Animal- and Human-Inspired Nanostructures as Supercapacitor Electrode Materials: A Review
Corresponding Author: Kaili Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 199
Abstract
Human civilization has been relentlessly inspired by the nurturing lessons; nature is teaching us. From birds to airplanes and bullet trains, nature gave us a lot of perspective in aiding the progress and development of countless industries, inventions, transportation, and many more. Not only that nature inspired us in such technological advances but also, nature stimulated the advancement of micro- and nanostructures. Nature-inspired nanoarchitectures have been considered a favorable structure in electrode materials for a wide range of applications. It offers various positive attributes, especially in energy storage applications, such as the formation of hierarchical two-dimensional and three-dimensional interconnected networked structures that benefit the electrodes in terms of high surface area, high porosity and rich surface textural features, and eventually, delivering high capacity and outstanding overall material stability. In this review, we comprehensively assessed and compiled the recent advances in various nature-inspired based on animal- and human-inspired nanostructures used for supercapacitors. This comprehensive review will help researchers to accommodate nature-inspired nanostructures in industrializing energy storage and many other applications.
Highlights:
1 Animal- and human-inspired nanostructures as supercapacitor electrode materials are summarized.
2 Structural formation and supercapacitive electrochemical applications are comprehensively summarized.
3 Future outlooks such as large-scale production and other properties are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Xu, A.R. Puente-Santiago, D. Rodríguez-Padrón, M.J. Muñoz-Batista, M.A. Ahsan et al., Nature-inspired hierarchical materials for sensing and energy storage applications. Chem. Soc. Rev. 50(8), 4856–4871 (2021). https://doi.org/10.1039/C8CS00652K
- Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1021/acs.chemrev.7b00291
- Z.A. ALOthman, D. Rodriguez-Padron, R. Luque, A.M. Balu, Innovative nanomaterials for energy storage moving toward nature-inspired systems. Curr. Opinion Green Sustain. Chem. 32, 1005 (2021). https://doi.org/10.1016/j.cogsc.2021.100520
- C. Wan, Y. Jiao, D. Liang, Y. Wu, J. Li, A geologic architecture system-inspired micro-/nano-heterostructure design for high-performance energy storage. Adv. Energy Mater. 8(33), 1802388 (2018). https://doi.org/10.1002/aenm.201802388
- J. Tang, P. Yuan, C. Cai, Y. Fu, X. Ma, Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite polymer electrolyte for asymmetric capacitive energy storage. Adv. Energy Mater. 6(19), 1600813 (2016). https://doi.org/10.1002/aenm.201600813
- N.S. Ha, G. Lu, a review of recent research on bio-inspired structures and materials for energy absorption applications. Compos. Part B Eng. 181, 107496 (2020). https://doi.org/10.1016/j.compositesb.2019.107496
- P. Trogadas, M.O. Coppens, Nature-inspired electrocatalysts and devices for energy conversion. Chem. Soc. Rev. 49(10), 3107–3141 (2020). https://doi.org/10.1039/C8CS00797G
- N.K. Katiyar, G. Goel, S. Hawi, S. Goel, Nature-inspired materials: emerging trends and prospects. NPG Asia Mater. 13, 56 (2021). https://doi.org/10.1038/s41427-021-00322-y
- D. Gust, T.A. Moore, A.L. Moore, Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42(12), 1890–1898 (2009). https://doi.org/10.1021/ar900209b
- J. Wang, T. Zhu, G.W. Ho, Nature-inspired design of artificial solar-to-fuel conversion systems based on copper phosphate microflowers. Chemsuschem 9(13), 1575–1578 (2016). https://doi.org/10.1002/cssc.201600481
- E. Freeman, R. Soncini, L. Weiland, Biologically inspired water purification through selective transport. Smart Mater. Struct. 22(1), 014013 (2012). https://doi.org/10.1088/0964-1726/22/1/014013
- N. Kronqvist, M. Sarr, A. Lindqvist, K. Nordling, M. Otikovs et al., Efficient protein production inspired by how spiders make silk. Nat. Commun. 8, 15504 (2017). https://doi.org/10.1038/ncomms15504
- Q.F. Guan, H.B. Yang, Z.M. Han, Z.C. Ling, S.H. Yu, An all-natural bioinspired structural material for plastic replacement. Nat. Commun. 11, 5401 (2020). https://doi.org/10.1038/s41467-020-19174-1
- H. Wang, Y. Yang, L. Guo, Nature-inspired electrochemical energy-storage materials and devices. Adv. Energy Mater. 7(5), 1601709 (2017). https://doi.org/10.1002/aenm.201601709
- W.E. Tenhaeff, O. Rios, K. More, M.A. McGuire, Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material. Adv. Funct. Mater. 24(1), 86–94 (2014). https://doi.org/10.1002/adfm.201301420
- S.K. Kim, Y.K. Kim, H. Lee, S.B. Lee, H.S. Park, Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials. Chemsuschem 7(4), 1094–1101 (2014). https://doi.org/10.1002/cssc.201301061
- J. Zhou, C. Zheng, H. Wang, J. Yang, P. Hu et al., 3D nest-shaped Sb2O3/RGO composite based high-performance lithium-ion batteries. Nanoscale 8(39), 17131–17135 (2016). https://doi.org/10.1039/C6NR06454J
- S. Sahoo, R. Kumar, E. Joanni, R.K. Singh, J.J. Shim, Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. J. Mater. Chem. A 10(25), 13190–13240 (2022). https://doi.org/10.1039/D2TA02357A
- I. Hussain, S. Iqbal, C. Lamiel, A. Alfantazi, K. Zhang, Recent advances in oriented metal-organic frameworks for supercapacitive energy storage. J. Mater. Chem. A 10(9), 4475–4488 (2022). https://doi.org/10.1039/D1TA10213C
- R. Kumar, E. Joanni, S. Sahoo, J.J. Shim, T.W. Kian et al., An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: from zero to bi-dimensional materials. Carbon 193, 298–338 (2022). https://doi.org/10.1016/j.carbon.2022.03.023
- I. Hussain, S. Sahoo, D. Mohapatra, M. Ahmad, S. Iqbal et al., Recent progress in trimetallic/ternary-metal oxides nanostructures: misinterpretation/misconception of electrochemical data and devices. Appl. Mater. Today 26, 101297 (2022). https://doi.org/10.1016/j.apmt.2021.101297
- I. Hussain, S. Sahoo, C. Lamiel, T.T. Nguyen, M. Ahmed et al., Research progress and future aspects: metal selenides as effective electrodes. Energy Storage Mater. 47, 13–43 (2022). https://doi.org/10.1016/j.ensm.2022.01.055
- J. Yan, T. Liu, X. Liu, Y. Yan, Y. Huang, Metal-organic framework-based materials for flexible supercapacitor application. Coord. Chem. Rev. 452, 214300 (2022). https://doi.org/10.1016/j.ccr.2021.214300
- J. Jin, X. Geng, Q. Chen, T.L. Ren, A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors. Nano-Micro Lett. 14, 64 (2022). https://doi.org/10.1007/s40820-022-00793-w
- T. Kar, S. Godavarthi, S.K. Pasha, K. Deshmukh, L. Martínez-Gómez et al., Layered materials and their heterojunctions for supercapacitor applications: a review. Crit. Rev. Solid State Mater. Sci. 47(3), 357–388 (2022). https://doi.org/10.1080/10408436.2021.1886048
- H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro Lett. 14, 106 (2022). https://doi.org/10.1007/s40820-022-00839-z
- T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
- M.S. Javed, T. Najim, I. Hussain, S. Batool, M. Idrees et al., 2D V2O5 nanoflakes as a binder-free electrode material for high-performance pseudocapacitor. Ceram. Int. 47(17), 25152–25157 (2021). https://doi.org/10.1016/j.ceramint.2021.05.181
- I. Hussain, A. Ali, C. Lamiel, S.G. Mohamed, S. Sahoo et al., A 3D walking palm-like core-shell CoMoO4@NiCo2S4@ nickel foam composite for high-performance supercapacitors. Dalton Transact. 48(12), 3853–3861 (2019). https://doi.org/10.1039/C8DT04045A
- I. Hussain, T. Hussain, S.B. Ahmed, T. Kaewmaraya, M. Ahmad et al., Binder-free trimetallic phosphate nanosheets as an electrode: theoretical and experimental investigation. J. Power Sources 513, 230556 (2021). https://doi.org/10.1016/j.jpowsour.2021.230556
- L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, a review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew. Sustain. Energy Rev. 81, 1868–1878 (2018). https://doi.org/10.1016/j.rser.2017.05.283
- S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim et al., 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/j.cej.2020.126352
- Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian et al., Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141, 467–480 (2019). https://doi.org/10.1016/j.carbon.2018.10.010
- A. Mohanty, D. Jaihindh, Y.P. Fu, S.P. Senanayak, L.S. Mende et al., An extensive review on three dimension architectural metal-organic frameworks towards supercapacitor application. J. Power Sources 488, 229444 (2021). https://doi.org/10.1016/j.jpowsour.2020.229444
- Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su et al., Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J. Mater. Chem. A 7(27), 16028–16045 (2019). https://doi.org/10.1039/C9TA04436A
- D.G. Wang, Z. Liang, S. Gao, C. Qu, R. Zou, Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 404, 213093 (2020). https://doi.org/10.1016/j.ccr.2019.213093
- A. Gopalakrishnan, S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 480, 228830 (2020). https://doi.org/10.1016/j.jpowsour.2020.228830
- M. Ahmad, I. Hussain, T. Nawaz, Y. Li, X. Chen et al., Comparative study of ternary metal chalcogenides (MX; M= Zn-Co-Ni; X= S, Se, Te): formation process, charge storage mechanism and hybrid supercapacitor. J. Power Sources 534, 231414 (2022). https://doi.org/10.1016/j.jpowsour.2022.231414
