Integration of Electrical Properties and Polarization Loss Modulation on Atomic Fe–N-RGO for Boosting Electromagnetic Wave Absorption
Corresponding Author: Xiaoxiao Huang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 46
Abstract
Developing effective strategies to regulate graphene's conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption (EMWA) field. Based on the unique energy band structure of graphene, regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution. Herein, metal-nitrogen doping reduced graphene oxide (M–N-RGO) was prepared by embedding a series of single metal atoms M–N4 sites (M = Mn, Fe, Co, Ni, Cu, Zn, Nb, Cd, and Sn) in RGO using an N-coordination atom-assisted strategy. These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance. The results showed that the minimum reflection loss (RLmin) of Fe–N-RGO reaches − 74.05 dB (2.0 mm) and the maximum effective absorption bandwidth (EABmax) is 7.05 GHz (1.89 mm) even with a low filler loading of only 1 wt%. Combined with X-ray absorption spectra (XAFS), atomic force microscopy, and density functional theory calculation analysis, the Fe–N4 can be used as the polarization center to increase dipole polarization, interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion. Moreover, electron migration within the Fe further leads to conduction loss, thereby synergistically promoting energy attenuation. This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties, which provides an important basis for further investigation of the loss mechanism.
Highlights:
1 Single-atom Fe–N4 sites embedded into graphene were successfully synthesized to exert the dielectric properties of graphene.
2 The absorption mechanisms of metal-nitrogen doping reduced graphene oxide mainly include enhanced dipole polarization, interface polarization, conduction loss and defect-induced polarization.
3 Excellent reflection loss of − 74.05 dB (2.0 mm) and broad effective absorption bandwidth of 7.05 GHz (1.89 mm, with filler loading only 1 wt%) were obtained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Guo, L. Chen, G. Yang, Boosting electromagnetic wave absorption of Ti3AlC2 by improving effective electrical conductivity. J. Adv. Ceram. 12, 1533–1546 (2023). https://doi.org/10.26599/jac.2023.9220770
- X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
- L. Qiao, J. Bi, G. Liang, Y. Yang, H. Wang et al., Synthesis of high-entropy MXenes with high-efficiency electromagnetic wave absorption. J. Adv. Ceram. 12, 1902–1918 (2023). https://doi.org/10.26599/jac.2023.9220796
- C. Li, D. Li, S. Zhang, L. Ma, L. Zhang et al., Interface engineering of titanium nitride nanotube composites for excellent microwave absorption at elevated temperature. Nano-Micro Lett. 16, 168 (2024). https://doi.org/10.1007/s40820-024-01381-w
- K. Zhang, W. Lv, J. Chen, H. Ge, C. Chu et al., Synthesis of RGO/AC/Fe3O4 composite having 3D hierarchically porous morphology for high effective electromagnetic wave absorption. Compos. Part B-Eng. 169, 1–8 (2019). https://doi.org/10.1016/j.compositesb.2019.03.081
- Y. Li, Z. Guan, J. Jiang, L. Zhen, Evolution of the microstructure and electromagnetic properties of Fe–Si–Al ps during post ball-milling annealing. J. Mater. Res. Technol. 29, 3532–3542 (2024). https://doi.org/10.1016/j.jmrt.2024.02.038
- G. De Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, M.S. Sarto, Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency. Carbon 49, 4291–4300 (2011). https://doi.org/10.1016/j.carbon.2011.06.008
- Y. Dai, M. Sun, C. Liu, Z. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cement Concrete Comp. 32, 508–513 (2010). https://doi.org/10.1016/j.cemconcomp.2010.03.009
- T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She et al., Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 5619 (2014). https://doi.org/10.1038/srep05619
