A Novel Hierarchical Porous 3D Structured Vanadium Nitride/Carbon Membranes for High-performance Supercapacitor Negative Electrodes
Corresponding Author: Fen Ran
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 63
Abstract
Transition-metal nitrides exhibit wide potential windows and good electrochemical performance, but usually experience imbalanced practical applications in the energy storage field due to aggregation, poor circulation stability, and complicated syntheses. In this study, a novel and simple multi-phase polymeric strategy was developed to fabricate hybrid vanadium nitride/carbon (VN/C) membranes for supercapacitor negative electrodes, in which VN nanoparticles were uniformly distributed in the hierarchical porous carbon 3D networks. The supercapacitor negative electrode based on VN/C membranes exhibited a high specific capacitance of 392.0 F g−1 at 0.5 A g−1 and an excellent rate capability with capacitance retention of 50.5% at 30 A g−1. For the asymmetric device fabricated using Ni(OH)2//VN/C membranes, a high energy density of 43.0 Wh kg−1 at a power density of 800 W kg−1 was observed. Moreover, the device also showed good cycling stability of 82.9% at a current density of 1.0 A g−1 after 8000 cycles. This work may throw a light on simply the fabrication of other high-performance transition-metal nitride-based supercapacitor or other energy storage devices.
Highlights:
1 A novel and simple multi-phase polymeric strategy was used to fabricate hierarchical porous 3D structured vanadium nitride/carbon (VN/C) membranes.
2 The supercapacitor negative electrodes based on VN/C membranes exhibited a high specific capacitance of 392.0 F g−1 at 0.5 A g−1 and an excellent rate capability with capacitance retention of 50.5% at 30 A g−1.
3 The asymmetric device fabricated using Ni(OH)2/VN/C membranes has a high energy density of 43.0 Wh kg−1 at a power density of 800 W kg−1 and good cycling stability of 82.9% at 1.0 A g−1 after 8000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Gogosti, P. Simon, True performance metrics in electrochemical energy storage. Science 324(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
- P. Simon, Y. Gogosti, B. Dunn, Where batteries end and supercapacitors begin. Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- H. Long, W. Zeng, H. Wang, M. Qian, Y. Liang, Z. Wang, Self-Assembled biomolecular 1D nanostructures for aqueous sodium-ion battery. Adv. Sci. 5(3), 1700634 (2018). https://doi.org/10.1002/advs.201700634
- L. Lin, T. Liu, J. Liu, R. Sun, K. Ji, R. Sun, W. Zeng, Z. Wang, Synthesis of carbon fiber@ nickel oxide nanosheet core–shells for high-performance supercapacitors. RSC Adv. 5(102), 84238–84244 (2015). https://doi.org/10.1039/C5RA14568F
- Z. Wang, M. Saito, K.P. McKenna, S. Fukami, H. Sato, S. Ikeda, H. Ohno, Y. Ikuhara, Atomic-Scale structure and local chemistry of COFeB–MgO magnetic tunnel junctions. Nano Lett. 16(3), 1530–1536 (2016). https://doi.org/10.1021/acs.nanolett.5b03627
- W.T. Gu, M. Sevilla, A. Magasinski, A.B. Fuertes, G. Yushin, Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy Environ. Sci. 6(8), 2465–2476 (2013). https://doi.org/10.1039/c3ee41182f
- Z. Wang, Y. Tan, Y. Yang, X. Zhao, Y. Liu et al., Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. J. Power Sources 378, 499–510 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.076
- L. Lin, J. Liu, T. Liu, J. Hao, K. Ji, R. Sun, W. Zeng, Z. Wang, Growth-controlled NiCo2S4 nanosheet arrays with self-decorated nanoneedles for high-performance pseudocapacitors. J. Mater. Chem. A 3(34), 17652–17658 (2015). https://doi.org/10.1039/C5TA04054J