- I. Hussain, T. Hussain, C. Lamiel, K. Zhang, Turning indium oxide into high-performing electrode materials via cation substitution strategy: preserving single crystalline cubic structure of 2D nanoflakes towards energy storage devices. J. Power Sources 480, 228873 (2020). https://doi.org/10.1016/j.jpowsour.2020.228873
- S. Gu, R. Hao, J. Chen, K. Liu, X. Chen et al., Star-shaped polyimide covalent organic framework for high-voltage lithium-ion batteries. Mater. Chem. Front. 6(17), 2545–2550 (2022). https://doi.org/10.1039/D2QM00578F
- S. Iqbal, A.H. Mady, Y.I. Kim, U. Javed, P.M. Shafi et al., Self-templated hollow nanospheres of B-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism. J. Colloid Interface Sci. 600, 729–739 (2021). https://doi.org/10.1016/j.jcis.2021.03.147
- S. Gu, Y. Chen, R. Hao, J. Zhou, I. Hussain et al., Redox of naphthalenediimide radicals in a 3D polyimide for stable Li-ion batteries. Chem. Commun. 57(63), 7810–7813 (2021). https://doi.org/10.1039/D1CC02426D
- I. Hussain, T. Mak, K. Zhang, Boron-doped trimetallic Cu-Ni-Co oxide nanoneedles for supercapacitor application. ACS Appl. Nano Mater. 4(1), 129–141 (2021). https://doi.org/10.1021/acsanm.0c02411
- I. Hussain, C. Lamiel, S.G. Mohamed, S. Vijayakumar, A. Ali et al., Controlled synthesis and growth mechanism of zinc cobalt sulfide rods on Ni-foam for high-performance supercapacitors. J. Indust. Eng. Chem. 71, 250–259 (2019). https://doi.org/10.1016/j.jiec.2018.11.033
- Y. Chen, S. Gu, S. Wu, X. Ma, I. Hussain et al., Copper activated near-full two-electron Mn4+/Mn2+ redox for mild aqueous Zn/MnO2 battery. Chem. Eng. J. 450, 137923 (2022). https://doi.org/10.1016/j.cej.2022.137923
- G. Dhakal, D. Mohapatra, T.L. Tamang, M. Lee, Y.R. Lee et al., Redox-additive electrolyte-driven enhancement of the electrochemical energy storage performance of asymmetric Co3O4//carbon nano-onions supercapacitors. Energy 218, 119436 (2021). https://doi.org/10.1016/j.energy.2020.119436
- U. Zubair, D. Versaci, M. Umer, J. Amici, C. Francia et al., Lithium polysulfides immobilization exploiting formate-ion doped polyaniline wrapped carbon for long cycle life sulfur cathodes via conventional electrode processing. Mater. Today Commun. 26, 101970 (2021). https://doi.org/10.1016/j.mtcomm.2020.101970
- S. Kumar, I.A. Mir, Z. Ahmad, K.S. Hui, D.A. Dinh et al., Microflowers of Sn-Co-S derived from ultra-thin nanosheets for supercapacitor applications. J. Energy Storage 49, 104084 (2022). https://doi.org/10.1016/j.est.2022.104084
- W. Kim, H.J. Lee, S.J. Yoo, C.K. Trinh, Z. Ahmad et al., Preparation of a polymer nanocomposite via the polymerization of pyrrole: biphenyldisulfonic acid: pyrrole as a two-monomer-connected precursor on MoS2 for electrochemical energy storage. Nanoscale 13(11), 5868–5874 (2021). https://doi.org/10.1039/D0NR08941A
- M.S. Javed, T. Najam, M. Sajjad, S.S.A. Shah, I. Hussain et al., Design and fabrication of highly porous 2D bimetallic sulfide ZnS/FeS composite nanosheets as an advanced negative electrode material for supercapacitors. Energy Fuels 35(18), 15185–15191 (2021). https://doi.org/10.1021/acs.energyfuels.1c02444
- I. Hussain, C. Lamiel, N. Qin, S. Gu, Y. Li et al., Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications. J. Colloid Interface Sci. 582, 782–792 (2021). https://doi.org/10.1016/j.jcis.2020.08.064
- I. Hussain, T. Hussain, S. Yang, Y. Chen, J. Zhou et al., Integration of CuO nanosheets to Zn-Ni-Co oxide nanowire arrays for energy storage applications. Chem. Eng. J. 413, 127570 (2020). https://doi.org/10.1016/j.cej.2020.127570
- M.Z. Ansari, K.M. Seo, S.H. Kim, S.A. Ansari, Critical aspects of various techniques for synthesizing metal oxides and fabricating their composite-based supercapacitor electrodes: a review. Nanomaterials 12(11), 1873 (2022). https://doi.org/10.3390/nano12111873
- N. Abbas, I. Shaheen, I. Ali, M. Ahmad, S.A. Khan et al., Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materials. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.07.225
- M.Z. Ansari, D.K. Nandi, P. Janicek, S.A. Ansari, R. Ramesh et al., Low-temperature atomic layer deposition of highly conformal tin nitride thin films for energy storage devices. ACS Appl. Mater. Interfaces 11(46), 43608–43621 (2019). https://doi.org/10.1021/acsami.9b15790
- I. Hussain, D. Mohapatra, C. Lamiel, M. Ahmad, M.A. Ashraf et al., Phosphorus containing layered quadruple hydroxide electrode materials on lab waste recycled flexible current collector. J. Colloid Interface Sci. 609, 566–574 (2021). https://doi.org/10.1016/j.jcis.2021.11.063
- S.G. Mohamed, I. Hussain, J.J. Shim, One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10(14), 6620–6628 (2018). https://doi.org/10.1039/C7NR07338K
- M.S. Javed, M. Imran, M.A. Assiri, I. Hussain, S. Hussain et al., One-step synthesis of carbon incorporated 3D MnO2 nanorods as a highly efficient electrode material for pseudocapacitors. Mater. Lett. 295, 129838 (2021). https://doi.org/10.1016/j.matlet.2021.129838
- S.G. Mohamed, I. Hussain, M.S. Sayed, J.J. Shim, One-step development of octahedron-like CuCo2O4@ carbon fibers for high-performance supercapacitors electrodes. J. Alloys Compd. 842, 155639 (2020). https://doi.org/10.1016/j.jallcom.2020.155639
- Z. Li, X. Yu, A. Gu, H. Tang, L. Wang et al., Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors. Nanotechnology 28(6), 065406 (2017). https://doi.org/10.1088/1361-6528/28/6/065406
- N. Soudi, S. Nanayakkara, N.M. Jahed, S. Naahidi, Rise of nature-inspired solar photovoltaic energy convertors. Sol. Energy 208, 31–45 (2020). https://doi.org/10.1016/j.solener.2020.07.048
- M.S. Javed, T. Najam, I. Hussain, S.S.A. Shah, S. Ibraheem et al., Novel 2D vanadium oxysulfide nano-spindles decorated carbon textile composite as an advanced electrode for high-performance pseudocapacitors. Mater. Lett. 303, 130478 (2021). https://doi.org/10.1016/j.matlet.2021.130478
- C. Lamiel, I. Hussain, O.R. Ogunsakin, K. Zhang, MXene in core-shell structures: research progress and future aspects. J. Mater. Chem. A 10(27), 14247–14272 (2022). https://doi.org/10.1039/D2TA02255A
- I. Hussain, T. Hussain, M. Ahmad, X. Ma, M.S. Javed et al., Modified KBBF-like material for energy storage applications: ZnNiBo3(OH) with enhanced cycle life. ACS Appl. Mater. Interfaces 14(6), 8025–8035 (2022). https://doi.org/10.1021/acsami.1c23583
- I. Hussain, T. Hussain, S. Yang, Y. Chen, J. Zhou et al., Integration of CuO nanosheets to Zn-Ni-Co oxide nanowires for energy storage applications. Chem. Eng. J. 413, 127570 (2020). https://doi.org/10.1016/j.cej.2020.127570
- R. Schneider, M.H. Facure, P.A. Chagas, R.S. Andre, D.M. Santos et al., Tailoring the surface properties of micro/nanofibers using 0D, 1D, 2D, and 3D nanostructures: a review on post-modification methods. Adv. Mater. Interfaces 8(13), 2100430 (2021). https://doi.org/10.1002/admi.202100430
- J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724–803 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003
- N. Abbas, I. Shaheen, I. Hussain, C. Lamiel, M. Ahmad et al., Glycerol-mediated synthesis of copper-doped zinc sulfide with ultrathin nanoflakes for flexible energy electrode materials. J. Alloys Compd. 919, 165701 (2022). https://doi.org/10.1016/j.jallcom.2022.165701
- U. Amara, K. Mahmood, M. Hassan, M. Hanif, M. Khalid et al., Functionalized thiazolidone-decorated lanthanum-doped copper oxide: novel heterocyclic sea sponge morphology for the efficient detection of dopamine. RSC Adv. 12(23), 14439–14449 (2022). https://doi.org/10.1039/D2RA01406H
- M. Sabar, U. Amara, S. Riaz, A. Hayat, M. Nasir et al., Fabrication of MoS2 enwrapped carbon cloth as electrochemical probe for non-enzymatic detection of dopamine. Mater. Lett. 308, 131233 (2022). https://doi.org/10.1016/j.matlet.2021.131233
- U. Amara, B. Sarfraz, K. Mahmood, M.T. Mehran, N. Muhammad et al., Fabrication of ionic liquid stabilized MXene interface for electrochemical dopamine detection. Microchim. Acta 189(2), 64 (2022). https://doi.org/10.1007/s00604-022-05162-3
- U. Amara, S. Riaz, K. Mahmood, N. Akhtar, M. Nasir et al., Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection. RSC Adv. 11(40), 25084–25095 (2021). https://doi.org/10.1039/D1RA03908C
- I. Hussain, S. Iqbal, T. Hussain, W.L. Cheung, S.A. Khan et al., Zn-Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Mater. Today Phys. 23, 100655 (2022). https://doi.org/10.1016/j.mtphys.2022.100655
- I. Hussain, D. Mohapatra, G. Dhakal, C. Lamiel, M.S. Sayed et al., Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications. J. Energy Storage 36, 102408 (2021). https://doi.org/10.1016/j.est.2021.102408
- I. Hussain, S.G. Mohamed, A. Ali, N. Abbas, S.M. Ammar et al., Uniform growth of Zn-Mn-Co ternary oxide nanoneedles for high-performance energy-storage applications. J. Electroanal. Chem. 837, 39–47 (2019). https://doi.org/10.1016/j.jelechem.2019.01.052
- W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu et al., Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 3(10), 5656–5664 (2015). https://doi.org/10.1039/C4TA06620K
- D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ. Sci. 7(2), 728–735 (2014). https://doi.org/10.1039/C3EE42551G
- J. Cao, J. Luo, P. Wang, X. Wang, W. Weng, Biomass-based porous carbon beehive prepared in molten KOH for capacitors. Mater. Technol. 35(9–10), 522–528 (2020). https://doi.org/10.1080/10667857.2019.1699270