- F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
- U.R. Farooqui, A.L. Ahmad, N.A. Hamid, Graphene oxide: a promising membrane material for fuel cells. Renew. Sust. Energ. Rev. 82, 714–733 (2018). https://doi.org/10.1016/j.rser.2017.09.081
- M.Z. Iqbal, A.U. Rehman, S. Siddique, Prospects and challenges of graphene based fuel cells. J. Energy Chem. 39, 217–234 (2019). https://doi.org/10.1016/j.jechem.2019.02.009
- T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He et al., Advances in 3D printing for polymer composites: a review. InfoMat. 6, e12568 (2024). https://doi.org/10.1002/inf2.12568
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2021). https://doi.org/10.1002/adfm.202108194
- Z. Wu, H. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- X. Guan, Z. Yang, Y. Zhu, L. Yang, M. Zhou et al., The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 188, 1–11 (2022). https://doi.org/10.1016/j.carbon.2021.11.045
- G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022). https://doi.org/10.1016/j.jcis.2021.08.186
- R. Peymanfar, F. Fazlalizadeh, Microwave absorption performance of ZnAl2O4. Chem. Eng. J. 402, 126089 (2020). https://doi.org/10.1016/j.cej.2020.126089
- T.T. Li, L. Xia, T. Zhang, B. Zhong, J. Dai et al., Facile synthesis of Sn/Reduced graphene oxide composites with tunable dielectric performance toward enhanced microwave absorption. Front. Mater. 7, 108 (2020). https://doi.org/10.3389/fmats.2020.00108
- T. Li, L. Xia, H. Yang, X. Wang, T. Zhang et al., Construction of a Cu–Sn heterojunction interface derived from a Schottky junction in Cu@Sn/rGO composites as a highly efficient dielectric microwave absorber. ACS Appl. Mater. Interfaces 13, 11911–11919 (2021). https://doi.org/10.1021/acsami.0c22049
- B. Kuang, W. Song, M. Ning, J. Li, Z. Zhao et al., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127, 209–217 (2018). https://doi.org/10.1016/j.carbon.2017.10.092
- Y. Zhang, L. Zhang, L. Tang, R. Du, B. Zhang, S-NiSe/HG nanocomposites with balanced dielectric loss encapsulated in room-temperature self-healing polyurethane for microwave absorption and corrosion protection. ACS Nano 18, 8411–8422 (2024). https://doi.org/10.1021/acsnano.3c13057
- C. Xin, W. Shang, J. Hu, C. Zhu, J. Guo et al., Integration of morphology and electronic structure modulation on atomic Iron-Nitrogen-Carbon catalysts for highly efficient oxygen reduction. Adv. Funct. Mater. 32, 2108345 (2021). https://doi.org/10.1002/adfm.202108345
- B. Zhao, R. Li, Q. Men, Z. Yan, H. Lv et al., Transformation of 2D flakes to 3D hollow bowls: Matthew effect enables defects to prevail in electromagnetic wave absorption of hollow rGO bowls. Small 20, 2208135 (2024). https://doi.org/10.1002/smll.202208135
- C. Sun, X. Xu, C. Gui, F. Chen, Y. Wang et al., High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage. Nano-Micro Lett. 15, 202 (2023). https://doi.org/10.1007/s40820-023-01175-6
- J. Xiao, H. Zhan, X. Wang, Z.Q. Xu, Z. Xiong et al., Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020). https://doi.org/10.1038/s41565-020-0704-7
- R. Shu, Z. Wan, J. Zhang, Y. Wu, Y. Liu et al., Facile design of three-dimensional Nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces 12, 4689–4698 (2020). https://doi.org/10.1021/acsami.9b16134
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022). https://doi.org/10.1002/adma.202106195
- R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020). https://doi.org/10.1016/j.polymer.2020.122981
- R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloy. Compd. 867, 159039 (2021). https://doi.org/10.1016/j.jallcom.2021.159039
- P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