- F. Ran, Y. Wu, M. Jiang, Y. Tan, Y. Liu, L. Kong, L. Kang, S. Chen, Nanocomposites based on hierarchical porous carbon fiber@vanadium nitride nanoparticles as supercapacitor electrodes. Dalton T. 47(12), 4128–4138 (2018). https://doi.org/10.1039/C7DT04432A
- L. Lin, T. Liu, J. Liu, R. Sun, J. Hao, K. Ji, Z. Wang, Facile synthesis of groove-like NiMoO4 hollow nanorods for high-performance supercapacitors. Appl. Surf. Sci. 360, 234–239 (2016). https://doi.org/10.1016/j.apsusc.2015.11.018
- X. Guo, J. Zhang, W. Xu, C. Hu, L. Sun, Y. Zhang, Growth of NiMn LDH nanosheet arrays on KCu7S4 microwires for hybrid supercapacitors with enhanced electrochemical performance. J. Mater. Chem. A 5(39), 20579–20587 (2017). https://doi.org/10.1039/C7TA04382A
- X. Guo, X. Liu, X. Hao, S. Zhu, F. Dong, Z. Wen, Y. Zhang, Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials. Electrochim. Acta 194, 179–186 (2016). https://doi.org/10.1016/j.electacta.2016.02.080
- Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015). https://doi.org/10.1039/C4EE03229B
- A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini, High temperature carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165(2), 922–927 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.048
- C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13), 2511–2518 (2007). https://doi.org/10.1016/j.carbon.2007.08.024
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, Ultrahighpower micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
- L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage. Small 8(8), 1130–1166 (2012). https://doi.org/10.1002/smll.201101594
- F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy, Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23(21), 4810–4816 (2011). https://doi.org/10.1021/cm2021214
- T. Lin, I. Chen, F. Liu, C. Yang, H. Bi, F. Xu, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267), 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
- J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011). https://doi.org/10.1002/adma.201100058
- Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Zeng, Yi, Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 30(2), 1704531 (2017). https://doi.org/10.1002/adma.201704531
- Y. Yang, K. Shen, Y. Liu, Y. Tan, X. Zhao, X. Niu, F. Ran, Novel hybrid nanoparticles of vanadium nitride/porous carbon as an anode material for symmetrical supercapacitor. Nano-Micro Lett. 9, 6 (2017). https://doi.org/10.1007/s40820-016-0105-5
- X. Kang, J. Zhang, X. Sun, F. Zhang, Y. Zhang, One-pot synthesis of vanadium dioxide nanoflowers on graphene oxide. Ceram. Int. 42(6), 7883–7887 (2016). https://doi.org/10.1016/j.ceramint.2016.01.170
- D.K. Nandi, U.K. Sen, D. Choudhury, Atomic layer deposited molybdenum nitride thin film: a promising anode material for Li ion batteries. ACS Appl. Mater. Interfaces. 6(9), 6606–6615 (2014). https://doi.org/10.1021/am500285d
- L. Dong, G. Liang, C. Xu, W. Liu, F. Kang, Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34, 242–248 (2017). https://doi.org/10.1016/j.nanoen.2017.02.031
- R. Wang, X. Yan, J. Lang, A hybrid supercapacitor based on flower-like Co (OH)2 and urchin-like VN electrode materials. J. Mater. Chem. A 2(32), 12724–12732 (2014). https://doi.org/10.1039/C4TA01296H
- Y. Yang, L. Zhao, K. Shen, Y. Liu, X. Zhao, J. Wu, F. Ran, Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage. J. Power Sources 333, 61–71 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.151
- C. Ghimbeu, E. Raymundo-Pi-ero, P. Fioux, Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. J. Mater. Chem. 21(35), 13268–13275 (2011). https://doi.org/10.1039/c1jm11014d
