High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting
Corresponding Author: Jiangping Tu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 12
Abstract
For efficient electrolysis of water for hydrogen generation or other value-added chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-efficiency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core–branch array and binder-free electrode by growing Ni3S2 nanoflake branches on an atomic-layer-deposited (ALD) TiO2 skeleton. Through induced growth on the ALD-TiO2 backbone, cross-linked Ni3S2 nanoflake branches with exposed {2¯10} high-index facets are uniformly anchored to the preformed TiO2 core forming an integrated electrocatalyst. Such a core–branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed {2¯10} high-index facet in the Ni3S2 nanoflake. Accordingly, the TiO2@Ni3S2 core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction (220 mV at 10 mA cm−2) and hydrogen evolution reaction (112 mV at 10 mA cm−2), which are better than those of other Ni3S2 counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.
Highlights:
1 TiO2@Ni3S2 core/branch arrays are constructed via a low-temperature sulfurization.
2 Highly active {2¯10} high-index facet of Ni3S2 is exposed for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).
3 Remarkable bifunctional electrocatalytic activity is observed for both HER and OER.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang, X. Lu, X. Xia, J. Tu, Hollow TiO2@ Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 5, 1700772 (2017). https://doi.org/10.1002/advs.201700772
- S. Deng, F. Yang, Q. Zhang, Y. Zhong, Y. Zeng et al., Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Adv. Mater. 30, 1802223 (2018). https://doi.org/10.1002/adma.201802223
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
- H. Wang, Y.-X. Yu, KOH alkalized Fe3N nanoparticles on electrocatalytic hydrogen evolution reaction. J. Inorg. Mater. 33(6), 653–658 (2018). https://doi.org/10.15541/jim20170350
- MathSciNet
- M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang, C. Zhao, Y. Tong, X. Lu, S. Yang, Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29(15), 1602868 (2017). https://doi.org/10.1002/adma.201602868
- Q. Zhang, P. Li, D. Zhou, Z. Chang, Y. Kuang, X. Sun, Superaerophobic ultrathin Ni-Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 13(41), 1701648 (2017). https://doi.org/10.1002/smll.201701648
- F. Feng, J. Wu, C. Wu, Y. Xie, Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications. Small 11(6), 654–666 (2015). https://doi.org/10.1002/smll.201402346
- J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10(1), 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
- H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang, S. Jin, Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. Chem. Mater. 27(27), 5702–5711 (2015). https://doi.org/10.1021/acs.chemmater.5b02177
- M. Yu, S. Zhao, H. Feng, H. Le, X. Zhang, Y. Zeng, Y. Tong, X. Lu, Engineering thin MoS2 nanosheets on tin nanorods: advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2(8), 1862–1868 (2017). https://doi.org/10.1021/acsenergylett.7b00602
- L.L. Feng, M. Fan, Y. Wu, Y. Liu, G.D. Li, H. Chen, W. Chen, D. Wang, X. Zou, Metallic Co9S8 nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media. J. Mater. Chem. A 4(18), 6860–6867 (2016). https://doi.org/10.1039/C5TA08611F
- X. Zou, Y. Liu, G.D. Li, Y. Wu, D.P. Liu et al., Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29(22), 1700404 (2017). https://doi.org/10.1002/adma.201700404
- X. Yang, J. Chen, Y. Chen, P. Feng, H. Lai, J. Li, X. Luo, Novel Co3O4 nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett. 10(1), 15 (2017). https://doi.org/10.1007/s40820-017-0170-4
- S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, MoS2 nanosheet arrays rooted on hollow rgo spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 10(4), 62 (2018). https://doi.org/10.1007/s40820-018-0215-3