- P.M. Sudeep, S. Vinayasree, P. Mohanan, P.M. Ajayan, T.N. Narayanan et al., Fluorinated graphene oxide for enhanced S and X-band microwave absorption. Appl. Phys. Lett. 106, 221603 (2015). https://doi.org/10.1063/1.4922209
- L. Quan, F.X. Qin, H.T. Lu, D. Estevez, Y.F. Wang et al., Sequencing dual dopants for an electromagnetic tunable graphene. Chem. Eng. J. 413, 127421 (2021). https://doi.org/10.1016/j.cej.2020.127421
- Y. Kang, Z. Chu, D. Zhang, G. Li, Z. Jiang et al., Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 61, 200–208 (2013). https://doi.org/10.1016/j.carbon.2013.04.085
- B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29, 1901236 (2019). https://doi.org/10.1002/adfm.201901236
- R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021). https://doi.org/10.1007/s10853-021-06394-z
- H. Dogari, R. Peymanfar, H. Ghafuri, Microwave absorbing characteristics of porphyrin derivates: a loop of conjugated structure. RSC Adv. 13, 22205–22215 (2023). https://doi.org/10.1039/d3ra03927g
- R. Peymanfar, N. Khodamoradipoor, Preparation and characterization of copper chromium oxide nanops using modified sol-gel route and evaluation of their microwave absorption properties. Phys. Status Solidi A 216, 1900057 (2019). https://doi.org/10.1002/pssa.201900057
- X. Liu, C.Z. Wang, Y.X. Yao, W.C. Lu, M. Hupalo et al., Bonding and charge transfer by metal adatom adsorption on graphene. Phys. Rev. B 83, 235411 (2011). https://doi.org/10.1103/PhysRevB.83.235411
- P. Hota, A.J. Akhtar, S. Bhattacharya, M. Miah, S.K. Saha, Ferromagnetism in graphene due to charge transfer from atomic Co to graphene. Appl. Phys. Lett. 111, 042402 (2017). https://doi.org/10.1063/1.4994814
- G. Xie, B. Guo, J.R. Gong, Metal oxide/graphene/metal sandwich structure for efficient photoelectrochemical water oxidation. Adv. Funct. Mater. 33, 2210420 (2022). https://doi.org/10.1002/adfm.202210420
- H. Su, Y.H. Hu, Recent advances in graphene-based materials for fuel cell applications. Energy Sci. Eng. 9, 958–983 (2021). https://doi.org/10.1002/ese3.833
- J.S. Bates, M.R. Johnson, F. Khamespanah, T.W. Root, S.S. Stahl, Heterogeneous M–N–C catalysts for aerobic oxidation reactions: Lessons from oxygen reduction electrocatalysts. Chem. Rev. 123, 6233–6256 (2023). https://doi.org/10.1021/acs.chemrev.2c00424
- C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M–M–C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 4448–4463 (2021). https://doi.org/10.1002/anie.202003917
- S. Wang, D. Feng, Z. Zhang, X. Liu, K. Ruan et al., Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chinese J. Polym. Sci. 42, 897–906 (2024). https://doi.org/10.1007/s10118-024-3098-4
- J. Yang, Q. Wen, B. Feng, Y. Wang, X. Xiong. Microstructural evolution and electromagnetic wave absorbing performance of single-source-precursor-synthesized SiCuCN-based ceramic nanocomposites. J. Adv. Ceram. 12, 1299–1316 (2023). https://doi.org/10.26599/jac.2023.9220746
- L. Wang, Z. Cai, L. Su, M. Niu, K. Peng et al., Bifunctional SiC/Si3N4 aerogel for highly efficient electromagnetic wave absorption and thermal insulation. J. Adv. Ceram. 12, 309–320 (2023). https://doi.org/10.26599/jac.2023.9220684
- X. Ao, W. Zhang, Z. Li, J.G. Li, L. Soule et al., Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13, 11853–11862 (2019). https://doi.org/10.1021/acsnano.9b05913
- L. Li, N. Li, J.W. Xia, S.L. Zhou, X.Y. Qian et al., A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries. Nano Res. 16, 9416–9425 (2023). https://doi.org/10.1007/s12274-023-5625-y
- L. Lin, Q. Zhu, A.W. Xu, Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136, 11027–11033 (2014). https://doi.org/10.1021/ja504696r
- T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2204370 (2022). https://doi.org/10.1002/adfm.202204370
- S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