- Q. Qu, Y. Shi, L. Li, V2O5• 0.6 H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem. Commun. 11(6), 1325–1328 (2009). https://doi.org/10.1016/j.elecom.2009.05.003
- Y. Su, I. Zhitomirsky, Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors. J. Power Sources 267, 235–242 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.091
- Y. Liu, L. Liu, L. Kong, L. Kang, F. Ran, Supercapacitor electrode based on nano-vanadium nitride incorporated on porous carbon nanospheres derived from ionic amphiphilic block copolymers & vanadium-contained ion assembly systems. Electrochim. Acta 211, 469–477 (2016). https://doi.org/10.1016/j.electacta.2016.06.058
- Y. Wu, F. Ran, Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors. J. Power Sources 344, 1–10 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.095
- Y. Wang, M. Jiang, Y. Yang, F. Ran, Hybrid electrode material of vanadium nitride and carbon fiber with cigarette butt/metal ions wastes as the precursor for supercapacitors. Electrochim. Acta 222, 1914–1921 (2016). https://doi.org/10.1016/j.electacta.2016.12.003
- J. Zhao, B. Liu, S. Xu, J. Yang, Y. Lu, Fabrication and electrochemical properties of porous VN hollow nanofibers. J. Alloy. Compd. 651, 785–792 (2015). https://doi.org/10.1016/j.jallcom.2015.06.111
- E. Souza, C. Chagas, T. Ramalho, A combined experimental and theoretical study on the formation of crystalline vanadium nitride (VN) in low temperature through a fully solid-state synthesis route. J. Phys. Chem. 117(48), 25659–25668 (2013). https://doi.org/10.1021/jp410885u
- Y. Xu, J. Wang, L. Shen, H. Dou, X. Zhang, One-dimensional vanadium nitride nanofibers fabricated by electrospinning for supercapacitors electrochim. Acta 173, 680–686 (2015). https://doi.org/10.1016/j.electacta.2015.05.088
- G. Ana, D. Leeb, H. Ahn, Vanadium nitride encapsulated carbon fibre networks with furrowed porous surfaces for ultrafast asymmetric supercapacitors with robust cycle life. J. Mater. Chem. A 5(37), 1–8 (2017). https://doi.org/10.1039/C7TA06345H
- X. Zhou, C. Shang, S. Dong, L. Gu, Mesoporous coaxial titanium nitride-vanadium nitride fibers of core–shell structures for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 3(8), 3058–3063 (2011). https://doi.org/10.1021/am200564b
- H. Fan, F. Ran, X. Zhang, H. Song, W. Jing, K. Shen, L. Kong, L. Kang, Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process. Electrochim. Acta 138, 367–375 (2014). https://doi.org/10.1016/j.electacta.2014.06.118
- F. Ran, K. Shen, Y. Tan, B. Peng, S. Chen, Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors. J. Membrane Sci. 514, 336–375 (2016). https://doi.org/10.1016/j.memsci.2016.05.011
- D. Shu, C. Lv, F. Cheng, Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors. Int. J. Electrochem. Sci. 8, 1209–1225 (2013)
- A.M. Glushenkov, D. Hulicovajurcakova, D. Llewellyn, Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5. Chem. Mater. 22(3), 914–921 (2010). https://doi.org/10.1021/cm901729x
- D. Choi, G. Blomgren, P. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18(9), 1178–1182 (2006). https://doi.org/10.1002/adma.200502471
- F. Cheng, C. He, D. Shu, Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior. Mater. Chem. Phys. 131(1–2), 268–273 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.040
- K. Xia, Q. Gao, J. Jiang, J. Hu, Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46(13), 1718–1726 (2008). https://doi.org/10.1016/j.carbon.2008.07.018
- Y. Chen, X. Li, K. Park, L. Zhou, H. Huang, Y. Mai, Hollow nanotubes of N-doped carbon on CoS. Angew. Chem. Int. Edit. 55(51), 15831–15834 (2016). https://doi.org/10.1002/anie.201608489
- G. Wu, P. Tan, X. Wu, H. Cheng, C. Wang, W. Chen, S. Chen, High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped grapheme fiber electrodes. Adv. Funct. Mater. 27(36), 1702493 (2017). https://doi.org/10.1002/adfm.201702493