- L. Zhu, D. Zheng, Z. Wang, X. Zheng, P. Fang, J. Zhu, M. Yu, Y. Tong, X. Lu, A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 30, 1805268 (2018). https://doi.org/10.1002/adma.201805268
- Z. Yu, X. Xia, S. Deng, J. Zhan, R. Fang, X. Yang, X. Wang, Z. Qiang, J. Tu, Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv. Energy Mater. 8(1), 1701110 (2018). https://doi.org/10.1002/aenm.201701110
- M. Wu, S. Wang, J. Wang, Engineering NiMo3S4 |Ni3S2 interface for excellent hydrogen evolution reaction in alkaline medium. Electrochim. Acta 258, 669–676 (2017). https://doi.org/10.1016/j.electacta.2017.11.112
- J. Lv, H. Miura, Y. Meng, T. Liang, Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction. Appl. Surf. Sci. 399, 769-774 (2016). https://doi.org/10.1016/j.apsusc.2016.12.042
- N. Cheng, Q. Liu, A.M. Asiri, W. Xing, X. Sun, A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density. J. Mater. Chem. A 3(46), 23207–23212 (2015). https://doi.org/10.1039/C5TA06788J
- C. Ouyang, X. Wang, C. Wang, X. Zhang, J. Wu, Z. Ma, S. Dou, S. Wang, Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction. Electrochim. Acta 174, 297–301 (2015). https://doi.org/10.1016/j.electacta.2015.05.186
- C. Tang, Z. Pu, Q. Liu, A.M. Asiri, Y. Luo, X. Sun, Ni3S2 nanosheets array supported on Ni foam: A novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. Int. J. Hydrogen Energy 40(14), 4727–4732 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.038
- Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang, X. Feng, Low-temperature synthesis of nitrogen/sulfur Co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 62(5), 296–301 (2013). https://doi.org/10.1016/j.carbon.2013.05.067
- R. Liu, D. Wu, X. Feng, K. Müllen, Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 49(14), 2565–2569 (2010). https://doi.org/10.1002/anie.200907289
- W. Yang, T.P. Fellinger, M. Antonietti, Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 133(2), 206–209 (2011). https://doi.org/10.1021/ja108039j
- J. Wang, J. Su, H. Chen, X. Zou, G.D. Li, Oxygen vacancy-rich, ru-doped In2O3 ultrathin nanosheets for efficient detection of xylene at low temperature. J. Mater. Chem. C 6(15), 4165 (2018). https://doi.org/10.1039/C8TC00638E
- L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
- X. Xia, S. Deng, D. Xie, Y. Wang, S. Feng, J. Wu, J. Tu, Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays. J. Mater. Chem. A 6(32), 15546–15552 (2018). https://doi.org/10.1039/C8TA06232C
- Z. Yao, X. Xia, D. Xie, Y. Wang, C. Zhou, L. Sufu, S. Deng, X. Wang, J. Tu, Enhancing ultrafast lithium ion storage of Li4Ti5O12 by tailored TiC/C core/shell skeleton plus nitrogen doping. Adv. Funct. Mater. 28, 1802756 (2018). https://doi.org/10.1002/adfm.201802756
- H. Chen, Y. Kang, F. Cai, S. Zeng, W. Li, M. Chen, Q. Li, Electrochemical conversion of Ni2(OH)2CO3 into Ni(OH)2 hierarchical nanostructures loaded on a carbon nanotube paper with high electrochemical energy storage performance. J. Mater. Chem. A 3(5), 1875–1878 (2015). https://doi.org/10.1039/C4TA06218C
- S. Qu, J. Huang, J. Yu, G. Chen, W. Hu, M. Yin, R. Zhang, S. Chu, C. Li, Ni3S2 nanosheet flowers decorated with CdS quantum dots as a highly active electrocatalysis electrode for synergistic water splitting. ACS Appl. Mater. Interfaces. 9(35), 29660 (2017). https://doi.org/10.1021/acsami.7b06377
- N. Jiang, Q. Tang, M. Sheng, B. You, D.E. Jiang, Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 6(4), 1077–1084 (2015). https://doi.org/10.1039/C5CY01111F
- Y. Wu, Y. Liu, G.D. Li, X. Zou, X. Lian, D. Wang, L. Sun, T. Asefa, X. Zou, Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3-xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 35, 161–170 (2017). https://doi.org/10.1016/j.nanoen.2017.03.024
- Z. Yao, X. Xia, Y. Zhang, D. Xie, C. Ai et al., Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell. Nano Energy 54, 304–312 (2018). https://doi.org/10.1016/j.nanoen.2018.10.024
