Atomic Layer Deposition-Assisted Construction of Binder-Free Ni@N-Doped Carbon Nanospheres Films as Advanced Host for Sulfur Cathode
Corresponding Author: Xinhui Xia
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 64
Abstract
Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium–sulfur batteries (LSBs). Herein, novel binder-free Ni@N-doped carbon nanospheres (N-CNSs) films as sulfur host are firstly synthesized via a facile combined hydrothermal-atomic layer deposition method. The cross-linked multilayer N-CNSs films can effectively enhance the electrical conductivity of electrode and provide physical blocking “dams” toward the soluble long-chain polysulfides. Moreover, the doped N heteroatoms and superficial NiO layer on Ni layer can work synergistically to suppress the shuttle of lithium polysulfides by effective chemical interaction/adsorption. In virtue of the unique composite architecture and reinforced dual physical and chemical adsorption to the soluble polysulfides, the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance (816 mAh g−1 at 2 C) and excellent long cycling life (87% after 200 cycles at 0.1 C), much better than N-CNSs/S electrode and other carbon/S counterparts. Our proposed design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy storage systems.
Highlights:
1 Construct binder-free Ni@N-doped carbon nanospheres (Ni@N-CNSs) films were prepared and used as sulfur host.
2 N-doped carbon and nickel layer work together to suppress shuttle of polysulfides.
3 Ni@N-CNSs/S electrode shows enhanced rate performance and good cycling life.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11, 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
- Y. Zhong, X. Xia, S. Deng, J. Zhan, R. Fang et al., Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv. Energy Mater. 8, 1701110 (2018). https://doi.org/10.1002/aenm.201701110
- Y. Zhong, D. Chao, S. Deng, J. Zhan, R.Y. Fang et al., Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28, 1706391 (2018). https://doi.org/10.1002/adfm.201706391
- Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie et al., Multiscale graphene-based materials for applications in sodium ion batteries. Adv. Energy Mater. 9, 1803342 (2019). https://doi.org/10.1002/aenm.201803342
- Y. Zhao, Y. Ye, F. Wu, Y. Li, L. Li, R. Chen, Anode interface engineering and architecture design for high-performance lithium–sulfur batteries. Adv. Mater. 31(12), 1806532 (2019). https://doi.org/10.1002/adma.201806532
- H. Yuan, J.-Q. Huang, H.-J. Peng, M.-M. Titirici, R. Xiang, R. Chen, Q. Liu, Q. Zhang, A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802107 (2018). https://doi.org/10.1002/aenm.201802107
- S.L. Zhang, B.Y. Guan, H.B. Wu, X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10(3), 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
- H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
- X. Yu, A. Manthiram, Enhanced interfacial stability of hybrid-electrolyte lithium–sulfur batteries with a layer of multifunctional polymer with intrinsic nanoporosity. Adv. Funct. Mater. 29(3), 1805996 (2019). https://doi.org/10.1002/adfm.201805996
- S. Shen, X. Xia, Y. Zhong, S. Deng, D. Xie et al., Implanting niobium carbide into trichoderma spore carbon: a new advanced host for sulfur cathodes. Adv. Mater. 31, 1900009 (2019). https://doi.org/10.1002/adma.201900009
- W. Li, R. Fang, Y. Xia, W. Zhang, X. Wang, X. Xia, J. Tu, Multiscale porous carbon nanomaterials for applications in advanced rechargeable batteries. Batter. Supercaps 2(1), 9–36 (2019). https://doi.org/10.1002/batt.201800067
- K. Yang, S. Zhang, D. Han, M. Xiao, S. Wang, Y. Meng, Multifunctional lithium–sulfur battery separator. Progr. Chem. 30(12), 1942–1959 (2018). https://doi.org/10.7536/pc180405
- X.-J. Hong, C.-L. Song, Y. Yang, H.-C. Tan, G.-H. Li, Y.-P. Cai, H. Wang, Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano 13(2), 1923–1931 (2019). https://doi.org/10.1021/acsnano.8b08155