- H. Wang, Z. Cheng, Y. Liao, J. Li, J. Weber, A. Thomas, Conjugated microporous polycarbazole networks as precursors for nitrogen enriched microporous carbons for CO2 storage and electrochemical capacitors. Chem. Mater. 29(11), 4885–4893 (2017). https://doi.org/10.1021/acs.chemmater.7b00857
- X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 13(6), 2628–2633 (2013). https://doi.org/10.1021/nl400760a
- Y. Liu, L. Liu, Y. Tan, L. Niu, L. Kong, L. Kang, F. Ran, Carbon nanosphere@vanadium nitride electrode materials derived from metal-organic nanospheres self-assembled by NH4VO3, chitosan, and amphiphilic block copolymer. Electrochim. Acta 262, 66–73 (2018). https://doi.org/10.1016/j.electacta.2017.12.194
- R. Wang, J. Lang, P. Zhang, Z. Lin, X. Yan, Fast and large lithium storage in 3D porous VN nanowires–graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 25(15), 2270–2278 (2015). https://doi.org/10.1002/adfm.201404472
References
Y. Gogosti, P. Simon, True performance metrics in electrochemical energy storage. Science 324(6058), 917–918 (2011). https://doi.org/10.1126/science.1213003
P. Simon, Y. Gogosti, B. Dunn, Where batteries end and supercapacitors begin. Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
H. Long, W. Zeng, H. Wang, M. Qian, Y. Liang, Z. Wang, Self-Assembled biomolecular 1D nanostructures for aqueous sodium-ion battery. Adv. Sci. 5(3), 1700634 (2018). https://doi.org/10.1002/advs.201700634
L. Lin, T. Liu, J. Liu, R. Sun, K. Ji, R. Sun, W. Zeng, Z. Wang, Synthesis of carbon fiber@ nickel oxide nanosheet core–shells for high-performance supercapacitors. RSC Adv. 5(102), 84238–84244 (2015). https://doi.org/10.1039/C5RA14568F
Z. Wang, M. Saito, K.P. McKenna, S. Fukami, H. Sato, S. Ikeda, H. Ohno, Y. Ikuhara, Atomic-Scale structure and local chemistry of COFeB–MgO magnetic tunnel junctions. Nano Lett. 16(3), 1530–1536 (2016). https://doi.org/10.1021/acs.nanolett.5b03627
W.T. Gu, M. Sevilla, A. Magasinski, A.B. Fuertes, G. Yushin, Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy Environ. Sci. 6(8), 2465–2476 (2013). https://doi.org/10.1039/c3ee41182f
Z. Wang, Y. Tan, Y. Yang, X. Zhao, Y. Liu et al., Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. J. Power Sources 378, 499–510 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.076
L. Lin, J. Liu, T. Liu, J. Hao, K. Ji, R. Sun, W. Zeng, Z. Wang, Growth-controlled NiCo2S4 nanosheet arrays with self-decorated nanoneedles for high-performance pseudocapacitors. J. Mater. Chem. A 3(34), 17652–17658 (2015). https://doi.org/10.1039/C5TA04054J
F. Ran, Y. Wu, M. Jiang, Y. Tan, Y. Liu, L. Kong, L. Kang, S. Chen, Nanocomposites based on hierarchical porous carbon fiber@vanadium nitride nanoparticles as supercapacitor electrodes. Dalton T. 47(12), 4128–4138 (2018). https://doi.org/10.1039/C7DT04432A
L. Lin, T. Liu, J. Liu, R. Sun, J. Hao, K. Ji, Z. Wang, Facile synthesis of groove-like NiMoO4 hollow nanorods for high-performance supercapacitors. Appl. Surf. Sci. 360, 234–239 (2016). https://doi.org/10.1016/j.apsusc.2015.11.018
X. Guo, J. Zhang, W. Xu, C. Hu, L. Sun, Y. Zhang, Growth of NiMn LDH nanosheet arrays on KCu7S4 microwires for hybrid supercapacitors with enhanced electrochemical performance. J. Mater. Chem. A 5(39), 20579–20587 (2017). https://doi.org/10.1039/C7TA04382A
X. Guo, X. Liu, X. Hao, S. Zhu, F. Dong, Z. Wen, Y. Zhang, Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials. Electrochim. Acta 194, 179–186 (2016). https://doi.org/10.1016/j.electacta.2016.02.080
Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015). https://doi.org/10.1039/C4EE03229B