- Y. Mun, M.J. Kim, S.A. Park, E. Lee, Y. Ye et al., Soft-template synthesis of mesoporous non-precious metal catalyst with Fe–Nx/C active sites for oxygen reduction reaction in fuel cells. Appl. Catal. B-Environ. Energy 222, 191–199 (2018). https://doi.org/10.1016/j.apcatb.2017.10.015
- L. Li, S. Huang, R. Cao, K. Yuan, C. Lu et al., Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 18, 2105387 (2022). https://doi.org/10.1002/smll.202105387
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BM@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- Y. Liu, X. Huang, X. Yan, L. Xia, T. Zhang et al., Pushing the limits of microwave absorption capability of carbon fiber in fabric design based on genetic algorithm. J. Adv. Ceram. 12, 329–340 (2023). https://doi.org/10.26599/jac.2023.92206865
- K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024). https://doi.org/10.1007/s40820-023-01280-6
- H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu et al., Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 12, 5674–5683 (2018). https://doi.org/10.1021/acsnano.8b01502
- M.S. Kim, J. Lee, H.S. Kim, A. Cho, K.H. Shim et al., Heme cofactor-resembling Fe–N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv. Funct. Mater. 30, 1905410 (2019). https://doi.org/10.1002/adfm.201905410
- C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
- Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
- T. Xu, J. Li, D. Zhao, X. Chen, G. Sun et al., Structural engineering enabled bimetallic (Ti1−γNbγ)2AlC solid solution structure for efficient electromagnetic wave absorption in Gigahertz. Small 19, 2300119 (2023). https://doi.org/10.1002/smll.202300119
- Y. Yan, K. Zhang, G. Qin, B. Gao, T. Zhang et al., Phase engineering on MoS2 to realize dielectric gene engineering for enhancing microwave absorbing performance. Adv. Funct. Mater. 34, 2316338 (2024). https://doi.org/10.1002/adfm.202316338
- E. Selseleh-Zakerin, A. Mirkhan, M. Shafiee, M. Alihoseini, M. Khani et al., Plasma engineering toward improving the microwave-absorbing/shielding feature of a biomass-derived material. Langmuir 40, 12148–12158 (2024). https://doi.org/10.1021/acs.langmuir.4c01046
- R. Peymanfar, P. Mousivand, A. Mirkhan, Fabrication of ZnS/g-C3N4/gypsum plaster nanocomposite toward refining electromagnetic pollution and saving energy. Energy Technol-Ger. 12, 2300684 (2024). https://doi.org/10.1002/ente.202300684
- S. Sheykhmoradi, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Dendrimer-assisted defect and morphology regulation for improving optical, hyperthermia, and microwave-absorbing features. Dalton Trans. 53, 4222–4236 (2024). https://doi.org/10.1039/d3dt04228f
- S.M. Seyedian, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Manipulating the phase and morphology of MgFe2O4 nanops for promoting their optical, magnetic, and microwave absorbing/shielding characteristics. Ceram. Int. 50, 13447–13458 (2024). https://doi.org/10.1016/j.ceramint.2024.01.257
References
K. Guo, L. Chen, G. Yang, Boosting electromagnetic wave absorption of Ti3AlC2 by improving effective electrical conductivity. J. Adv. Ceram. 12, 1533–1546 (2023). https://doi.org/10.26599/jac.2023.9220770
X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
L. Qiao, J. Bi, G. Liang, Y. Yang, H. Wang et al., Synthesis of high-entropy MXenes with high-efficiency electromagnetic wave absorption. J. Adv. Ceram. 12, 1902–1918 (2023). https://doi.org/10.26599/jac.2023.9220796
C. Li, D. Li, S. Zhang, L. Ma, L. Zhang et al., Interface engineering of titanium nitride nanotube composites for excellent microwave absorption at elevated temperature. Nano-Micro Lett. 16, 168 (2024). https://doi.org/10.1007/s40820-024-01381-w