- L. Chang, Y.H. Hu, One-step synthesis of high surface-area honeycomb graphene clusters for highly efficient capacitive deionization. J. Phys. Chem. Solids 134, 64–68 (2019). https://doi.org/10.1016/j.jpcs.2019.05.040
- X. Feng, Y. Huang, C. Li, Y. Xiao, X. Chen et al., Construction of carnations-like Mn3O4@NiCo2O4@NiO hierarchical nanostructures for high-performance supercapacitors. Electrochim. Acta 308, 142–149 (2019). https://doi.org/10.1016/j.electacta.2019.04.048
- X. He, P. Liu, J. Liu, Y. Muhammad, M. Zhu et al., Facile synthesis of hierarchical N-doped hollow porous carbon whiskers with ultrahigh surface area via synergistic inner-outer activation for casein hydrolysate adsorption. J. Mater. Chem. B 5(46), 9211–9218 (2017). https://doi.org/10.1039/C7TB02345F
- A. Gopalakrishnan, T.D. Raju, S. Badhulika, Green synthesis of nitrogen, sulfur-co-doped worm-like hierarchical porous carbon derived from ginger for outstanding supercapacitor performance. Carbon 168, 209–219 (2020). https://doi.org/10.1016/j.carbon.2020.07.017
- Y. Wang, X. Tang, M. Han, Y. Li, Y. Zhang et al., One-step synthesis of the N and P co-doped nest-like mesoporous carbon by a microwave-assisted ultra-high temperature solvothermal method for supercapacitor application. ChemistrySelect 4(3), 1108–1116 (2019). https://doi.org/10.1002/slct.201803006
- S.H. Park, S.B. Yoon, H.K. Kim, J.T. Han, H.W. Park et al., Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors. Sci. Rep. 4, 6118 (2014). https://doi.org/10.1038/srep06118
- J. Liu, H. Li, H. Zhang, Q. Liu, R. Li et al., Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors. J. Solid State Chem. 257, 64–71 (2018). https://doi.org/10.1016/j.jssc.2017.07.033
- Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai et al., A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6(22), 13831–13837 (2014). https://doi.org/10.1039/C4NR04541F
- H. Fan, W. Liu, W. Shen, Honeycomb-like composite structure for advanced solid state asymmetric supercapacitors. Chem. Eng. J. 326, 518–527 (2017). https://doi.org/10.1016/j.cej.2017.05.121
- T. Liu, Y. Zheng, W. Zhao, L. Cui, J. Liu, Uniform generation of NiCo2S4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors. J. Colloid Interface Sci. 556, 743–752 (2019). https://doi.org/10.1016/j.jcis.2019.08.094
- C.M. Chen, Q. Zhang, X.C. Zhao, B. Zhang, Q.Q. Kong et al., Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J. Mater. Chem. 22(28), 14076–14084 (2012). https://doi.org/10.1039/c2jm31426f
- P.X. Thinh, C. Basavaraja, D. Kim, Characterization and electrochemical behaviors of honeycomb-patterned poly (N-vinylcarbazole)/polystyrene composite films. Polym. Bull. 69(1), 81–94 (2012). https://doi.org/10.1007/s00289-012-0727-9
- L.G. Beka, X. Li, X. Wang, C. Han, W. Liu, A hierarchical NiCo2S4 honeycomb/NiCo2S4 nanosheet core-shell structure for supercapacitor applications. RSC Adv. 9(55), 32338–32347 (2019). https://doi.org/10.1039/C9RA05840K
- H.W. Nam, C.V.V.M. Gopi, S. Sambasivam, R. Vinodh, K.V.G. Raghavendra et al., Binder-free honeycomb-like FeMoO4 nanosheet arrays with dual properties of both battery-type and pseudocapacitive-type performances for supercapacitor applications. J. Energy Storage 27, 101055 (2020). https://doi.org/10.1016/j.est.2019.101055
- E. Samuel, A. Aldalbahi, M. El-Newehy, H. El-Hamshary, S.S. Yoon, Nickel ferrite beehive-like nanosheets for binder-free and high-energy-storage supercapacitor electrodes. J. Alloys Compd. 852, 156929 (2021). https://doi.org/10.1016/j.jallcom.2020.156929
- L. Yao, G. Yang, P. Han, Z. Tang, J. Yang, Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes. J. Power Sources 315, 209–217 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.006
- M. Ding, G. Chen, W. Xu, C. Jia, H. Luo, Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Mater. Sci. 2(3), 264–280 (2020). https://doi.org/10.1016/j.nanoms.2019.09.011
- A. Zhang, H. Bai, L. Li, Breath figure: a nature-inspired preparation method for ordered porous films. Chem. Rev. 115(18), 9801–9868 (2015). https://doi.org/10.1021/acs.chemrev.5b00069
- Q. Zhang, X. Yang, P. Li, G. Huang, S. Feng et al., Bioinspired engineering of honeycomb structure-using nature to inspire human innovation. Prog. Mater. Sci. 74, 332–400 (2015). https://doi.org/10.1016/j.pmatsci.2015.05.001
- D.R. Kumar, K.R. Prakasha, A.S. Prakash, J.J. Shim, Direct growth of honeycomb-like NiCo2O4@Ni foam electrode for pouch-type high-performance asymmetric supercapacitor. J. Alloys Compd. 836, 155370 (2020). https://doi.org/10.1016/j.jallcom.2020.155370
- X. Wu, L. Jiang, C. Long, Z. Fan, From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13, 527–536 (2015). https://doi.org/10.1016/j.nanoen.2015.03.013
- Z. Lv, Y. Tang, Z. Zhu, J. Wei, W. Li et al., Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 30(50), 1805468 (2018). https://doi.org/10.1002/adma.201805468
- S. Sun, J. Luo, Y. Qian, Y. Jin, Y. Liu et al., Metal-organic framework derived honeycomb Co9S8@C composites for high-performance supercapacitors. Adv. Energy Mater. 8(25), 1801080 (2018). https://doi.org/10.1002/aenm.201801080
- Z. Peng, X. Liu, H. Meng, Z. Li, B. Li et al., Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9(5), 4577–4586 (2017). https://doi.org/10.1021/acsami.6b12532
- E. Raymundo-Piñero, M. Cadek, F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19(7), 1032–1039 (2009). https://doi.org/10.1002/adfm.200801057
- Q. Wang, J. Yan, T. Wei, J. Feng, Y. Ren et al., Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60, 481–487 (2013). https://doi.org/10.1016/j.carbon.2013.04.067
- T. Sun, L. Feng, X. Gao, L. Jiang, Bioinspired surfaces with special wettability. Acc. Chem. Res. 38(8), 644–652 (2005). https://doi.org/10.1021/ar040224c
- L. Jiang, Y. Zhao, J. Zhai, A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angwn. Chem. Int. Ed. 43(33), 4338–4341 (2004). https://doi.org/10.1002/anie.200460333
- Y. Zheng, H. Bai, Z. Huang, X. Tian, F.Q. Nie et al., Directional water collection on wetted spider silk. Nature 463(7281), 640–643 (2010). https://doi.org/10.1038/nature08729
- J. Sun, R.N. Zuckermann, Peptoid polymers: a highly designable bioinspired material. ACS Nano 7(6), 4715–4732 (2013). https://doi.org/10.1021/nn4015714
- M.E. McConney, K.D. Anderson, L.L. Brott, R.R. Naik, V.V. Tsukruk, Bioinspired material approaches to sensing. Adv. Funct. Mater. 19(16), 2527–2544 (2009). https://doi.org/10.1002/adfm.200900606
- X. Deng, S. Zhu, J. Li, F. He, E. Liu et al., Bio-inspired three-dimensional carbon network with enhanced mass-transfer ability for supercapacitors. Carbon 143, 728–735 (2018). https://doi.org/10.1016/j.carbon.2018.11.055
- X. Deng, S. Zhu, J. Li, F. He, E. Liu et al., Bio-inspired three-dimensional carbon network with enhanced mass-transfer ability for supercapacitors. Carbon 143, 728–735 (2019). https://doi.org/10.1016/j.carbon.2018.11.055
- S. Boukhalfa, K. Evanoff, G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci. 5(5), 6872–6879 (2012). https://doi.org/10.1039/c2ee21110f
- M.A. Elsaid, A.Z. Sayed, A.M. Ashmawy, A.A. Hassan, A.F. Waheed et al., Hierarchically nanocoral reefs-like ZnCo2S4 deposited on Ni foam as an electrode material for high-performance battery-type symmetric supercapacitor. Bull. Tabbin Inst. Metall. Stud. (2022). https://doi.org/10.21608/tims.2022.147815.1003
- M.S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain et al., The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small 18(26), 2201989 (2022). https://doi.org/10.1002/smll.202201989
- I. Hussain, D. Mohapatra, G. Dhakal, C. Lamiel, S.G. Mohamed et al., Different controlled nanostructures of Mn-doped ZnS for high-performance supercapacitor applications. J. Energy Storage 32, 101767 (2020). https://doi.org/10.1016/j.est.2020.101767
- I. Hussain, C. Lamiel, N. Qin, S. Gu, Y. Li et al., Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications. J. Colloid Interface Sci. 582, 782–792 (2020). https://doi.org/10.1016/j.jcis.2020.08.064
- M.S. Javed, T. Najim, I. Hussain, S. Batool, M. Idrees et al., 2D V2O5 nanoflakes as a binder-free electrode material for high-performance pseudocapacitor. Ceram. Int. 47(17), 25152–25157 (2021). https://doi.org/10.1016/j.ceramint.2021.05.181
- R. Manikandan, C.J. Raj, M. Rajesh, B.C. Kim, G. Nagaraju et al., Rationally designed spider web-like trivanadium heptaoxide nanowires on carbon cloth as a new class of pseudocapacitive electrode for symmetric supercapacitors with high energy density and ultra-long cyclic stability. J. Mater. Chem. A 6(24), 11390–11404 (2018). https://doi.org/10.1039/C8TA03011A
- P. Sun, W. He, H. Yang, R. Cao, J. Yin et al., Hedgehog-inspired nanostructures for hydrogel-based all-solid-state hybrid supercapacitors with excellent flexibility and electrochemical performance. Nanoscale 10(40), 19004–19013 (2018). https://doi.org/10.1039/C8NR04919J
- Y. Tao, L. Zaijun, L. Ruiyi, N. Qi, K. Hui et al., Nickel-cobalt double hydroxides microspheres with hollow interior and hedgehog-like exterior structures for supercapacitors. J. Mater. Chem. 22(44), 23587–23592 (2012). https://doi.org/10.1039/c2jm35263j
- H. Wan, J. Jiang, Y. Ruan, J. Yu, L. Zhang et al., Direct formation of hedgehog-like hollow Ni-Mn oxides and sulfides for supercapacitor electrodes. Part. Part. Syst. Charact. 31(8), 857–862 (2014). https://doi.org/10.1002/ppsc.201400020