- S. Shen, W. Guo, D. Xie, Y. Wang, S. Deng, Y. Zhong, X. Wang, X. Xia, J. Tu, A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb2O7-based core/shell arrays. J. Mater. Chem. A 6, 20195–20204 (2018). https://doi.org/10.1039/C8TA06858E
- S. Deng, D. Chao, Y. Zhong, Y. Zeng, Z. Yao et al., Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Mater. 12, 137–144 (2018). https://doi.org/10.1016/j.ensm.2017.11.018
- C. Zhang, Y. Zhou, Y. Zhang, S. Zhao, J. Fang, X. Sheng, T. Zhang, H. Zhang, Double-shelled TiO2 hollow spheres assembled with TiO2 nanosheets. Chemistry 23(18), 4336–4343 (2017). https://doi.org/10.1002/chem.201602654
- C. Wang, Y. Zhan, Z. Wang, TiO2, MoS2, and TiO2/MoS2 heterostructures for use in organic dyes degradation. ChemistrySelect 3(6), 1713–1718 (2018). https://doi.org/10.1002/slct.201800054
- Y. Zhang, X. Xia, X. Cao, B. Zhang, N.H. Tiep et al., Ultrafine metal nanoparticles/N-doped porous carbon hybrids coated on carbon fibers as flexible and binder-free water splitting catalysts. Adv. Energy Mater. 7, 1700220 (2017). https://doi.org/10.1002/aenm.201700220
- B. Liu, Y. Wang, H. Peng, R. Yang, Z. Jiang, X. Zhou et al., Feroxyhyte nanosheets: iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv. Mater. 30, 1803144 (2018). https://doi.org/10.1002/adma.201803144
- B. Liu, H. Peng, Y. Zhao, J. Cheng, J. Xia, J. Shen et al., Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci. 5, 1800406 (2018). https://doi.org/10.1002/advs.201800406
- B. Liu, J. Cheng, H.Q. Peng, D. Chen, X. Cui et al., In situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 7, 775–782 (2019). https://doi.org/10.1039/C8TA09800J
- Y. Huang, H. Lu, H. Gu, J. Fu, S. Mo, C. Wei, Y.-E. Miao, T. Liu, A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 7(44), 18595–18602 (2015). https://doi.org/10.1039/C5NR05739F
- Z. Peng, D. Jia, A.M. Al-Enizi, A.A. Elzatahry, G. Zheng, Electrocatalysts: from water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 5(9), 1402031 (2015). https://doi.org/10.1002/aenm.201402031
- Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324–1328 (2016). https://doi.org/10.1002/anie.201610413
- J. Tian, N. Cheng, Q. Liu, W. Xing, X. Sun, Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light & dagger. Angew. Chem. Int. Ed. 54(18), 5493–5497 (2015). https://doi.org/10.1002/ange.201501237
- L. Feng, F. Song, X. Hu, Ni2P as a janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
- M. Ledendecker, C.S. Krick, C. Papp, H.P. Steinrück, M. Antonietti, M. Shalom, The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. Int. Ed. 54(42), 12361–12365 (2015). https://doi.org/10.1002/anie.201502438
References
S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang, X. Lu, X. Xia, J. Tu, Hollow TiO2@ Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 5, 1700772 (2017). https://doi.org/10.1002/advs.201700772
S. Deng, F. Yang, Q. Zhang, Y. Zhong, Y. Zeng et al., Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Adv. Mater. 30, 1802223 (2018). https://doi.org/10.1002/adma.201802223
H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
H. Wang, Y.-X. Yu, KOH alkalized Fe3N nanoparticles on electrocatalytic hydrogen evolution reaction. J. Inorg. Mater. 33(6), 653–658 (2018). https://doi.org/10.15541/jim20170350
MathSciNet
M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang, C. Zhao, Y. Tong, X. Lu, S. Yang, Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29(15), 1602868 (2017). https://doi.org/10.1002/adma.201602868
Q. Zhang, P. Li, D. Zhou, Z. Chang, Y. Kuang, X. Sun, Superaerophobic ultrathin Ni-Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 13(41), 1701648 (2017). https://doi.org/10.1002/smll.201701648
F. Feng, J. Wu, C. Wu, Y. Xie, Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications. Small 11(6), 654–666 (2015). https://doi.org/10.1002/smll.201402346