K. Zhang, W. Lv, J. Chen, H. Ge, C. Chu et al., Synthesis of RGO/AC/Fe3O4 composite having 3D hierarchically porous morphology for high effective electromagnetic wave absorption. Compos. Part B-Eng. 169, 1–8 (2019). https://doi.org/10.1016/j.compositesb.2019.03.081
Y. Li, Z. Guan, J. Jiang, L. Zhen, Evolution of the microstructure and electromagnetic properties of Fe–Si–Al ps during post ball-milling annealing. J. Mater. Res. Technol. 29, 3532–3542 (2024). https://doi.org/10.1016/j.jmrt.2024.02.038
G. De Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, M.S. Sarto, Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency. Carbon 49, 4291–4300 (2011). https://doi.org/10.1016/j.carbon.2011.06.008
Y. Dai, M. Sun, C. Liu, Z. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cement Concrete Comp. 32, 508–513 (2010). https://doi.org/10.1016/j.cemconcomp.2010.03.009
T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She et al., Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 5619 (2014). https://doi.org/10.1038/srep05619
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
U.R. Farooqui, A.L. Ahmad, N.A. Hamid, Graphene oxide: a promising membrane material for fuel cells. Renew. Sust. Energ. Rev. 82, 714–733 (2018). https://doi.org/10.1016/j.rser.2017.09.081
M.Z. Iqbal, A.U. Rehman, S. Siddique, Prospects and challenges of graphene based fuel cells. J. Energy Chem. 39, 217–234 (2019). https://doi.org/10.1016/j.jechem.2019.02.009
T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He et al., Advances in 3D printing for polymer composites: a review. InfoMat. 6, e12568 (2024). https://doi.org/10.1002/inf2.12568
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2021). https://doi.org/10.1002/adfm.202108194
Z. Wu, H. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
X. Guan, Z. Yang, Y. Zhu, L. Yang, M. Zhou et al., The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 188, 1–11 (2022). https://doi.org/10.1016/j.carbon.2021.11.045
G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022). https://doi.org/10.1016/j.jcis.2021.08.186
R. Peymanfar, F. Fazlalizadeh, Microwave absorption performance of ZnAl2O4. Chem. Eng. J. 402, 126089 (2020). https://doi.org/10.1016/j.cej.2020.126089
T.T. Li, L. Xia, T. Zhang, B. Zhong, J. Dai et al., Facile synthesis of Sn/Reduced graphene oxide composites with tunable dielectric performance toward enhanced microwave absorption. Front. Mater. 7, 108 (2020). https://doi.org/10.3389/fmats.2020.00108
T. Li, L. Xia, H. Yang, X. Wang, T. Zhang et al., Construction of a Cu–Sn heterojunction interface derived from a Schottky junction in Cu@Sn/rGO composites as a highly efficient dielectric microwave absorber. ACS Appl. Mater. Interfaces 13, 11911–11919 (2021). https://doi.org/10.1021/acsami.0c22049
B. Kuang, W. Song, M. Ning, J. Li, Z. Zhao et al., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127, 209–217 (2018). https://doi.org/10.1016/j.carbon.2017.10.092
Y. Zhang, L. Zhang, L. Tang, R. Du, B. Zhang, S-NiSe/HG nanocomposites with balanced dielectric loss encapsulated in room-temperature self-healing polyurethane for microwave absorption and corrosion protection. ACS Nano 18, 8411–8422 (2024). https://doi.org/10.1021/acsnano.3c13057
C. Xin, W. Shang, J. Hu, C. Zhu, J. Guo et al., Integration of morphology and electronic structure modulation on atomic Iron-Nitrogen-Carbon catalysts for highly efficient oxygen reduction. Adv. Funct. Mater. 32, 2108345 (2021). https://doi.org/10.1002/adfm.202108345
B. Zhao, R. Li, Q. Men, Z. Yan, H. Lv et al., Transformation of 2D flakes to 3D hollow bowls: Matthew effect enables defects to prevail in electromagnetic wave absorption of hollow rGO bowls. Small 20, 2208135 (2024). https://doi.org/10.1002/smll.202208135
C. Sun, X. Xu, C. Gui, F. Chen, Y. Wang et al., High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage. Nano-Micro Lett. 15, 202 (2023). https://doi.org/10.1007/s40820-023-01175-6