- Y. Luo, J. Jiang, W. Zhou, H. Yang, J. Luo et al., Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. J. Mater. Chem. 22(17), 8634–8640 (2012). https://doi.org/10.1039/c2jm16419a
- J. Wei, J. Zhang, Y. Liu, G. Xu, Z. Chen et al., Controlled growth of whisker-like polyaniline on carbon nanofibers and their long cycle life for supercapacitors. RSC Adv. 3(12), 3957–3962 (2013). https://doi.org/10.1039/c3ra23040f
- Y. Tang, Y. Liu, W. Guo, S. Yu, F. Gao, Floss-like Ni-Co binary hydroxides assembled by whisker-like nanowires for high-performance supercapacitor. Ionics 21(6), 1655–1663 (2015). https://doi.org/10.1007/s11581-014-1319-5
- K. Khawas, P. Kumari, S. Daripa, R. Oraon, B.K. Kuila, Hierarchical polyaniline-MnO2-reduced graphene oxide ternary nanostructures with whiskers-like polyaniline for supercapacitor application. ChemistrySelect 2(35), 11783–11789 (2017). https://doi.org/10.1002/slct.201702345
- X. Chen, D. Chen, X. Guo, R. Wang, H. Zhang, Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9(22), 18774–18781 (2017). https://doi.org/10.1021/acsami.7b03254
- Y. Yang, Y. Hao, J. Yuan, L. Niu, F. Xia, In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors. Carbon 78, 279–287 (2014). https://doi.org/10.1016/j.carbon.2014.07.004
- Z. Liu, K. Xiao, H. Guo, X. Ning, A. Hu et al., Nitrogen-doped worm-like graphitized hierarchical porous carbon designed for enhancing area-normalized capacitance of electrical double layer supercapacitors. Carbon 117, 163–173 (2017). https://doi.org/10.1016/j.carbon.2017.02.087
- D. Yuan, J. Chen, S. Tan, N. Xia, Y. Liu, Worm-like mesoporous carbon synthesized from metal-organic coordination polymers for supercapacitors. Electrochem. Commun. 11(6), 1191–1194 (2009). https://doi.org/10.1016/j.elecom.2009.03.045
- X. Tian, X. Li, T. Yang, K. Wang, H. Wang et al., Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries. Appl. Surf. Sci. 434, 49–56 (2018). https://doi.org/10.1016/j.apsusc.2017.09.153
- P. Yang, Y. Li, Z. Lin, Y. Ding, S. Yue et al., Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J. Mater. Chem. A 2(3), 595–599 (2014). https://doi.org/10.1039/C3TA14275B
- N. Tantawy, F.E.T. Heakal, S. Ahmed, Synthesis of worm-like binary metallic active material by electroless deposition approach for high-performance supercapacitor. J. Energy Storage 31, 101625 (2020). https://doi.org/10.1016/j.est.2020.101625
- L. Jinlong, L. Tongxiang, Y. Meng, K. Suzuki, H. Miura, The plume-like Ni3S2 supercapacitor electrodes formed on nickel foam by catalysis of thermal reduced graphene oxide. J. Electroanal. Chem. 786, 8–13 (2017). https://doi.org/10.1016/j.jelechem.2017.01.004
- J.Y. Liang, C.C. Wang, S.Y. Lu, Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. J. Mater. Chem. A 3(48), 24453–24462 (2015). https://doi.org/10.1039/C5TA08007J
- D. Dubal, C. Lokhande, Significant improvement in the electrochemical performances of nano-nest like amorphous MnO2 electrodes due to Fe doping. Ceram. Int. 39(1), 415–423 (2013). https://doi.org/10.1016/j.ceramint.2012.06.042
- S.F. Shaikh, F.F. Shaikh, A.V. Shaikh, M. Ubaidullah, A.M. Al-Enizi et al., Electrodeposited more-hydrophilic nano-nest polyaniline electrodes for supercapacitor application. J. Phys. Chem. Solids 149, 109774 (2021). https://doi.org/10.1016/j.jpcs.2020.109774
- D. Zhao, Q. Zhu, D. Chen, X. Li, Y. Yu et al., Nest-like V3O7 self-assembled by porous nanowires as an anode supercapacitor material and its performance optimization through bonding with n-doped Carbon. J. Mater. Chem. A 6(34), 16475–16484 (2018). https://doi.org/10.1039/C8TA06820H
- L. Mi, W. Wei, S. Huang, S. Cui, W. Zhang et al., A nest-like Ni@Ni1.4Co1.6S2 electrode for flexible high-performance rolling supercapacitor device design. J. Mater. Chem. A 3(42), 20973–20982 (2015). https://doi.org/10.1039/C5TA06265A
- F. Ran, H. Fan, L. Wang, L. Zhao, Y. Tan et al., A bird nest-like manganese dioxide and its application as electrode in supercapacitors. J. Energy Chem. 22(6), 928–934 (2013). https://doi.org/10.1016/S2095-4956(14)60274-6
- Y. Huang, F. Cui, Y. Zhao, J. Lian, J. Bao et al., NiMoO4 nanorod deposited carbon sponges with ant-nest-like interior channels for high-performance pseudocapacitors. Inorg. Chem. Front. 5(7), 1594–1601 (2018). https://doi.org/10.1039/C8QI00247A
- F. Miao, N. Lu, P. Zhang, Z. Zhang, G. Shao, Multidimension-controllable synthesis of ant nest-structural electrode materials with unique 3D hierarchical porous features toward electrochemical applications. Adv. Funct. Mater. 29(29), 1808994 (2019). https://doi.org/10.1002/adfm.201808994
- Q. Lu, X. Wang, M. Chen, B. Lu, M. Liu et al., Manganese dioxide/ant-nest-like hierarchical porous carbon composite with robust supercapacitive performances. ACS Sustain. Chem. Eng. 6(6), 7362–7371 (2018). https://doi.org/10.1021/acssuschemeng.7b04492
- F. Wang, L. Chen, H. Li, G. Duan, S. He et al., N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chin. Chem. Lett. 31(7), 1986–1990 (2020). https://doi.org/10.1016/j.cclet.2020.02.020
- Y. Wang, Z. Zhao, W. Song, Z. Wang, X. Wu, From biological waste to honeycomb-like porous carbon for high energy density supercapacitor. J. Mater. Sci. 54(6), 4917–4927 (2019). https://doi.org/10.1007/s10853-018-03215-8
- X. Ren, C. Guo, L. Xu, T. Li, L. Hou et al., Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7(36), 19930–19940 (2015). https://doi.org/10.1021/acsami.5b04094
- G.K. Veerasubramani, A. Chandrasekhar, M. Sudhakaran, Y.S. Mok, S.J. Kim, Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core-shell nanostructures assembled with honeycomb-like porous Carbon. J. Mater. Chem. A 5(22), 11100–11113 (2017). https://doi.org/10.1039/C7TA01308F
- J. Wang, F. Qin, Z. Guo, W. Shen, Oxygen- and nitrogen-enriched honeycomb-like porous carbon from Laminaria japonica with excellent supercapacitor performance in aqueous solution. ACS Sustain. Chem. Eng. 7(13), 11550–11563 (2019). https://doi.org/10.1021/acssuschemeng.9b01448
- A. Ali, M. Aadil, A. Rasheed, I. Hameed, S. Ajmal et al., Honeycomb like architectures of the Mo doped ZnS@Ni for high-performance asymmetric supercapacitors applications. Synth. Met. 265, 116408 (2020). https://doi.org/10.1016/j.synthmet.2020.116408
- R. Kumar, S.M. Youssry, H.M. Soe, M.M. Abdel-Galeil, G. Kawamura et al., Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. J. Energy Storage 30, 101539 (2020). https://doi.org/10.1016/j.est.2020.101539
- X. Dong, Y. Yu, X. Jing, H. Jiang, T. Hu et al., Sandwich-like honeycomb Co2SiO4/rGO/honeycomb Co2SiO4 structures with enhanced electrochemical properties for high-performance hybrid supercapacitor. J. Power Sources 492, 229643 (2021). https://doi.org/10.1016/j.jpowsour.2021.229643
- L. Du, W. Du, H. Ren, N. Wang, Z. Yao et al., Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J. Mater. Chem. A 5(43), 22527–22535 (2017). https://doi.org/10.1039/C7TA06921A
- L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong et al., Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9(17), 2905–2910 (2013). https://doi.org/10.1002/smll.201203164
- X. Chen, S. Wang, J. Shi, X. Du, Q. Cheng et al., Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor. Adv. Mater. Interfaces 6(22), 1901160 (2019). https://doi.org/10.1002/admi.201901160
- S.K. Kim, H.J. Koo, A. Lee, P.V. Braun, Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv. Mater. 26(30), 5108–5112 (2014). https://doi.org/10.1002/adma.201401525
- L. Liu, D. Ye, Y. Yu, L. Liu, Y. Wu, Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching. Carbon 111, 121–127 (2017). https://doi.org/10.1016/j.carbon.2016.09.037
- W. Sun, X. Chen, Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor. J. Power Sources 193(2), 924–929 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.063
- D. Qi, Y. Liu, Z. Liu, L. Zhang, X. Chen, Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv. Mater. 29(5), 1602802 (2017). https://doi.org/10.1002/adma.201602802
- S. Wang, N. Liu, J. Rao, Y. Yue, K. Gao et al., Vertical finger-like asymmetric supercapacitors for enhanced performance at high mass loading and inner integrated photodetecting systems. J. Mater. Chem. A 5(42), 22199–22207 (2017). https://doi.org/10.1039/C7TA06306G
- A.V. Salkar, A.P. Naik, S.V. Bhosale, P.P. Morajkar, Designing a rare DNA-like double helical microfiber superstructure via self-assembly of in situ carbon fiber-encapsulated Wo3-x nanorods as an advanced supercapacitor material. ACS Appl. Mater. Interfaces 13(1), 1288–1300 (2020). https://doi.org/10.1021/acsami.0c21105
- P. Avasthi, V. Balakrishnan, Electroless growth of high surface area Au dendrites with corrugated edge structure for hybrid supercapacitor applications. ChemistrySelect 3(13), 3866–3870 (2018). https://doi.org/10.1002/slct.201703132
- H. Pang, F. Gao, Q. Chen, R. Liu, Q. Lu, Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Transact. 41(19), 5862–5868 (2012). https://doi.org/10.1039/c2dt12494g
- Y. Zhao, M. Dai, D. Zhao, L. Xiao, X. Wu et al., Asymmetric pseudo-capacitors based on dendrite-like MnO2 nanostructures. CrystEngComm 21(21), 3349–3355 (2019). https://doi.org/10.1039/C9CE00423H
- Z. Sun, S. Firdoz, E.Y.X. Yap, L. Li, X. Lu, Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. Nanoscale 5(10), 4379–4387 (2013). https://doi.org/10.1039/c3nr00209h