J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10(1), 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang, S. Jin, Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. Chem. Mater. 27(27), 5702–5711 (2015). https://doi.org/10.1021/acs.chemmater.5b02177
M. Yu, S. Zhao, H. Feng, H. Le, X. Zhang, Y. Zeng, Y. Tong, X. Lu, Engineering thin MoS2 nanosheets on tin nanorods: advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2(8), 1862–1868 (2017). https://doi.org/10.1021/acsenergylett.7b00602
L.L. Feng, M. Fan, Y. Wu, Y. Liu, G.D. Li, H. Chen, W. Chen, D. Wang, X. Zou, Metallic Co9S8 nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media. J. Mater. Chem. A 4(18), 6860–6867 (2016). https://doi.org/10.1039/C5TA08611F
X. Zou, Y. Liu, G.D. Li, Y. Wu, D.P. Liu et al., Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29(22), 1700404 (2017). https://doi.org/10.1002/adma.201700404
X. Yang, J. Chen, Y. Chen, P. Feng, H. Lai, J. Li, X. Luo, Novel Co3O4 nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett. 10(1), 15 (2017). https://doi.org/10.1007/s40820-017-0170-4
S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, MoS2 nanosheet arrays rooted on hollow rgo spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 10(4), 62 (2018). https://doi.org/10.1007/s40820-018-0215-3
L. Zhu, D. Zheng, Z. Wang, X. Zheng, P. Fang, J. Zhu, M. Yu, Y. Tong, X. Lu, A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 30, 1805268 (2018). https://doi.org/10.1002/adma.201805268
Z. Yu, X. Xia, S. Deng, J. Zhan, R. Fang, X. Yang, X. Wang, Z. Qiang, J. Tu, Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv. Energy Mater. 8(1), 1701110 (2018). https://doi.org/10.1002/aenm.201701110
M. Wu, S. Wang, J. Wang, Engineering NiMo3S4 |Ni3S2 interface for excellent hydrogen evolution reaction in alkaline medium. Electrochim. Acta 258, 669–676 (2017). https://doi.org/10.1016/j.electacta.2017.11.112
J. Lv, H. Miura, Y. Meng, T. Liang, Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction. Appl. Surf. Sci. 399, 769-774 (2016). https://doi.org/10.1016/j.apsusc.2016.12.042
N. Cheng, Q. Liu, A.M. Asiri, W. Xing, X. Sun, A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density. J. Mater. Chem. A 3(46), 23207–23212 (2015). https://doi.org/10.1039/C5TA06788J
C. Ouyang, X. Wang, C. Wang, X. Zhang, J. Wu, Z. Ma, S. Dou, S. Wang, Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction. Electrochim. Acta 174, 297–301 (2015). https://doi.org/10.1016/j.electacta.2015.05.186
C. Tang, Z. Pu, Q. Liu, A.M. Asiri, Y. Luo, X. Sun, Ni3S2 nanosheets array supported on Ni foam: A novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. Int. J. Hydrogen Energy 40(14), 4727–4732 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.038
Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang, X. Feng, Low-temperature synthesis of nitrogen/sulfur Co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 62(5), 296–301 (2013). https://doi.org/10.1016/j.carbon.2013.05.067
R. Liu, D. Wu, X. Feng, K. Müllen, Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 49(14), 2565–2569 (2010). https://doi.org/10.1002/anie.200907289
W. Yang, T.P. Fellinger, M. Antonietti, Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 133(2), 206–209 (2011). https://doi.org/10.1021/ja108039j
J. Wang, J. Su, H. Chen, X. Zou, G.D. Li, Oxygen vacancy-rich, ru-doped In2O3 ultrathin nanosheets for efficient detection of xylene at low temperature. J. Mater. Chem. C 6(15), 4165 (2018). https://doi.org/10.1039/C8TC00638E
L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
X. Xia, S. Deng, D. Xie, Y. Wang, S. Feng, J. Wu, J. Tu, Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays. J. Mater. Chem. A 6(32), 15546–15552 (2018). https://doi.org/10.1039/C8TA06232C
Z. Yao, X. Xia, D. Xie, Y. Wang, C. Zhou, L. Sufu, S. Deng, X. Wang, J. Tu, Enhancing ultrafast lithium ion storage of Li4Ti5O12 by tailored TiC/C core/shell skeleton plus nitrogen doping. Adv. Funct. Mater. 28, 1802756 (2018). https://doi.org/10.1002/adfm.201802756