A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini, High temperature carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165(2), 922–927 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.048
C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13), 2511–2518 (2007). https://doi.org/10.1016/j.carbon.2007.08.024
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, Ultrahighpower micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010). https://doi.org/10.1038/nnano.2010.162
L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage. Small 8(8), 1130–1166 (2012). https://doi.org/10.1002/smll.201101594
F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy, Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 23(21), 4810–4816 (2011). https://doi.org/10.1021/cm2021214
T. Lin, I. Chen, F. Liu, C. Yang, H. Bi, F. Xu, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267), 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23(18), 2076–2081 (2011). https://doi.org/10.1002/adma.201100058
Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Zeng, Yi, Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 30(2), 1704531 (2017). https://doi.org/10.1002/adma.201704531
Y. Yang, K. Shen, Y. Liu, Y. Tan, X. Zhao, X. Niu, F. Ran, Novel hybrid nanoparticles of vanadium nitride/porous carbon as an anode material for symmetrical supercapacitor. Nano-Micro Lett. 9, 6 (2017). https://doi.org/10.1007/s40820-016-0105-5
X. Kang, J. Zhang, X. Sun, F. Zhang, Y. Zhang, One-pot synthesis of vanadium dioxide nanoflowers on graphene oxide. Ceram. Int. 42(6), 7883–7887 (2016). https://doi.org/10.1016/j.ceramint.2016.01.170
D.K. Nandi, U.K. Sen, D. Choudhury, Atomic layer deposited molybdenum nitride thin film: a promising anode material for Li ion batteries. ACS Appl. Mater. Interfaces. 6(9), 6606–6615 (2014). https://doi.org/10.1021/am500285d
L. Dong, G. Liang, C. Xu, W. Liu, F. Kang, Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34, 242–248 (2017). https://doi.org/10.1016/j.nanoen.2017.02.031
R. Wang, X. Yan, J. Lang, A hybrid supercapacitor based on flower-like Co (OH)2 and urchin-like VN electrode materials. J. Mater. Chem. A 2(32), 12724–12732 (2014). https://doi.org/10.1039/C4TA01296H
Y. Yang, L. Zhao, K. Shen, Y. Liu, X. Zhao, J. Wu, F. Ran, Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage. J. Power Sources 333, 61–71 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.151
C. Ghimbeu, E. Raymundo-Pi-ero, P. Fioux, Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. J. Mater. Chem. 21(35), 13268–13275 (2011). https://doi.org/10.1039/c1jm11014d
Q. Qu, Y. Shi, L. Li, V2O5• 0.6 H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem. Commun. 11(6), 1325–1328 (2009). https://doi.org/10.1016/j.elecom.2009.05.003
Y. Su, I. Zhitomirsky, Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors. J. Power Sources 267, 235–242 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.091
Y. Liu, L. Liu, L. Kong, L. Kang, F. Ran, Supercapacitor electrode based on nano-vanadium nitride incorporated on porous carbon nanospheres derived from ionic amphiphilic block copolymers & vanadium-contained ion assembly systems. Electrochim. Acta 211, 469–477 (2016). https://doi.org/10.1016/j.electacta.2016.06.058
Y. Wu, F. Ran, Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors. J. Power Sources 344, 1–10 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.095
Y. Wang, M. Jiang, Y. Yang, F. Ran, Hybrid electrode material of vanadium nitride and carbon fiber with cigarette butt/metal ions wastes as the precursor for supercapacitors. Electrochim. Acta 222, 1914–1921 (2016). https://doi.org/10.1016/j.electacta.2016.12.003