- S. Iqbal, A.H. Mady, U. Javed, P.M. Shafi, N.V. Quang et al., Self-templated hollow nanospheres of b-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism. J. Colloid Interface Sci. 600, 729–739 (2021). https://doi.org/10.1016/j.jcis.2021.03.147
- I. Hussain, J.M. Lee, S. Iqbal, H.S. Kim, S.W. Jang et al., Preserved crystal phase and morphology: electrochemical influence of copper and iron co-doped cobalt oxide and its supercapacitor applications. Electrochim. Acta 340, 135953 (2020). https://doi.org/10.1016/j.electacta.2020.135953
- I. Hussain, C. Lamiel, M. Ahmad, Y. Chen, S. Shuang et al., High entropy alloys as electrode material for supercapacitors: a review. J. Energy Storage 44, 103405 (2021). https://doi.org/10.1016/j.est.2021.103405
- T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon et al., Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9(39), 1902007 (2019). https://doi.org/10.1002/aenm.201902007
References
C. Xu, A.R. Puente-Santiago, D. Rodríguez-Padrón, M.J. Muñoz-Batista, M.A. Ahsan et al., Nature-inspired hierarchical materials for sensing and energy storage applications. Chem. Soc. Rev. 50(8), 4856–4871 (2021). https://doi.org/10.1039/C8CS00652K
Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1021/acs.chemrev.7b00291
Z.A. ALOthman, D. Rodriguez-Padron, R. Luque, A.M. Balu, Innovative nanomaterials for energy storage moving toward nature-inspired systems. Curr. Opinion Green Sustain. Chem. 32, 1005 (2021). https://doi.org/10.1016/j.cogsc.2021.100520
C. Wan, Y. Jiao, D. Liang, Y. Wu, J. Li, A geologic architecture system-inspired micro-/nano-heterostructure design for high-performance energy storage. Adv. Energy Mater. 8(33), 1802388 (2018). https://doi.org/10.1002/aenm.201802388
J. Tang, P. Yuan, C. Cai, Y. Fu, X. Ma, Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite polymer electrolyte for asymmetric capacitive energy storage. Adv. Energy Mater. 6(19), 1600813 (2016). https://doi.org/10.1002/aenm.201600813
N.S. Ha, G. Lu, a review of recent research on bio-inspired structures and materials for energy absorption applications. Compos. Part B Eng. 181, 107496 (2020). https://doi.org/10.1016/j.compositesb.2019.107496
P. Trogadas, M.O. Coppens, Nature-inspired electrocatalysts and devices for energy conversion. Chem. Soc. Rev. 49(10), 3107–3141 (2020). https://doi.org/10.1039/C8CS00797G
N.K. Katiyar, G. Goel, S. Hawi, S. Goel, Nature-inspired materials: emerging trends and prospects. NPG Asia Mater. 13, 56 (2021). https://doi.org/10.1038/s41427-021-00322-y
D. Gust, T.A. Moore, A.L. Moore, Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42(12), 1890–1898 (2009). https://doi.org/10.1021/ar900209b
J. Wang, T. Zhu, G.W. Ho, Nature-inspired design of artificial solar-to-fuel conversion systems based on copper phosphate microflowers. Chemsuschem 9(13), 1575–1578 (2016). https://doi.org/10.1002/cssc.201600481
E. Freeman, R. Soncini, L. Weiland, Biologically inspired water purification through selective transport. Smart Mater. Struct. 22(1), 014013 (2012). https://doi.org/10.1088/0964-1726/22/1/014013
N. Kronqvist, M. Sarr, A. Lindqvist, K. Nordling, M. Otikovs et al., Efficient protein production inspired by how spiders make silk. Nat. Commun. 8, 15504 (2017). https://doi.org/10.1038/ncomms15504
Q.F. Guan, H.B. Yang, Z.M. Han, Z.C. Ling, S.H. Yu, An all-natural bioinspired structural material for plastic replacement. Nat. Commun. 11, 5401 (2020). https://doi.org/10.1038/s41467-020-19174-1
H. Wang, Y. Yang, L. Guo, Nature-inspired electrochemical energy-storage materials and devices. Adv. Energy Mater. 7(5), 1601709 (2017). https://doi.org/10.1002/aenm.201601709
W.E. Tenhaeff, O. Rios, K. More, M.A. McGuire, Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material. Adv. Funct. Mater. 24(1), 86–94 (2014). https://doi.org/10.1002/adfm.201301420
S.K. Kim, Y.K. Kim, H. Lee, S.B. Lee, H.S. Park, Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials. Chemsuschem 7(4), 1094–1101 (2014). https://doi.org/10.1002/cssc.201301061
J. Zhou, C. Zheng, H. Wang, J. Yang, P. Hu et al., 3D nest-shaped Sb2O3/RGO composite based high-performance lithium-ion batteries. Nanoscale 8(39), 17131–17135 (2016). https://doi.org/10.1039/C6NR06454J
S. Sahoo, R. Kumar, E. Joanni, R.K. Singh, J.J. Shim, Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. J. Mater. Chem. A 10(25), 13190–13240 (2022). https://doi.org/10.1039/D2TA02357A
I. Hussain, S. Iqbal, C. Lamiel, A. Alfantazi, K. Zhang, Recent advances in oriented metal-organic frameworks for supercapacitive energy storage. J. Mater. Chem. A 10(9), 4475–4488 (2022). https://doi.org/10.1039/D1TA10213C
R. Kumar, E. Joanni, S. Sahoo, J.J. Shim, T.W. Kian et al., An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: from zero to bi-dimensional materials. Carbon 193, 298–338 (2022). https://doi.org/10.1016/j.carbon.2022.03.023
I. Hussain, S. Sahoo, D. Mohapatra, M. Ahmad, S. Iqbal et al., Recent progress in trimetallic/ternary-metal oxides nanostructures: misinterpretation/misconception of electrochemical data and devices. Appl. Mater. Today 26, 101297 (2022). https://doi.org/10.1016/j.apmt.2021.101297
I. Hussain, S. Sahoo, C. Lamiel, T.T. Nguyen, M. Ahmed et al., Research progress and future aspects: metal selenides as effective electrodes. Energy Storage Mater. 47, 13–43 (2022). https://doi.org/10.1016/j.ensm.2022.01.055
J. Yan, T. Liu, X. Liu, Y. Yan, Y. Huang, Metal-organic framework-based materials for flexible supercapacitor application. Coord. Chem. Rev. 452, 214300 (2022). https://doi.org/10.1016/j.ccr.2021.214300
J. Jin, X. Geng, Q. Chen, T.L. Ren, A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors. Nano-Micro Lett. 14, 64 (2022). https://doi.org/10.1007/s40820-022-00793-w
T. Kar, S. Godavarthi, S.K. Pasha, K. Deshmukh, L. Martínez-Gómez et al., Layered materials and their heterojunctions for supercapacitor applications: a review. Crit. Rev. Solid State Mater. Sci. 47(3), 357–388 (2022). https://doi.org/10.1080/10408436.2021.1886048
H. He, J. Lian, C. Chen, Q. Xiong, C.C. Li et al., Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro Lett. 14, 106 (2022). https://doi.org/10.1007/s40820-022-00839-z
T. Xu, D. Wang, Z. Li, Z. Chen, J. Zhang et al., Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 14, 126 (2022). https://doi.org/10.1007/s40820-022-00864-y
M.S. Javed, T. Najim, I. Hussain, S. Batool, M. Idrees et al., 2D V2O5 nanoflakes as a binder-free electrode material for high-performance pseudocapacitor. Ceram. Int. 47(17), 25152–25157 (2021). https://doi.org/10.1016/j.ceramint.2021.05.181
I. Hussain, A. Ali, C. Lamiel, S.G. Mohamed, S. Sahoo et al., A 3D walking palm-like core-shell CoMoO4@NiCo2S4@ nickel foam composite for high-performance supercapacitors. Dalton Transact. 48(12), 3853–3861 (2019). https://doi.org/10.1039/C8DT04045A
I. Hussain, T. Hussain, S.B. Ahmed, T. Kaewmaraya, M. Ahmad et al., Binder-free trimetallic phosphate nanosheets as an electrode: theoretical and experimental investigation. J. Power Sources 513, 230556 (2021). https://doi.org/10.1016/j.jpowsour.2021.230556
L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, a review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew. Sustain. Energy Rev. 81, 1868–1878 (2018). https://doi.org/10.1016/j.rser.2017.05.283
S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim et al., 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/j.cej.2020.126352
Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian et al., Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141, 467–480 (2019). https://doi.org/10.1016/j.carbon.2018.10.010
A. Mohanty, D. Jaihindh, Y.P. Fu, S.P. Senanayak, L.S. Mende et al., An extensive review on three dimension architectural metal-organic frameworks towards supercapacitor application. J. Power Sources 488, 229444 (2021). https://doi.org/10.1016/j.jpowsour.2020.229444
Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su et al., Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J. Mater. Chem. A 7(27), 16028–16045 (2019). https://doi.org/10.1039/C9TA04436A
D.G. Wang, Z. Liang, S. Gao, C. Qu, R. Zou, Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 404, 213093 (2020). https://doi.org/10.1016/j.ccr.2019.213093
A. Gopalakrishnan, S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 480, 228830 (2020). https://doi.org/10.1016/j.jpowsour.2020.228830
M. Ahmad, I. Hussain, T. Nawaz, Y. Li, X. Chen et al., Comparative study of ternary metal chalcogenides (MX; M= Zn-Co-Ni; X= S, Se, Te): formation process, charge storage mechanism and hybrid supercapacitor. J. Power Sources 534, 231414 (2022). https://doi.org/10.1016/j.jpowsour.2022.231414
I. Hussain, T. Hussain, C. Lamiel, K. Zhang, Turning indium oxide into high-performing electrode materials via cation substitution strategy: preserving single crystalline cubic structure of 2D nanoflakes towards energy storage devices. J. Power Sources 480, 228873 (2020). https://doi.org/10.1016/j.jpowsour.2020.228873
S. Gu, R. Hao, J. Chen, K. Liu, X. Chen et al., Star-shaped polyimide covalent organic framework for high-voltage lithium-ion batteries. Mater. Chem. Front. 6(17), 2545–2550 (2022). https://doi.org/10.1039/D2QM00578F
S. Iqbal, A.H. Mady, Y.I. Kim, U. Javed, P.M. Shafi et al., Self-templated hollow nanospheres of B-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism. J. Colloid Interface Sci. 600, 729–739 (2021). https://doi.org/10.1016/j.jcis.2021.03.147
