/C7TA00100B
- J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
- Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 8, 1801445 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
- J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
- M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. Baboo, S. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015). https://doi.org/10.1021/cm504717p
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry With H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- A.V. Radha, T.Z. Forbes, C.E. Killian, P.U.P.A. Gilbert, A. Navrotsky, Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA 107, 16438–16443 (2010). https://doi.org/10.1073/pnas.1009959107
- W. Chen, R.B. Rakhia, H.N. Alshareef, Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J. Mater. Chem. A 1, 3315–3324 (2013). https://doi.org/10.1039/c3ta00499f
- V. Di Castro, G. Polzonetti, XPS study of MnO oxidation. J. Electron. Spectrosc. 48, 117–123 (1989). https://doi.org/10.1016/0368-2048(89)80009-X
- M. Zhong, D. Yang, C. Xie, Z. Zhang, Z. Zhou, X.H. Bu, Yolk–shell MnO@ZnMn2O4/N–C nanorods derived from α-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 12, 5564 (2016). https://doi.org/10.1002/smll.201601959
- D. Kang, Q. Liu, R. Si, J. Gu, W. Zhang, D. Zhang, Crosslinking-derived MnO/carbon hybrid with ultrasmall nanoparticles for increasing lithium storage capacity during cycling. Carbon 99, 138–147 (2016). https://doi.org/10.1016/j.carbon.2015.11.068
- Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018). https://doi.org/10.1002/aenm.201801445
- J. Liu, S. Tang, Y. Lu, G. Cai, S. Liang, W. Wang, X. Chen, Synthesis of Mo2N nanolayer coated MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy Environ. Sci. 6, 2691–2697 (2013). https://doi.org/10.1039/c3ee41006d
- T. Xiong, Z.G. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9, 1803815 (2019). https://doi.org/10.1002/aenm.201803815
- S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao et al., Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A 6, 5733–5739 (2018). https://doi.org/10.1039/C8TA01031E
- X. Yang, Y. Makita, Z. Liu, K. Sakane, K. Ooi, Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals. Chem. Mater. 16, 5581–5588 (2004). https://doi.org/10.1021/cm049025d
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- Y. Li, S. Wang, J.R. Salvador, J. Wu, B. Liu et al., Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem. Mater. 31, 2036–2047 (2019). https://doi.org/10.1021/acs.chemmater.8b05093
- B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015). https://doi.org/10.1039/C5CC02585K
- B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. Chemsuschem 9, 2948–2956 (2016). https://doi.org/10.1002/cssc.201600702
- Y. Zhang, Z. Ding, C. Foster, C. Banks, X. Qiu, X. Ji, Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27, 1700856 (2017). https://doi.org/10.1002/adfm.201700856
- D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
References
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
J.B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14–18 (2014). https://doi.org/10.1039/C3EE42613K
M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004). https://doi.org/10.1021/cr020731c
E.A. Olivetti, G. Ceder, G.G. Gaustad, X. Fu, Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017). https://doi.org/10.1016/j.joule.2017.08.019
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 448, 294–303 (2012). https://doi.org/10.1038/nature11475
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z. Niu, J. Chen, Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 7062–7067 (2019). https://doi.org/10.1002/anie.201902679
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
M. Chamoun, W.R. Brant, C.-W. Tai, G. Karlsson, D. Noréus, Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater. 15, 351–360 (2018). https://doi.org/10.1016/j.ensm.2018.06.019
B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-Ion battery. Small 14, 1703850 (2018). https://doi.org/10.1002/smll.201703850
H. Li, C. Han, Y. Huang, M. Zhu, Z. Pei et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11, 941–951 (2018). https://doi.org/10.1039/C7EE03232C
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries. Electrochim. Acta 272, 154–160 (2018). https://doi.org/10.1016/j.electacta.2018.04.012
Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi, Y. Wu, X. Lu, Y. Tong, Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 29, 1700274 (2017). https://doi.org/10.1002/adma.201700274
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-Ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li et al., Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A 5, 17990–17997 (2017). https://doi.org/10.1039/C7TA00100B
J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 8, 1801445 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. Baboo, S. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015). https://doi.org/10.1021/cm504717p
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry With H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
A.V. Radha, T.Z. Forbes, C.E. Killian, P.U.P.A. Gilbert, A. Navrotsky, Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl. Acad. Sci. USA 107, 16438–16443 (2010). https://doi.org/10.1073/pnas.1009959107
W. Chen, R.B. Rakhia, H.N. Alshareef, Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J. Mater. Chem. A 1, 3315–3324 (2013). https://doi.org/10.1039/c3ta00499f
V. Di Castro, G. Polzonetti, XPS study of MnO oxidation. J. Electron. Spectrosc. 48, 117–123 (1989). https://doi.org/10.1016/0368-2048(89)80009-X
M. Zhong, D. Yang, C. Xie, Z. Zhang, Z. Zhou, X.H. Bu, Yolk–shell MnO@ZnMn2O4/N–C nanorods derived from α-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 12, 5564 (2016). https://doi.org/10.1002/smll.201601959
D. Kang, Q. Liu, R. Si, J. Gu, W. Zhang, D. Zhang, Crosslinking-derived MnO/carbon hybrid with ultrasmall nanoparticles for increasing lithium storage capacity during cycling. Carbon 99, 138–147 (2016). https://doi.org/10.1016/j.carbon.2015.11.068
Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018). https://doi.org/10.1002/aenm.201801445
J. Liu, S. Tang, Y. Lu, G. Cai, S. Liang, W. Wang, X. Chen, Synthesis of Mo2N nanolayer coated MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy Environ. Sci. 6, 2691–2697 (2013). https://doi.org/10.1039/c3ee41006d
T. Xiong, Z.G. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9, 1803815 (2019). https://doi.org/10.1002/aenm.201803815
S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao et al., Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A 6, 5733–5739 (2018). https://doi.org/10.1039/C8TA01031E
X. Yang, Y. Makita, Z. Liu, K. Sakane, K. Ooi, Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals. Chem. Mater. 16, 5581–5588 (2004). https://doi.org/10.1021/cm049025d
H. Pan, Y. Shao, P. Yan, Y. Cheng, K. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
Y. Li, S. Wang, J.R. Salvador, J. Wu, B. Liu et al., Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem. Mater. 31, 2036–2047 (2019). https://doi.org/10.1021/acs.chemmater.8b05093
B. Lee, H.R. Lee, H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265–9268 (2015). https://doi.org/10.1039/C5CC02585K
B. Lee, H.R. Seo, H.R. Lee, C.S. Yoon, J.H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh, Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. Chemsuschem 9, 2948–2956 (2016). https://doi.org/10.1002/cssc.201600702
Y. Zhang, Z. Ding, C. Foster, C. Banks, X. Qiu, X. Ji, Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27, 1700856 (2017). https://doi.org/10.1002/adfm.201700856
D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566