J. Zhao, B. Liu, S. Xu, J. Yang, Y. Lu, Fabrication and electrochemical properties of porous VN hollow nanofibers. J. Alloy. Compd. 651, 785–792 (2015). https://doi.org/10.1016/j.jallcom.2015.06.111
E. Souza, C. Chagas, T. Ramalho, A combined experimental and theoretical study on the formation of crystalline vanadium nitride (VN) in low temperature through a fully solid-state synthesis route. J. Phys. Chem. 117(48), 25659–25668 (2013). https://doi.org/10.1021/jp410885u
Y. Xu, J. Wang, L. Shen, H. Dou, X. Zhang, One-dimensional vanadium nitride nanofibers fabricated by electrospinning for supercapacitors electrochim. Acta 173, 680–686 (2015). https://doi.org/10.1016/j.electacta.2015.05.088
G. Ana, D. Leeb, H. Ahn, Vanadium nitride encapsulated carbon fibre networks with furrowed porous surfaces for ultrafast asymmetric supercapacitors with robust cycle life. J. Mater. Chem. A 5(37), 1–8 (2017). https://doi.org/10.1039/C7TA06345H
X. Zhou, C. Shang, S. Dong, L. Gu, Mesoporous coaxial titanium nitride-vanadium nitride fibers of core–shell structures for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 3(8), 3058–3063 (2011). https://doi.org/10.1021/am200564b
H. Fan, F. Ran, X. Zhang, H. Song, W. Jing, K. Shen, L. Kong, L. Kang, Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process. Electrochim. Acta 138, 367–375 (2014). https://doi.org/10.1016/j.electacta.2014.06.118
F. Ran, K. Shen, Y. Tan, B. Peng, S. Chen, Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors. J. Membrane Sci. 514, 336–375 (2016). https://doi.org/10.1016/j.memsci.2016.05.011
D. Shu, C. Lv, F. Cheng, Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors. Int. J. Electrochem. Sci. 8, 1209–1225 (2013)
A.M. Glushenkov, D. Hulicovajurcakova, D. Llewellyn, Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5. Chem. Mater. 22(3), 914–921 (2010). https://doi.org/10.1021/cm901729x
D. Choi, G. Blomgren, P. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18(9), 1178–1182 (2006). https://doi.org/10.1002/adma.200502471
F. Cheng, C. He, D. Shu, Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior. Mater. Chem. Phys. 131(1–2), 268–273 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.040
K. Xia, Q. Gao, J. Jiang, J. Hu, Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46(13), 1718–1726 (2008). https://doi.org/10.1016/j.carbon.2008.07.018
Y. Chen, X. Li, K. Park, L. Zhou, H. Huang, Y. Mai, Hollow nanotubes of N-doped carbon on CoS. Angew. Chem. Int. Edit. 55(51), 15831–15834 (2016). https://doi.org/10.1002/anie.201608489
G. Wu, P. Tan, X. Wu, H. Cheng, C. Wang, W. Chen, S. Chen, High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped grapheme fiber electrodes. Adv. Funct. Mater. 27(36), 1702493 (2017). https://doi.org/10.1002/adfm.201702493
H. Wang, Z. Cheng, Y. Liao, J. Li, J. Weber, A. Thomas, Conjugated microporous polycarbazole networks as precursors for nitrogen enriched microporous carbons for CO2 storage and electrochemical capacitors. Chem. Mater. 29(11), 4885–4893 (2017). https://doi.org/10.1021/acs.chemmater.7b00857
X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 13(6), 2628–2633 (2013). https://doi.org/10.1021/nl400760a
Y. Liu, L. Liu, Y. Tan, L. Niu, L. Kong, L. Kang, F. Ran, Carbon nanosphere@vanadium nitride electrode materials derived from metal-organic nanospheres self-assembled by NH4VO3, chitosan, and amphiphilic block copolymer. Electrochim. Acta 262, 66–73 (2018). https://doi.org/10.1016/j.electacta.2017.12.194
R. Wang, J. Lang, P. Zhang, Z. Lin, X. Yan, Fast and large lithium storage in 3D porous VN nanowires–graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 25(15), 2270–2278 (2015). https://doi.org/10.1002/adfm.201404472