- P. Han, S.-H. Chung, A. Manthiram, Thin-layered molybdenum disulfide nanoparticles as an effective polysulfide mediator in lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10(27), 23122–23130 (2018). https://doi.org/10.1021/acsami.8b05397
- J.S. Lee, W. Kim, J. Jang, A. Manthiram, Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium–sulfur batteries. Adv. Energy Mater. 7(5), 1601943 (2017). https://doi.org/10.1002/aenm.201601943
- X. Zhang, Y. Zhong, X. Xia, Y. Xia, D. Wang et al., Metal-embedded porous graphitic carbon fibers fabricated from bamboo sticks as a novel cathode for lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10(16), 13598 (2018). https://doi.org/10.1021/acsami.8b02504
- J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on n-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett. 10(2), 21 (2018). https://doi.org/10.1007/s40820-017-0172-2
- L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11(1), 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
- T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
- Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.M. Cheng, L. Feng, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium–sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627
- X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan, J.P. Mwizerwa, C. Wang, X. Xu, High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7(17), 1602923 (2017). https://doi.org/10.1002/aenm.201602923
- J. Wang, H. Yang, Z. Chen, L. Zhang, J. Liu et al., Double-shelled phosphorus and nitrogen codoped carbon nanospheres as efficient polysulfide mediator for high-performance lithium–sulfur batteries. Adv. Sci. 5(11), 1800621 (2018). https://doi.org/10.1002/advs.201800621
- Q. Zhang, F. Li, J.-Q. Huang, H. Li, Lithium–sulfur batteries: co-existence of challenges and opportunities. Adv. Funct. Mater. 28(38), 1804589 (2018). https://doi.org/10.1002/adfm.201804589
- L. Lu, J.T.M. De Hosson, Y. Pei, Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium–sulfur batteries. Carbon 144, 713–723 (2019). https://doi.org/10.1016/j.carbon.2018.12.103
- C. Tang, Q. Zhang, M.-Q. Zhao, J.-Q. Huang, X.-B. Cheng, G.-L. Tian, H.-J. Peng, F. Wei, Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium–sulfur batteries. Adv. Mater. 26(35), 6100–6105 (2015). https://doi.org/10.1002/adma.201401243
- Y. Zhong, X. Xia, S. Deng, D. Xie, S. Shen et al., Spore carbon from aspergillus oryzae for advanced electrochemical energy storage. Adv. Mater. 30, 1805165 (2018). https://doi.org/10.1002/adma.201805165
- X. Liu, J.-Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
- J. He, L. Luo, Y. Chen, A. Manthiram, Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv. Mater. 29(34), 1702707 (2017). https://doi.org/10.1002/adma.201702707
- T. Chen, L. Ma, B. Cheng, R. Chen, Y. Hu et al., Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239–248 (2017). https://doi.org/10.1016/j.nanoen.2017.05.064
- X. Chen, H.-J. Peng, R. Zhang, T.-Z. Hou, J.-Q. Huang, B. Li, Q. Zhang, An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2(4), 795–801 (2017). https://doi.org/10.1021/acsenergylett.7b00164
- J. Xu, T. Lawson, H. Fan, D. Su, G. Wang, Updated metal compounds (MOFs, –S, –OH, –N, –C) used as cathode materials for lithium–sulfur batteries. Adv. Energy Mater. 8(10), 1702607 (2018). https://doi.org/10.1002/aenm.201702607
- L. Zhen, J. Zhang, B. Guan, W. Da, L.M. Liu, W.L. Xiong, A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nat. Commun. 7, 13065 (2016). https://doi.org/10.1038/ncomms13065
- W. Wu, Z. Ruan, J. Li, Y. Li, Y. Jiang, X. Xu, D. Li, Y. Yuan, K. Lin, In situ preparation and analysis of bimetal Co-doped mesoporous graphitic carbon nitride with enhanced photocatalytic activity. Nano-Micro Lett. 11(1), 10 (2019). https://doi.org/10.1007/s40820-018-0236-y