S. Gu, Y. Chen, R. Hao, J. Zhou, I. Hussain et al., Redox of naphthalenediimide radicals in a 3D polyimide for stable Li-ion batteries. Chem. Commun. 57(63), 7810–7813 (2021). https://doi.org/10.1039/D1CC02426D
I. Hussain, T. Mak, K. Zhang, Boron-doped trimetallic Cu-Ni-Co oxide nanoneedles for supercapacitor application. ACS Appl. Nano Mater. 4(1), 129–141 (2021). https://doi.org/10.1021/acsanm.0c02411
I. Hussain, C. Lamiel, S.G. Mohamed, S. Vijayakumar, A. Ali et al., Controlled synthesis and growth mechanism of zinc cobalt sulfide rods on Ni-foam for high-performance supercapacitors. J. Indust. Eng. Chem. 71, 250–259 (2019). https://doi.org/10.1016/j.jiec.2018.11.033
Y. Chen, S. Gu, S. Wu, X. Ma, I. Hussain et al., Copper activated near-full two-electron Mn4+/Mn2+ redox for mild aqueous Zn/MnO2 battery. Chem. Eng. J. 450, 137923 (2022). https://doi.org/10.1016/j.cej.2022.137923
G. Dhakal, D. Mohapatra, T.L. Tamang, M. Lee, Y.R. Lee et al., Redox-additive electrolyte-driven enhancement of the electrochemical energy storage performance of asymmetric Co3O4//carbon nano-onions supercapacitors. Energy 218, 119436 (2021). https://doi.org/10.1016/j.energy.2020.119436
U. Zubair, D. Versaci, M. Umer, J. Amici, C. Francia et al., Lithium polysulfides immobilization exploiting formate-ion doped polyaniline wrapped carbon for long cycle life sulfur cathodes via conventional electrode processing. Mater. Today Commun. 26, 101970 (2021). https://doi.org/10.1016/j.mtcomm.2020.101970
S. Kumar, I.A. Mir, Z. Ahmad, K.S. Hui, D.A. Dinh et al., Microflowers of Sn-Co-S derived from ultra-thin nanosheets for supercapacitor applications. J. Energy Storage 49, 104084 (2022). https://doi.org/10.1016/j.est.2022.104084
W. Kim, H.J. Lee, S.J. Yoo, C.K. Trinh, Z. Ahmad et al., Preparation of a polymer nanocomposite via the polymerization of pyrrole: biphenyldisulfonic acid: pyrrole as a two-monomer-connected precursor on MoS2 for electrochemical energy storage. Nanoscale 13(11), 5868–5874 (2021). https://doi.org/10.1039/D0NR08941A
M.S. Javed, T. Najam, M. Sajjad, S.S.A. Shah, I. Hussain et al., Design and fabrication of highly porous 2D bimetallic sulfide ZnS/FeS composite nanosheets as an advanced negative electrode material for supercapacitors. Energy Fuels 35(18), 15185–15191 (2021). https://doi.org/10.1021/acs.energyfuels.1c02444
I. Hussain, C. Lamiel, N. Qin, S. Gu, Y. Li et al., Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications. J. Colloid Interface Sci. 582, 782–792 (2021). https://doi.org/10.1016/j.jcis.2020.08.064
I. Hussain, T. Hussain, S. Yang, Y. Chen, J. Zhou et al., Integration of CuO nanosheets to Zn-Ni-Co oxide nanowire arrays for energy storage applications. Chem. Eng. J. 413, 127570 (2020). https://doi.org/10.1016/j.cej.2020.127570
M.Z. Ansari, K.M. Seo, S.H. Kim, S.A. Ansari, Critical aspects of various techniques for synthesizing metal oxides and fabricating their composite-based supercapacitor electrodes: a review. Nanomaterials 12(11), 1873 (2022). https://doi.org/10.3390/nano12111873
N. Abbas, I. Shaheen, I. Ali, M. Ahmad, S.A. Khan et al., Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materials. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.07.225
M.Z. Ansari, D.K. Nandi, P. Janicek, S.A. Ansari, R. Ramesh et al., Low-temperature atomic layer deposition of highly conformal tin nitride thin films for energy storage devices. ACS Appl. Mater. Interfaces 11(46), 43608–43621 (2019). https://doi.org/10.1021/acsami.9b15790
I. Hussain, D. Mohapatra, C. Lamiel, M. Ahmad, M.A. Ashraf et al., Phosphorus containing layered quadruple hydroxide electrode materials on lab waste recycled flexible current collector. J. Colloid Interface Sci. 609, 566–574 (2021). https://doi.org/10.1016/j.jcis.2021.11.063
S.G. Mohamed, I. Hussain, J.J. Shim, One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10(14), 6620–6628 (2018). https://doi.org/10.1039/C7NR07338K
M.S. Javed, M. Imran, M.A. Assiri, I. Hussain, S. Hussain et al., One-step synthesis of carbon incorporated 3D MnO2 nanorods as a highly efficient electrode material for pseudocapacitors. Mater. Lett. 295, 129838 (2021). https://doi.org/10.1016/j.matlet.2021.129838
S.G. Mohamed, I. Hussain, M.S. Sayed, J.J. Shim, One-step development of octahedron-like CuCo2O4@ carbon fibers for high-performance supercapacitors electrodes. J. Alloys Compd. 842, 155639 (2020). https://doi.org/10.1016/j.jallcom.2020.155639
Z. Li, X. Yu, A. Gu, H. Tang, L. Wang et al., Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors. Nanotechnology 28(6), 065406 (2017). https://doi.org/10.1088/1361-6528/28/6/065406
N. Soudi, S. Nanayakkara, N.M. Jahed, S. Naahidi, Rise of nature-inspired solar photovoltaic energy convertors. Sol. Energy 208, 31–45 (2020). https://doi.org/10.1016/j.solener.2020.07.048
M.S. Javed, T. Najam, I. Hussain, S.S.A. Shah, S. Ibraheem et al., Novel 2D vanadium oxysulfide nano-spindles decorated carbon textile composite as an advanced electrode for high-performance pseudocapacitors. Mater. Lett. 303, 130478 (2021). https://doi.org/10.1016/j.matlet.2021.130478
C. Lamiel, I. Hussain, O.R. Ogunsakin, K. Zhang, MXene in core-shell structures: research progress and future aspects. J. Mater. Chem. A 10(27), 14247–14272 (2022). https://doi.org/10.1039/D2TA02255A
I. Hussain, T. Hussain, M. Ahmad, X. Ma, M.S. Javed et al., Modified KBBF-like material for energy storage applications: ZnNiBo3(OH) with enhanced cycle life. ACS Appl. Mater. Interfaces 14(6), 8025–8035 (2022). https://doi.org/10.1021/acsami.1c23583
I. Hussain, T. Hussain, S. Yang, Y. Chen, J. Zhou et al., Integration of CuO nanosheets to Zn-Ni-Co oxide nanowires for energy storage applications. Chem. Eng. J. 413, 127570 (2020). https://doi.org/10.1016/j.cej.2020.127570
R. Schneider, M.H. Facure, P.A. Chagas, R.S. Andre, D.M. Santos et al., Tailoring the surface properties of micro/nanofibers using 0D, 1D, 2D, and 3D nanostructures: a review on post-modification methods. Adv. Mater. Interfaces 8(13), 2100430 (2021). https://doi.org/10.1002/admi.202100430
J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724–803 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.003
N. Abbas, I. Shaheen, I. Hussain, C. Lamiel, M. Ahmad et al., Glycerol-mediated synthesis of copper-doped zinc sulfide with ultrathin nanoflakes for flexible energy electrode materials. J. Alloys Compd. 919, 165701 (2022). https://doi.org/10.1016/j.jallcom.2022.165701
U. Amara, K. Mahmood, M. Hassan, M. Hanif, M. Khalid et al., Functionalized thiazolidone-decorated lanthanum-doped copper oxide: novel heterocyclic sea sponge morphology for the efficient detection of dopamine. RSC Adv. 12(23), 14439–14449 (2022). https://doi.org/10.1039/D2RA01406H
M. Sabar, U. Amara, S. Riaz, A. Hayat, M. Nasir et al., Fabrication of MoS2 enwrapped carbon cloth as electrochemical probe for non-enzymatic detection of dopamine. Mater. Lett. 308, 131233 (2022). https://doi.org/10.1016/j.matlet.2021.131233
U. Amara, B. Sarfraz, K. Mahmood, M.T. Mehran, N. Muhammad et al., Fabrication of ionic liquid stabilized MXene interface for electrochemical dopamine detection. Microchim. Acta 189(2), 64 (2022). https://doi.org/10.1007/s00604-022-05162-3
U. Amara, S. Riaz, K. Mahmood, N. Akhtar, M. Nasir et al., Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection. RSC Adv. 11(40), 25084–25095 (2021). https://doi.org/10.1039/D1RA03908C
I. Hussain, S. Iqbal, T. Hussain, W.L. Cheung, S.A. Khan et al., Zn-Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Mater. Today Phys. 23, 100655 (2022). https://doi.org/10.1016/j.mtphys.2022.100655
I. Hussain, D. Mohapatra, G. Dhakal, C. Lamiel, M.S. Sayed et al., Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications. J. Energy Storage 36, 102408 (2021). https://doi.org/10.1016/j.est.2021.102408
I. Hussain, S.G. Mohamed, A. Ali, N. Abbas, S.M. Ammar et al., Uniform growth of Zn-Mn-Co ternary oxide nanoneedles for high-performance energy-storage applications. J. Electroanal. Chem. 837, 39–47 (2019). https://doi.org/10.1016/j.jelechem.2019.01.052
W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu et al., Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mater. Chem. A 3(10), 5656–5664 (2015). https://doi.org/10.1039/C4TA06620K
D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ. Sci. 7(2), 728–735 (2014). https://doi.org/10.1039/C3EE42551G
J. Cao, J. Luo, P. Wang, X. Wang, W. Weng, Biomass-based porous carbon beehive prepared in molten KOH for capacitors. Mater. Technol. 35(9–10), 522–528 (2020). https://doi.org/10.1080/10667857.2019.1699270
L. Chang, Y.H. Hu, One-step synthesis of high surface-area honeycomb graphene clusters for highly efficient capacitive deionization. J. Phys. Chem. Solids 134, 64–68 (2019). https://doi.org/10.1016/j.jpcs.2019.05.040
X. Feng, Y. Huang, C. Li, Y. Xiao, X. Chen et al., Construction of carnations-like Mn3O4@NiCo2O4@NiO hierarchical nanostructures for high-performance supercapacitors. Electrochim. Acta 308, 142–149 (2019). https://doi.org/10.1016/j.electacta.2019.04.048
X. He, P. Liu, J. Liu, Y. Muhammad, M. Zhu et al., Facile synthesis of hierarchical N-doped hollow porous carbon whiskers with ultrahigh surface area via synergistic inner-outer activation for casein hydrolysate adsorption. J. Mater. Chem. B 5(46), 9211–9218 (2017). https://doi.org/10.1039/C7TB02345F