J. Xiao, H. Zhan, X. Wang, Z.Q. Xu, Z. Xiong et al., Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020). https://doi.org/10.1038/s41565-020-0704-7
R. Shu, Z. Wan, J. Zhang, Y. Wu, Y. Liu et al., Facile design of three-dimensional Nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces 12, 4689–4698 (2020). https://doi.org/10.1021/acsami.9b16134
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022). https://doi.org/10.1002/adma.202106195
R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020). https://doi.org/10.1016/j.polymer.2020.122981
R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloy. Compd. 867, 159039 (2021). https://doi.org/10.1016/j.jallcom.2021.159039
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193
P.M. Sudeep, S. Vinayasree, P. Mohanan, P.M. Ajayan, T.N. Narayanan et al., Fluorinated graphene oxide for enhanced S and X-band microwave absorption. Appl. Phys. Lett. 106, 221603 (2015). https://doi.org/10.1063/1.4922209
L. Quan, F.X. Qin, H.T. Lu, D. Estevez, Y.F. Wang et al., Sequencing dual dopants for an electromagnetic tunable graphene. Chem. Eng. J. 413, 127421 (2021). https://doi.org/10.1016/j.cej.2020.127421
Y. Kang, Z. Chu, D. Zhang, G. Li, Z. Jiang et al., Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 61, 200–208 (2013). https://doi.org/10.1016/j.carbon.2013.04.085
B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29, 1901236 (2019). https://doi.org/10.1002/adfm.201901236
R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021). https://doi.org/10.1007/s10853-021-06394-z
H. Dogari, R. Peymanfar, H. Ghafuri, Microwave absorbing characteristics of porphyrin derivates: a loop of conjugated structure. RSC Adv. 13, 22205–22215 (2023). https://doi.org/10.1039/d3ra03927g
R. Peymanfar, N. Khodamoradipoor, Preparation and characterization of copper chromium oxide nanops using modified sol-gel route and evaluation of their microwave absorption properties. Phys. Status Solidi A 216, 1900057 (2019). https://doi.org/10.1002/pssa.201900057
X. Liu, C.Z. Wang, Y.X. Yao, W.C. Lu, M. Hupalo et al., Bonding and charge transfer by metal adatom adsorption on graphene. Phys. Rev. B 83, 235411 (2011). https://doi.org/10.1103/PhysRevB.83.235411
P. Hota, A.J. Akhtar, S. Bhattacharya, M. Miah, S.K. Saha, Ferromagnetism in graphene due to charge transfer from atomic Co to graphene. Appl. Phys. Lett. 111, 042402 (2017). https://doi.org/10.1063/1.4994814
G. Xie, B. Guo, J.R. Gong, Metal oxide/graphene/metal sandwich structure for efficient photoelectrochemical water oxidation. Adv. Funct. Mater. 33, 2210420 (2022). https://doi.org/10.1002/adfm.202210420
H. Su, Y.H. Hu, Recent advances in graphene-based materials for fuel cell applications. Energy Sci. Eng. 9, 958–983 (2021). https://doi.org/10.1002/ese3.833
J.S. Bates, M.R. Johnson, F. Khamespanah, T.W. Root, S.S. Stahl, Heterogeneous M–N–C catalysts for aerobic oxidation reactions: Lessons from oxygen reduction electrocatalysts. Chem. Rev. 123, 6233–6256 (2023). https://doi.org/10.1021/acs.chemrev.2c00424
C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M–M–C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 4448–4463 (2021). https://doi.org/10.1002/anie.202003917
S. Wang, D. Feng, Z. Zhang, X. Liu, K. Ruan et al., Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chinese J. Polym. Sci. 42, 897–906 (2024). https://doi.org/10.1007/s10118-024-3098-4
J. Yang, Q. Wen, B. Feng, Y. Wang, X. Xiong. Microstructural evolution and electromagnetic wave absorbing performance of single-source-precursor-synthesized SiCuCN-based ceramic nanocomposites. J. Adv. Ceram. 12, 1299–1316 (2023). https://doi.org/10.26599/jac.2023.9220746
L. Wang, Z. Cai, L. Su, M. Niu, K. Peng et al., Bifunctional SiC/Si3N4 aerogel for highly efficient electromagnetic wave absorption and thermal insulation. J. Adv. Ceram. 12, 309–320 (2023). https://doi.org/10.26599/jac.2023.9220684