- D. Wang, Z. Li, J. Zhou, H. Fang, X. He et al., Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett. 10(1), 4 (2018). https://doi.org/10.1007/s40820-017-0158-0
- S.-Z. Zeng, Y. Yao, X. Zeng, Q. He, X. Zheng, S. Chen, W. Tu, J. Zou, A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium–sulfur batteries. J. Power Sources 357, 11–18 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.092
- H.H. Nersisyan, S.H. Joo, B.U. Yoo, D.Y. Kim, T.H. Lee et al., Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium–sulfur battery. Carbon 103, 255–262 (2016). https://doi.org/10.1016/j.carbon.2016.03.022
- Y. Qu, Z. Zhang, X. Wang, Y. Lai, Y. Liu, L. Jie, A simple SDS-assisted self-assembly method for the synthesis of hollow carbon nanospheres to encapsulate sulfur for advanced lithium–sulfur batteries. J. Mater. Chem. A 1(45), 14306–14310 (2013). https://doi.org/10.1039/C3TA13306K
- X.H. Xia, Z.Y. Zeng, X.L. Li, Y.Q. Zhang, J.P. Tu, N.C. Fan, H. Zhang, H.J. Fan, Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Nanoscale 5(13), 6040–6047 (2013). https://doi.org/10.1039/C3nr01606d
- G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, L.F. Nazar, Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS Nano 7(12), 10920–10930 (2013). https://doi.org/10.1021/nn404439r
- H. Hu, H. Cheng, Z. Liu, G. Li, Q. Zhu, Y. Yu, In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries. Nano Lett. 15(8), 5116–5123 (2015). https://doi.org/10.1021/acs.nanolett.5b01294
- X. Xia, S. Deng, S. Feng, J. Wu, J. Tu, Hierarchical porous Ti2Nb10O29 nanospheres as superior anode materials for lithium ion storage. J. Mater. Chem. A 5, 21134–21139 (2017). https://doi.org/10.1039/C7TA07229E
- X. Xia, S. Deng, D. Xie, Y. Wang, S. Feng, J. Wu, J. Tu, Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays. J. Mater. Chem. A 6(32), 15546–15552 (2018). https://doi.org/10.1039/C8TA06232C
- J. Zhan, S. Deng, Y. Zhong, Y. Wang, X. Wang, Y. Yu, X. Xia, J. Tu, Exploring hydrogen molybdenum bronze for sodium ion storage: performance enhancement by vertical graphene core and conductive polymer shell. Nano Energy 44, 265–271 (2018). https://doi.org/10.1016/j.nanoen.2017.12.012
- M. Ling, W. Yan, A. Kawase, H. Zhao, Y. Fu, V.S. Battaglia, G. Liu, Electrostatic polysulfides confinement to inhibit redox shuttle process in the lithium sulfur batteries. ACS Appl. Mater. Interfaces. 9(37), 31741–31745 (2017). https://doi.org/10.1021/acsami.7b06485
- L. Xiaoman, Z. Qinglin, G. Weimin, L. Qinghua, The catalytic activity of manganese dioxide supported on graphene promoting the electrochemical performance of lithium–sulfur batteries. J. Electroanal. Chem. 840, 144–152 (2019). https://doi.org/10.1016/j.jelechem.2019.03.041
References
L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11, 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
Y. Zhong, X. Xia, S. Deng, J. Zhan, R. Fang et al., Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv. Energy Mater. 8, 1701110 (2018). https://doi.org/10.1002/aenm.201701110
Y. Zhong, D. Chao, S. Deng, J. Zhan, R.Y. Fang et al., Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 28, 1706391 (2018). https://doi.org/10.1002/adfm.201706391
Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie et al., Multiscale graphene-based materials for applications in sodium ion batteries. Adv. Energy Mater. 9, 1803342 (2019). https://doi.org/10.1002/aenm.201803342
Y. Zhao, Y. Ye, F. Wu, Y. Li, L. Li, R. Chen, Anode interface engineering and architecture design for high-performance lithium–sulfur batteries. Adv. Mater. 31(12), 1806532 (2019). https://doi.org/10.1002/adma.201806532
H. Yuan, J.-Q. Huang, H.-J. Peng, M.-M. Titirici, R. Xiang, R. Chen, Q. Liu, Q. Zhang, A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 8(31), 1802107 (2018). https://doi.org/10.1002/aenm.201802107
S.L. Zhang, B.Y. Guan, H.B. Wu, X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties. Nano-Micro Lett. 10(3), 44 (2018). https://doi.org/10.1007/s40820-018-0197-1