A. Gopalakrishnan, T.D. Raju, S. Badhulika, Green synthesis of nitrogen, sulfur-co-doped worm-like hierarchical porous carbon derived from ginger for outstanding supercapacitor performance. Carbon 168, 209–219 (2020). https://doi.org/10.1016/j.carbon.2020.07.017
Y. Wang, X. Tang, M. Han, Y. Li, Y. Zhang et al., One-step synthesis of the N and P co-doped nest-like mesoporous carbon by a microwave-assisted ultra-high temperature solvothermal method for supercapacitor application. ChemistrySelect 4(3), 1108–1116 (2019). https://doi.org/10.1002/slct.201803006
S.H. Park, S.B. Yoon, H.K. Kim, J.T. Han, H.W. Park et al., Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors. Sci. Rep. 4, 6118 (2014). https://doi.org/10.1038/srep06118
J. Liu, H. Li, H. Zhang, Q. Liu, R. Li et al., Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors. J. Solid State Chem. 257, 64–71 (2018). https://doi.org/10.1016/j.jssc.2017.07.033
Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai et al., A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6(22), 13831–13837 (2014). https://doi.org/10.1039/C4NR04541F
H. Fan, W. Liu, W. Shen, Honeycomb-like composite structure for advanced solid state asymmetric supercapacitors. Chem. Eng. J. 326, 518–527 (2017). https://doi.org/10.1016/j.cej.2017.05.121
T. Liu, Y. Zheng, W. Zhao, L. Cui, J. Liu, Uniform generation of NiCo2S4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors. J. Colloid Interface Sci. 556, 743–752 (2019). https://doi.org/10.1016/j.jcis.2019.08.094
C.M. Chen, Q. Zhang, X.C. Zhao, B. Zhang, Q.Q. Kong et al., Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. J. Mater. Chem. 22(28), 14076–14084 (2012). https://doi.org/10.1039/c2jm31426f
P.X. Thinh, C. Basavaraja, D. Kim, Characterization and electrochemical behaviors of honeycomb-patterned poly (N-vinylcarbazole)/polystyrene composite films. Polym. Bull. 69(1), 81–94 (2012). https://doi.org/10.1007/s00289-012-0727-9
L.G. Beka, X. Li, X. Wang, C. Han, W. Liu, A hierarchical NiCo2S4 honeycomb/NiCo2S4 nanosheet core-shell structure for supercapacitor applications. RSC Adv. 9(55), 32338–32347 (2019). https://doi.org/10.1039/C9RA05840K
H.W. Nam, C.V.V.M. Gopi, S. Sambasivam, R. Vinodh, K.V.G. Raghavendra et al., Binder-free honeycomb-like FeMoO4 nanosheet arrays with dual properties of both battery-type and pseudocapacitive-type performances for supercapacitor applications. J. Energy Storage 27, 101055 (2020). https://doi.org/10.1016/j.est.2019.101055
E. Samuel, A. Aldalbahi, M. El-Newehy, H. El-Hamshary, S.S. Yoon, Nickel ferrite beehive-like nanosheets for binder-free and high-energy-storage supercapacitor electrodes. J. Alloys Compd. 852, 156929 (2021). https://doi.org/10.1016/j.jallcom.2020.156929
L. Yao, G. Yang, P. Han, Z. Tang, J. Yang, Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes. J. Power Sources 315, 209–217 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.006
M. Ding, G. Chen, W. Xu, C. Jia, H. Luo, Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Mater. Sci. 2(3), 264–280 (2020). https://doi.org/10.1016/j.nanoms.2019.09.011
A. Zhang, H. Bai, L. Li, Breath figure: a nature-inspired preparation method for ordered porous films. Chem. Rev. 115(18), 9801–9868 (2015). https://doi.org/10.1021/acs.chemrev.5b00069
Q. Zhang, X. Yang, P. Li, G. Huang, S. Feng et al., Bioinspired engineering of honeycomb structure-using nature to inspire human innovation. Prog. Mater. Sci. 74, 332–400 (2015). https://doi.org/10.1016/j.pmatsci.2015.05.001
D.R. Kumar, K.R. Prakasha, A.S. Prakash, J.J. Shim, Direct growth of honeycomb-like NiCo2O4@Ni foam electrode for pouch-type high-performance asymmetric supercapacitor. J. Alloys Compd. 836, 155370 (2020). https://doi.org/10.1016/j.jallcom.2020.155370
X. Wu, L. Jiang, C. Long, Z. Fan, From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13, 527–536 (2015). https://doi.org/10.1016/j.nanoen.2015.03.013
Z. Lv, Y. Tang, Z. Zhu, J. Wei, W. Li et al., Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 30(50), 1805468 (2018). https://doi.org/10.1002/adma.201805468
S. Sun, J. Luo, Y. Qian, Y. Jin, Y. Liu et al., Metal-organic framework derived honeycomb Co9S8@C composites for high-performance supercapacitors. Adv. Energy Mater. 8(25), 1801080 (2018). https://doi.org/10.1002/aenm.201801080
Z. Peng, X. Liu, H. Meng, Z. Li, B. Li et al., Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9(5), 4577–4586 (2017). https://doi.org/10.1021/acsami.6b12532
E. Raymundo-Piñero, M. Cadek, F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19(7), 1032–1039 (2009). https://doi.org/10.1002/adfm.200801057
Q. Wang, J. Yan, T. Wei, J. Feng, Y. Ren et al., Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60, 481–487 (2013). https://doi.org/10.1016/j.carbon.2013.04.067
T. Sun, L. Feng, X. Gao, L. Jiang, Bioinspired surfaces with special wettability. Acc. Chem. Res. 38(8), 644–652 (2005). https://doi.org/10.1021/ar040224c
L. Jiang, Y. Zhao, J. Zhai, A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angwn. Chem. Int. Ed. 43(33), 4338–4341 (2004). https://doi.org/10.1002/anie.200460333
Y. Zheng, H. Bai, Z. Huang, X. Tian, F.Q. Nie et al., Directional water collection on wetted spider silk. Nature 463(7281), 640–643 (2010). https://doi.org/10.1038/nature08729
J. Sun, R.N. Zuckermann, Peptoid polymers: a highly designable bioinspired material. ACS Nano 7(6), 4715–4732 (2013). https://doi.org/10.1021/nn4015714
M.E. McConney, K.D. Anderson, L.L. Brott, R.R. Naik, V.V. Tsukruk, Bioinspired material approaches to sensing. Adv. Funct. Mater. 19(16), 2527–2544 (2009). https://doi.org/10.1002/adfm.200900606
X. Deng, S. Zhu, J. Li, F. He, E. Liu et al., Bio-inspired three-dimensional carbon network with enhanced mass-transfer ability for supercapacitors. Carbon 143, 728–735 (2018). https://doi.org/10.1016/j.carbon.2018.11.055
X. Deng, S. Zhu, J. Li, F. He, E. Liu et al., Bio-inspired three-dimensional carbon network with enhanced mass-transfer ability for supercapacitors. Carbon 143, 728–735 (2019). https://doi.org/10.1016/j.carbon.2018.11.055
S. Boukhalfa, K. Evanoff, G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci. 5(5), 6872–6879 (2012). https://doi.org/10.1039/c2ee21110f
M.A. Elsaid, A.Z. Sayed, A.M. Ashmawy, A.A. Hassan, A.F. Waheed et al., Hierarchically nanocoral reefs-like ZnCo2S4 deposited on Ni foam as an electrode material for high-performance battery-type symmetric supercapacitor. Bull. Tabbin Inst. Metall. Stud. (2022). https://doi.org/10.21608/tims.2022.147815.1003
M.S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain et al., The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small 18(26), 2201989 (2022). https://doi.org/10.1002/smll.202201989
I. Hussain, D. Mohapatra, G. Dhakal, C. Lamiel, S.G. Mohamed et al., Different controlled nanostructures of Mn-doped ZnS for high-performance supercapacitor applications. J. Energy Storage 32, 101767 (2020). https://doi.org/10.1016/j.est.2020.101767
I. Hussain, C. Lamiel, N. Qin, S. Gu, Y. Li et al., Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications. J. Colloid Interface Sci. 582, 782–792 (2020). https://doi.org/10.1016/j.jcis.2020.08.064
M.S. Javed, T. Najim, I. Hussain, S. Batool, M. Idrees et al., 2D V2O5 nanoflakes as a binder-free electrode material for high-performance pseudocapacitor. Ceram. Int. 47(17), 25152–25157 (2021). https://doi.org/10.1016/j.ceramint.2021.05.181
R. Manikandan, C.J. Raj, M. Rajesh, B.C. Kim, G. Nagaraju et al., Rationally designed spider web-like trivanadium heptaoxide nanowires on carbon cloth as a new class of pseudocapacitive electrode for symmetric supercapacitors with high energy density and ultra-long cyclic stability. J. Mater. Chem. A 6(24), 11390–11404 (2018). https://doi.org/10.1039/C8TA03011A
P. Sun, W. He, H. Yang, R. Cao, J. Yin et al., Hedgehog-inspired nanostructures for hydrogel-based all-solid-state hybrid supercapacitors with excellent flexibility and electrochemical performance. Nanoscale 10(40), 19004–19013 (2018). https://doi.org/10.1039/C8NR04919J
Y. Tao, L. Zaijun, L. Ruiyi, N. Qi, K. Hui et al., Nickel-cobalt double hydroxides microspheres with hollow interior and hedgehog-like exterior structures for supercapacitors. J. Mater. Chem. 22(44), 23587–23592 (2012). https://doi.org/10.1039/c2jm35263j
H. Wan, J. Jiang, Y. Ruan, J. Yu, L. Zhang et al., Direct formation of hedgehog-like hollow Ni-Mn oxides and sulfides for supercapacitor electrodes. Part. Part. Syst. Charact. 31(8), 857–862 (2014). https://doi.org/10.1002/ppsc.201400020
Y. Luo, J. Jiang, W. Zhou, H. Yang, J. Luo et al., Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. J. Mater. Chem. 22(17), 8634–8640 (2012). https://doi.org/10.1039/c2jm16419a
J. Wei, J. Zhang, Y. Liu, G. Xu, Z. Chen et al., Controlled growth of whisker-like polyaniline on carbon nanofibers and their long cycle life for supercapacitors. RSC Adv. 3(12), 3957–3962 (2013). https://doi.org/10.1039/c3ra23040f
Y. Tang, Y. Liu, W. Guo, S. Yu, F. Gao, Floss-like Ni-Co binary hydroxides assembled by whisker-like nanowires for high-performance supercapacitor. Ionics 21(6), 1655–1663 (2015). https://doi.org/10.1007/s11581-014-1319-5
K. Khawas, P. Kumari, S. Daripa, R. Oraon, B.K. Kuila, Hierarchical polyaniline-MnO2-reduced graphene oxide ternary nanostructures with whiskers-like polyaniline for supercapacitor application. ChemistrySelect 2(35), 11783–11789 (2017). https://doi.org/10.1002/slct.201702345