X. Ao, W. Zhang, Z. Li, J.G. Li, L. Soule et al., Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13, 11853–11862 (2019). https://doi.org/10.1021/acsnano.9b05913
L. Li, N. Li, J.W. Xia, S.L. Zhou, X.Y. Qian et al., A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries. Nano Res. 16, 9416–9425 (2023). https://doi.org/10.1007/s12274-023-5625-y
L. Lin, Q. Zhu, A.W. Xu, Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136, 11027–11033 (2014). https://doi.org/10.1021/ja504696r
T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2204370 (2022). https://doi.org/10.1002/adfm.202204370
S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
Y. Mun, M.J. Kim, S.A. Park, E. Lee, Y. Ye et al., Soft-template synthesis of mesoporous non-precious metal catalyst with Fe–Nx/C active sites for oxygen reduction reaction in fuel cells. Appl. Catal. B-Environ. Energy 222, 191–199 (2018). https://doi.org/10.1016/j.apcatb.2017.10.015
L. Li, S. Huang, R. Cao, K. Yuan, C. Lu et al., Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 18, 2105387 (2022). https://doi.org/10.1002/smll.202105387
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BM@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
Y. Liu, X. Huang, X. Yan, L. Xia, T. Zhang et al., Pushing the limits of microwave absorption capability of carbon fiber in fabric design based on genetic algorithm. J. Adv. Ceram. 12, 329–340 (2023). https://doi.org/10.26599/jac.2023.92206865
K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024). https://doi.org/10.1007/s40820-023-01280-6
H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu et al., Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 12, 5674–5683 (2018). https://doi.org/10.1021/acsnano.8b01502
M.S. Kim, J. Lee, H.S. Kim, A. Cho, K.H. Shim et al., Heme cofactor-resembling Fe–N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv. Funct. Mater. 30, 1905410 (2019). https://doi.org/10.1002/adfm.201905410
C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022). https://doi.org/10.1021/acsnano.1c08957
Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023). https://doi.org/10.1007/s40820-023-01203-5
T. Xu, J. Li, D. Zhao, X. Chen, G. Sun et al., Structural engineering enabled bimetallic (Ti1−γNbγ)2AlC solid solution structure for efficient electromagnetic wave absorption in Gigahertz. Small 19, 2300119 (2023). https://doi.org/10.1002/smll.202300119
Y. Yan, K. Zhang, G. Qin, B. Gao, T. Zhang et al., Phase engineering on MoS2 to realize dielectric gene engineering for enhancing microwave absorbing performance. Adv. Funct. Mater. 34, 2316338 (2024). https://doi.org/10.1002/adfm.202316338
E. Selseleh-Zakerin, A. Mirkhan, M. Shafiee, M. Alihoseini, M. Khani et al., Plasma engineering toward improving the microwave-absorbing/shielding feature of a biomass-derived material. Langmuir 40, 12148–12158 (2024). https://doi.org/10.1021/acs.langmuir.4c01046
R. Peymanfar, P. Mousivand, A. Mirkhan, Fabrication of ZnS/g-C3N4/gypsum plaster nanocomposite toward refining electromagnetic pollution and saving energy. Energy Technol-Ger. 12, 2300684 (2024). https://doi.org/10.1002/ente.202300684
S. Sheykhmoradi, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Dendrimer-assisted defect and morphology regulation for improving optical, hyperthermia, and microwave-absorbing features. Dalton Trans. 53, 4222–4236 (2024). https://doi.org/10.1039/d3dt04228f
S.M. Seyedian, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Manipulating the phase and morphology of MgFe2O4 nanops for promoting their optical, magnetic, and microwave absorbing/shielding characteristics. Ceram. Int. 50, 13447–13458 (2024). https://doi.org/10.1016/j.ceramint.2024.01.257