H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong et al., Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9(1), 1802768 (2019). https://doi.org/10.1002/aenm.201802768
X. Yu, A. Manthiram, Enhanced interfacial stability of hybrid-electrolyte lithium–sulfur batteries with a layer of multifunctional polymer with intrinsic nanoporosity. Adv. Funct. Mater. 29(3), 1805996 (2019). https://doi.org/10.1002/adfm.201805996
S. Shen, X. Xia, Y. Zhong, S. Deng, D. Xie et al., Implanting niobium carbide into trichoderma spore carbon: a new advanced host for sulfur cathodes. Adv. Mater. 31, 1900009 (2019). https://doi.org/10.1002/adma.201900009
W. Li, R. Fang, Y. Xia, W. Zhang, X. Wang, X. Xia, J. Tu, Multiscale porous carbon nanomaterials for applications in advanced rechargeable batteries. Batter. Supercaps 2(1), 9–36 (2019). https://doi.org/10.1002/batt.201800067
K. Yang, S. Zhang, D. Han, M. Xiao, S. Wang, Y. Meng, Multifunctional lithium–sulfur battery separator. Progr. Chem. 30(12), 1942–1959 (2018). https://doi.org/10.7536/pc180405
X.-J. Hong, C.-L. Song, Y. Yang, H.-C. Tan, G.-H. Li, Y.-P. Cai, H. Wang, Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano 13(2), 1923–1931 (2019). https://doi.org/10.1021/acsnano.8b08155
P. Han, S.-H. Chung, A. Manthiram, Thin-layered molybdenum disulfide nanoparticles as an effective polysulfide mediator in lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10(27), 23122–23130 (2018). https://doi.org/10.1021/acsami.8b05397
J.S. Lee, W. Kim, J. Jang, A. Manthiram, Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium–sulfur batteries. Adv. Energy Mater. 7(5), 1601943 (2017). https://doi.org/10.1002/aenm.201601943
X. Zhang, Y. Zhong, X. Xia, Y. Xia, D. Wang et al., Metal-embedded porous graphitic carbon fibers fabricated from bamboo sticks as a novel cathode for lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10(16), 13598 (2018). https://doi.org/10.1021/acsami.8b02504
J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on n-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett. 10(2), 21 (2018). https://doi.org/10.1007/s40820-017-0172-2
L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11(1), 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.M. Cheng, L. Feng, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium–sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627
X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan, J.P. Mwizerwa, C. Wang, X. Xu, High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7(17), 1602923 (2017). https://doi.org/10.1002/aenm.201602923
J. Wang, H. Yang, Z. Chen, L. Zhang, J. Liu et al., Double-shelled phosphorus and nitrogen codoped carbon nanospheres as efficient polysulfide mediator for high-performance lithium–sulfur batteries. Adv. Sci. 5(11), 1800621 (2018). https://doi.org/10.1002/advs.201800621
Q. Zhang, F. Li, J.-Q. Huang, H. Li, Lithium–sulfur batteries: co-existence of challenges and opportunities. Adv. Funct. Mater. 28(38), 1804589 (2018). https://doi.org/10.1002/adfm.201804589
L. Lu, J.T.M. De Hosson, Y. Pei, Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium–sulfur batteries. Carbon 144, 713–723 (2019). https://doi.org/10.1016/j.carbon.2018.12.103
C. Tang, Q. Zhang, M.-Q. Zhao, J.-Q. Huang, X.-B. Cheng, G.-L. Tian, H.-J. Peng, F. Wei, Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium–sulfur batteries. Adv. Mater. 26(35), 6100–6105 (2015). https://doi.org/10.1002/adma.201401243
Y. Zhong, X. Xia, S. Deng, D. Xie, S. Shen et al., Spore carbon from aspergillus oryzae for advanced electrochemical energy storage. Adv. Mater. 30, 1805165 (2018). https://doi.org/10.1002/adma.201805165
X. Liu, J.-Q. Huang, Q. Zhang, L. Mai, Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29(20), 1601759 (2017). https://doi.org/10.1002/adma.201601759
J. He, L. Luo, Y. Chen, A. Manthiram, Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium–sulfur batteries. Adv. Mater. 29(34), 1702707 (2017). https://doi.org/10.1002/adma.201702707