X. Chen, D. Chen, X. Guo, R. Wang, H. Zhang, Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9(22), 18774–18781 (2017). https://doi.org/10.1021/acsami.7b03254
Y. Yang, Y. Hao, J. Yuan, L. Niu, F. Xia, In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors. Carbon 78, 279–287 (2014). https://doi.org/10.1016/j.carbon.2014.07.004
Z. Liu, K. Xiao, H. Guo, X. Ning, A. Hu et al., Nitrogen-doped worm-like graphitized hierarchical porous carbon designed for enhancing area-normalized capacitance of electrical double layer supercapacitors. Carbon 117, 163–173 (2017). https://doi.org/10.1016/j.carbon.2017.02.087
D. Yuan, J. Chen, S. Tan, N. Xia, Y. Liu, Worm-like mesoporous carbon synthesized from metal-organic coordination polymers for supercapacitors. Electrochem. Commun. 11(6), 1191–1194 (2009). https://doi.org/10.1016/j.elecom.2009.03.045
X. Tian, X. Li, T. Yang, K. Wang, H. Wang et al., Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries. Appl. Surf. Sci. 434, 49–56 (2018). https://doi.org/10.1016/j.apsusc.2017.09.153
P. Yang, Y. Li, Z. Lin, Y. Ding, S. Yue et al., Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J. Mater. Chem. A 2(3), 595–599 (2014). https://doi.org/10.1039/C3TA14275B
N. Tantawy, F.E.T. Heakal, S. Ahmed, Synthesis of worm-like binary metallic active material by electroless deposition approach for high-performance supercapacitor. J. Energy Storage 31, 101625 (2020). https://doi.org/10.1016/j.est.2020.101625
L. Jinlong, L. Tongxiang, Y. Meng, K. Suzuki, H. Miura, The plume-like Ni3S2 supercapacitor electrodes formed on nickel foam by catalysis of thermal reduced graphene oxide. J. Electroanal. Chem. 786, 8–13 (2017). https://doi.org/10.1016/j.jelechem.2017.01.004
J.Y. Liang, C.C. Wang, S.Y. Lu, Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. J. Mater. Chem. A 3(48), 24453–24462 (2015). https://doi.org/10.1039/C5TA08007J
D. Dubal, C. Lokhande, Significant improvement in the electrochemical performances of nano-nest like amorphous MnO2 electrodes due to Fe doping. Ceram. Int. 39(1), 415–423 (2013). https://doi.org/10.1016/j.ceramint.2012.06.042
S.F. Shaikh, F.F. Shaikh, A.V. Shaikh, M. Ubaidullah, A.M. Al-Enizi et al., Electrodeposited more-hydrophilic nano-nest polyaniline electrodes for supercapacitor application. J. Phys. Chem. Solids 149, 109774 (2021). https://doi.org/10.1016/j.jpcs.2020.109774
D. Zhao, Q. Zhu, D. Chen, X. Li, Y. Yu et al., Nest-like V3O7 self-assembled by porous nanowires as an anode supercapacitor material and its performance optimization through bonding with n-doped Carbon. J. Mater. Chem. A 6(34), 16475–16484 (2018). https://doi.org/10.1039/C8TA06820H
L. Mi, W. Wei, S. Huang, S. Cui, W. Zhang et al., A nest-like Ni@Ni1.4Co1.6S2 electrode for flexible high-performance rolling supercapacitor device design. J. Mater. Chem. A 3(42), 20973–20982 (2015). https://doi.org/10.1039/C5TA06265A
F. Ran, H. Fan, L. Wang, L. Zhao, Y. Tan et al., A bird nest-like manganese dioxide and its application as electrode in supercapacitors. J. Energy Chem. 22(6), 928–934 (2013). https://doi.org/10.1016/S2095-4956(14)60274-6
Y. Huang, F. Cui, Y. Zhao, J. Lian, J. Bao et al., NiMoO4 nanorod deposited carbon sponges with ant-nest-like interior channels for high-performance pseudocapacitors. Inorg. Chem. Front. 5(7), 1594–1601 (2018). https://doi.org/10.1039/C8QI00247A
F. Miao, N. Lu, P. Zhang, Z. Zhang, G. Shao, Multidimension-controllable synthesis of ant nest-structural electrode materials with unique 3D hierarchical porous features toward electrochemical applications. Adv. Funct. Mater. 29(29), 1808994 (2019). https://doi.org/10.1002/adfm.201808994
Q. Lu, X. Wang, M. Chen, B. Lu, M. Liu et al., Manganese dioxide/ant-nest-like hierarchical porous carbon composite with robust supercapacitive performances. ACS Sustain. Chem. Eng. 6(6), 7362–7371 (2018). https://doi.org/10.1021/acssuschemeng.7b04492
F. Wang, L. Chen, H. Li, G. Duan, S. He et al., N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chin. Chem. Lett. 31(7), 1986–1990 (2020). https://doi.org/10.1016/j.cclet.2020.02.020
Y. Wang, Z. Zhao, W. Song, Z. Wang, X. Wu, From biological waste to honeycomb-like porous carbon for high energy density supercapacitor. J. Mater. Sci. 54(6), 4917–4927 (2019). https://doi.org/10.1007/s10853-018-03215-8
X. Ren, C. Guo, L. Xu, T. Li, L. Hou et al., Facile synthesis of hierarchical mesoporous honeycomb-like NiO for aqueous asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7(36), 19930–19940 (2015). https://doi.org/10.1021/acsami.5b04094
G.K. Veerasubramani, A. Chandrasekhar, M. Sudhakaran, Y.S. Mok, S.J. Kim, Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core-shell nanostructures assembled with honeycomb-like porous Carbon. J. Mater. Chem. A 5(22), 11100–11113 (2017). https://doi.org/10.1039/C7TA01308F
J. Wang, F. Qin, Z. Guo, W. Shen, Oxygen- and nitrogen-enriched honeycomb-like porous carbon from Laminaria japonica with excellent supercapacitor performance in aqueous solution. ACS Sustain. Chem. Eng. 7(13), 11550–11563 (2019). https://doi.org/10.1021/acssuschemeng.9b01448
A. Ali, M. Aadil, A. Rasheed, I. Hameed, S. Ajmal et al., Honeycomb like architectures of the Mo doped ZnS@Ni for high-performance asymmetric supercapacitors applications. Synth. Met. 265, 116408 (2020). https://doi.org/10.1016/j.synthmet.2020.116408
R. Kumar, S.M. Youssry, H.M. Soe, M.M. Abdel-Galeil, G. Kawamura et al., Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. J. Energy Storage 30, 101539 (2020). https://doi.org/10.1016/j.est.2020.101539
X. Dong, Y. Yu, X. Jing, H. Jiang, T. Hu et al., Sandwich-like honeycomb Co2SiO4/rGO/honeycomb Co2SiO4 structures with enhanced electrochemical properties for high-performance hybrid supercapacitor. J. Power Sources 492, 229643 (2021). https://doi.org/10.1016/j.jpowsour.2021.229643
L. Du, W. Du, H. Ren, N. Wang, Z. Yao et al., Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J. Mater. Chem. A 5(43), 22527–22535 (2017). https://doi.org/10.1039/C7TA06921A
L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong et al., Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9(17), 2905–2910 (2013). https://doi.org/10.1002/smll.201203164
X. Chen, S. Wang, J. Shi, X. Du, Q. Cheng et al., Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor. Adv. Mater. Interfaces 6(22), 1901160 (2019). https://doi.org/10.1002/admi.201901160
S.K. Kim, H.J. Koo, A. Lee, P.V. Braun, Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv. Mater. 26(30), 5108–5112 (2014). https://doi.org/10.1002/adma.201401525
L. Liu, D. Ye, Y. Yu, L. Liu, Y. Wu, Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching. Carbon 111, 121–127 (2017). https://doi.org/10.1016/j.carbon.2016.09.037
W. Sun, X. Chen, Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor. J. Power Sources 193(2), 924–929 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.063
D. Qi, Y. Liu, Z. Liu, L. Zhang, X. Chen, Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv. Mater. 29(5), 1602802 (2017). https://doi.org/10.1002/adma.201602802
S. Wang, N. Liu, J. Rao, Y. Yue, K. Gao et al., Vertical finger-like asymmetric supercapacitors for enhanced performance at high mass loading and inner integrated photodetecting systems. J. Mater. Chem. A 5(42), 22199–22207 (2017). https://doi.org/10.1039/C7TA06306G
A.V. Salkar, A.P. Naik, S.V. Bhosale, P.P. Morajkar, Designing a rare DNA-like double helical microfiber superstructure via self-assembly of in situ carbon fiber-encapsulated Wo3-x nanorods as an advanced supercapacitor material. ACS Appl. Mater. Interfaces 13(1), 1288–1300 (2020). https://doi.org/10.1021/acsami.0c21105
P. Avasthi, V. Balakrishnan, Electroless growth of high surface area Au dendrites with corrugated edge structure for hybrid supercapacitor applications. ChemistrySelect 3(13), 3866–3870 (2018). https://doi.org/10.1002/slct.201703132
H. Pang, F. Gao, Q. Chen, R. Liu, Q. Lu, Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Transact. 41(19), 5862–5868 (2012). https://doi.org/10.1039/c2dt12494g
Y. Zhao, M. Dai, D. Zhao, L. Xiao, X. Wu et al., Asymmetric pseudo-capacitors based on dendrite-like MnO2 nanostructures. CrystEngComm 21(21), 3349–3355 (2019). https://doi.org/10.1039/C9CE00423H
Z. Sun, S. Firdoz, E.Y.X. Yap, L. Li, X. Lu, Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. Nanoscale 5(10), 4379–4387 (2013). https://doi.org/10.1039/c3nr00209h
S. Iqbal, A.H. Mady, U. Javed, P.M. Shafi, N.V. Quang et al., Self-templated hollow nanospheres of b-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism. J. Colloid Interface Sci. 600, 729–739 (2021). https://doi.org/10.1016/j.jcis.2021.03.147
I. Hussain, J.M. Lee, S. Iqbal, H.S. Kim, S.W. Jang et al., Preserved crystal phase and morphology: electrochemical influence of copper and iron co-doped cobalt oxide and its supercapacitor applications. Electrochim. Acta 340, 135953 (2020). https://doi.org/10.1016/j.electacta.2020.135953
I. Hussain, C. Lamiel, M. Ahmad, Y. Chen, S. Shuang et al., High entropy alloys as electrode material for supercapacitors: a review. J. Energy Storage 44, 103405 (2021). https://doi.org/10.1016/j.est.2021.103405
T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon et al., Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9(39), 1902007 (2019). https://doi.org/10.1002/aenm.201902007