H. Chen, Y. Kang, F. Cai, S. Zeng, W. Li, M. Chen, Q. Li, Electrochemical conversion of Ni2(OH)2CO3 into Ni(OH)2 hierarchical nanostructures loaded on a carbon nanotube paper with high electrochemical energy storage performance. J. Mater. Chem. A 3(5), 1875–1878 (2015). https://doi.org/10.1039/C4TA06218C
S. Qu, J. Huang, J. Yu, G. Chen, W. Hu, M. Yin, R. Zhang, S. Chu, C. Li, Ni3S2 nanosheet flowers decorated with CdS quantum dots as a highly active electrocatalysis electrode for synergistic water splitting. ACS Appl. Mater. Interfaces. 9(35), 29660 (2017). https://doi.org/10.1021/acsami.7b06377
N. Jiang, Q. Tang, M. Sheng, B. You, D.E. Jiang, Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 6(4), 1077–1084 (2015). https://doi.org/10.1039/C5CY01111F
Y. Wu, Y. Liu, G.D. Li, X. Zou, X. Lian, D. Wang, L. Sun, T. Asefa, X. Zou, Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3-xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 35, 161–170 (2017). https://doi.org/10.1016/j.nanoen.2017.03.024
Z. Yao, X. Xia, Y. Zhang, D. Xie, C. Ai et al., Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell. Nano Energy 54, 304–312 (2018). https://doi.org/10.1016/j.nanoen.2018.10.024
S. Shen, W. Guo, D. Xie, Y. Wang, S. Deng, Y. Zhong, X. Wang, X. Xia, J. Tu, A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb2O7-based core/shell arrays. J. Mater. Chem. A 6, 20195–20204 (2018). https://doi.org/10.1039/C8TA06858E
S. Deng, D. Chao, Y. Zhong, Y. Zeng, Z. Yao et al., Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Mater. 12, 137–144 (2018). https://doi.org/10.1016/j.ensm.2017.11.018
C. Zhang, Y. Zhou, Y. Zhang, S. Zhao, J. Fang, X. Sheng, T. Zhang, H. Zhang, Double-shelled TiO2 hollow spheres assembled with TiO2 nanosheets. Chemistry 23(18), 4336–4343 (2017). https://doi.org/10.1002/chem.201602654
C. Wang, Y. Zhan, Z. Wang, TiO2, MoS2, and TiO2/MoS2 heterostructures for use in organic dyes degradation. ChemistrySelect 3(6), 1713–1718 (2018). https://doi.org/10.1002/slct.201800054
Y. Zhang, X. Xia, X. Cao, B. Zhang, N.H. Tiep et al., Ultrafine metal nanoparticles/N-doped porous carbon hybrids coated on carbon fibers as flexible and binder-free water splitting catalysts. Adv. Energy Mater. 7, 1700220 (2017). https://doi.org/10.1002/aenm.201700220
B. Liu, Y. Wang, H. Peng, R. Yang, Z. Jiang, X. Zhou et al., Feroxyhyte nanosheets: iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv. Mater. 30, 1803144 (2018). https://doi.org/10.1002/adma.201803144
B. Liu, H. Peng, Y. Zhao, J. Cheng, J. Xia, J. Shen et al., Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci. 5, 1800406 (2018). https://doi.org/10.1002/advs.201800406
B. Liu, J. Cheng, H.Q. Peng, D. Chen, X. Cui et al., In situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 7, 775–782 (2019). https://doi.org/10.1039/C8TA09800J
Y. Huang, H. Lu, H. Gu, J. Fu, S. Mo, C. Wei, Y.-E. Miao, T. Liu, A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 7(44), 18595–18602 (2015). https://doi.org/10.1039/C5NR05739F
Z. Peng, D. Jia, A.M. Al-Enizi, A.A. Elzatahry, G. Zheng, Electrocatalysts: from water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 5(9), 1402031 (2015). https://doi.org/10.1002/aenm.201402031
Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324–1328 (2016). https://doi.org/10.1002/anie.201610413
J. Tian, N. Cheng, Q. Liu, W. Xing, X. Sun, Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light & dagger. Angew. Chem. Int. Ed. 54(18), 5493–5497 (2015). https://doi.org/10.1002/ange.201501237
L. Feng, F. Song, X. Hu, Ni2P as a janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
M. Ledendecker, C.S. Krick, C. Papp, H.P. Steinrück, M. Antonietti, M. Shalom, The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. Int. Ed. 54(42), 12361–12365 (2015). https://doi.org/10.1002/anie.201502438