T. Chen, L. Ma, B. Cheng, R. Chen, Y. Hu et al., Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239–248 (2017). https://doi.org/10.1016/j.nanoen.2017.05.064
X. Chen, H.-J. Peng, R. Zhang, T.-Z. Hou, J.-Q. Huang, B. Li, Q. Zhang, An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2(4), 795–801 (2017). https://doi.org/10.1021/acsenergylett.7b00164
J. Xu, T. Lawson, H. Fan, D. Su, G. Wang, Updated metal compounds (MOFs, –S, –OH, –N, –C) used as cathode materials for lithium–sulfur batteries. Adv. Energy Mater. 8(10), 1702607 (2018). https://doi.org/10.1002/aenm.201702607
L. Zhen, J. Zhang, B. Guan, W. Da, L.M. Liu, W.L. Xiong, A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nat. Commun. 7, 13065 (2016). https://doi.org/10.1038/ncomms13065
W. Wu, Z. Ruan, J. Li, Y. Li, Y. Jiang, X. Xu, D. Li, Y. Yuan, K. Lin, In situ preparation and analysis of bimetal Co-doped mesoporous graphitic carbon nitride with enhanced photocatalytic activity. Nano-Micro Lett. 11(1), 10 (2019). https://doi.org/10.1007/s40820-018-0236-y
D. Wang, Z. Li, J. Zhou, H. Fang, X. He et al., Simultaneous detection and removal of formaldehyde at room temperature: Janus Au@ZnO@ZIF-8 nanoparticles. Nano-Micro Lett. 10(1), 4 (2018). https://doi.org/10.1007/s40820-017-0158-0
S.-Z. Zeng, Y. Yao, X. Zeng, Q. He, X. Zheng, S. Chen, W. Tu, J. Zou, A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium–sulfur batteries. J. Power Sources 357, 11–18 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.092
H.H. Nersisyan, S.H. Joo, B.U. Yoo, D.Y. Kim, T.H. Lee et al., Combustion-mediated synthesis of hollow carbon nanospheres for high-performance cathode material in lithium–sulfur battery. Carbon 103, 255–262 (2016). https://doi.org/10.1016/j.carbon.2016.03.022
Y. Qu, Z. Zhang, X. Wang, Y. Lai, Y. Liu, L. Jie, A simple SDS-assisted self-assembly method for the synthesis of hollow carbon nanospheres to encapsulate sulfur for advanced lithium–sulfur batteries. J. Mater. Chem. A 1(45), 14306–14310 (2013). https://doi.org/10.1039/C3TA13306K
X.H. Xia, Z.Y. Zeng, X.L. Li, Y.Q. Zhang, J.P. Tu, N.C. Fan, H. Zhang, H.J. Fan, Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Nanoscale 5(13), 6040–6047 (2013). https://doi.org/10.1039/C3nr01606d
G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, L.F. Nazar, Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS Nano 7(12), 10920–10930 (2013). https://doi.org/10.1021/nn404439r
H. Hu, H. Cheng, Z. Liu, G. Li, Q. Zhu, Y. Yu, In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries. Nano Lett. 15(8), 5116–5123 (2015). https://doi.org/10.1021/acs.nanolett.5b01294
X. Xia, S. Deng, S. Feng, J. Wu, J. Tu, Hierarchical porous Ti2Nb10O29 nanospheres as superior anode materials for lithium ion storage. J. Mater. Chem. A 5, 21134–21139 (2017). https://doi.org/10.1039/C7TA07229E
X. Xia, S. Deng, D. Xie, Y. Wang, S. Feng, J. Wu, J. Tu, Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays. J. Mater. Chem. A 6(32), 15546–15552 (2018). https://doi.org/10.1039/C8TA06232C
J. Zhan, S. Deng, Y. Zhong, Y. Wang, X. Wang, Y. Yu, X. Xia, J. Tu, Exploring hydrogen molybdenum bronze for sodium ion storage: performance enhancement by vertical graphene core and conductive polymer shell. Nano Energy 44, 265–271 (2018). https://doi.org/10.1016/j.nanoen.2017.12.012
M. Ling, W. Yan, A. Kawase, H. Zhao, Y. Fu, V.S. Battaglia, G. Liu, Electrostatic polysulfides confinement to inhibit redox shuttle process in the lithium sulfur batteries. ACS Appl. Mater. Interfaces. 9(37), 31741–31745 (2017). https://doi.org/10.1021/acsami.7b06485
L. Xiaoman, Z. Qinglin, G. Weimin, L. Qinghua, The catalytic activity of manganese dioxide supported on graphene promoting the electrochemical performance of lithium–sulfur batteries. J. Electroanal. Chem. 840, 144–152 (2019). https://doi.org/10.1016/j.jelechem.2019.03.041