Spin-dependent Transport Properties of CrO2 Micro Rod
Corresponding Author: Li Xi
Nano-Micro Letters,
Vol. 6 No. 4 (2014), Article Number: 365-371
Abstract
The CrO2 micro rod powder was synthesized by decomposing the CrO3 flakes at a specific temperature to yield precursor and annealing such a precursor in a sealed glass tube. The magneto-transport properties have been measured by a direct current four-probe method using a Cu/CrO2 rods/colloidal silver liquid electrode sandwich device. The largest magnetoresistance (MR) around ~72 % was observed at 77 K with applied current of 0.05 μA. The non-linear I–V curve indicates a tunneling type transport properties and the tunneling barrier height is around 2.2 ± 0.04 eV at 77 K, which is obtained with fitting the non-linear I–V curves using Simmons’ equation. A mixing of Cr oxides on the surface of CrO2 rod observed by X-ray photoemission spectroscopy provides a tunneling barrier rather than a single phase of Cr2O3 insulating barrier. The MR shows strong bias voltage dependence and is ascribed to the two-step tunneling process.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.J. Soulen Jr, J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey, Measuring the spin polarization of a metal with a superconducting point contact. Science 282(5386), 85–88 (1998). doi:10.1126/science.282.5386.85
- J.H. Shim, S. Lee, J. Dho, D.H. Kim, Coexistence of two different Cr ions by self-doping in half-metallic CrO2 nanorods. Phys. Rev. Lett. 99(5), 057209 (2007). doi:10.1103/PhysRevLett.99.057209
- J.M.D. Coey, A.E. Berkowitz, L. Balcells, F.F. Putris, Magneto resistance of chromium dioxide powder compacts. Phys. Rev. Lett. 80(17), 3815 (1998). doi:10.1103/PhysRevLett.80.3815
- J. Dai, J. Tang, Junction-like magneto resistance of intergranular tunneling in field-aligned chromium dioxide powders. Phys. Rev. B 63(5), 054434 (2001). doi:10.1103/PhysRevB.63.054434
- H.Y. Hwang, S.W. Cheong, Enhanced intergrain tunneling magnetoresistance in half-metallic CrO2 films. Science 278(5343), 1607–1609 (1997). doi:10.1126/science.278.5343.1607
- K. Schwarz, CrO2 predicted as a half-metallic ferromagnet. J. Phys. F 16(9), L211 (1986). doi:10.1088/0305-4608/16/9/002
- A. Anguelouch, A. Gupta, G. Xiao, D.W. Abraham, Y. Ji, S. Ingvarsson, C.L. Chien, Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys. Rev. B 64(18), 180408 (2001). doi:10.1103/PhysRevB.64.180408
- J. Dai, J. Tang, H. Xu, L. Spinu, W. Wang, K. Wang, A. Kumbhar, M. Li, U. Diebold, Characterization of the natural barriers of intergranular tunnel junctions: Cr2O3 surface layers on CrO2 nanoparticles. Appl. Phys. Lett. 77(18), 2840–2842 (2000). doi:10.1063/1.1320845
- A. Bajpai, P. Borisov, S. Gorantla, R. Klingeler, J. Thomas, T. Gemming, W. Kleemann, B. Büchner, Interface-driven magnetoelectric effects in granular CrO2. Europhys. Lett. 91(1), 17006 (2010). doi:10.1209/0295-5075/91/17006
- A. Bajpai, R. Klingeler, N. Wizent, A.K. Niga, S.W. Cheong, B. Büchner, Unusual field dependence of remanent magnetization in granular CrO2: the possible relevance of piezomagnetism. J. Phys.: Cond. Matt. 22(9), 096005 (2010). doi:10.1088/0953-8984/22/9/096005
- X. Zhang, X. Zhong, P.B. Visscher, P.R. LeClair, A. Gupta, Structural and magnetic properties of epitaxial CrO2 thin films grown on TiO2 (001) substrates. Appl. Phys. Lett. 102(16), 162410 (2013). doi:10.1063/1.4802957
- L. Xi, J.H. Du, J.H. Ma, Z. Wang, Y.L. Zuo, D.S. Xue, Spin-dependent transport properties of oleic acid molecule self-assembled La 0.7Sr0.3MnO3 nanoparticles. J. Alloy. Compd. 550, 365–369 (2013). doi:10.1016/j.jallcom.2012.10.126
- A. Bajpai, A.K. Nigam, Synthesis of high-purity samples of CrO2 by a simple route. Appl. Phys. Lett. 87(22), 222502 (2005). doi:10.1063/1.2136411
- L. Xi, Y.K. Yang, Ultrawide band microwave absorption properties of ultrasound processed CrO2–paraffin wax composites. Jpn. J. Appl. Phys. 50(3), 035805 (2011). doi:10.7567/JJAP.50.035805
- M.A. Korotin, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, CrO2: a self-doped double exchange ferromagnet. Phys. Rev. Lett. 80(19), 4305 (1998). doi:10.1103/PhysRevLett.80.4305
- G.P. Singh, S. Ram, J. Eckert, H.J. Fecht, Synthesis and morphological stability in CrO2 single crystals of a half-metallic ferromagnetic compound. J. Phys.: Conf. Ser. 144(1), 012110 (2009). doi:10.1088/1742-6596/144/1/012110
- P.G. Halada, R.C. Clayton, Photoreduction of hexavalent chromium during X-Ray photoelectron spectroscopy analysis of electrochemical and thermal films. J. Electrochem. Soc. 138(10), 2921–2927 (1991). doi:10.1149/1.2085340
- H.A. Bullen, S.J. Garrett, Epitaxial growth of CrO2 thin films on TiO2 (110) surfaces. Chem. Mater. 14(1), 243–248 (2002). doi:10.1021/cm0105256
- N.F. Heinig, H. Jalili, K.T. Leung, Fabrication of epitaxial CrO2 nanostructures directly on MgO (100) by pulsed laser deposition. Appl. Phys. Lett. 91(25), 253102 (2007). doi:10.1063/1.2822394
- X.W. Li, A. Gupta, X. Giang, Influence of strain on the magnetic properties of epitaxial (100) chromium dioxide (CrO2) films. Appl. Phys. Lett. 75(5), 713–715 (1999). doi:10.1063/1.124491
- J. Navarro, J. Nogues, J.S. Muñoz, J. Fontcuberta, Antisites and electron-doping effects on the magnetic transition of Sr2FeMoO6 double perovskite. Phys. Rev. B 67(17), 174416 (2003). doi:10.1103/PhysRevB.67.174416
- L. Chen, C.L. Yuan, J.M. Xue, J. Wang, Enhancement of magnetization and curie temperature in Sr2FeMoO6 by Ni doping. J. Am. Ceram. Soc. 89(2), 672–674 (2006). doi:10.1111/j.1551-2916.2005.00718.x
- J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793–1803 (1963). doi:10.1063/1.1702682
- R.P. Tan, J.L. Carrey, M. Respaud, Voltage and temperature dependence of high-field magnetoresistance in arrays of magnetic nanoparticles. J. Appl. Phys. 104(2), 023908 (2008). doi:10.1063/1.2957061
- J.Q. Xiao, J.S. Jiang, C.L. Chien, Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett. 68(25), 3749–3752 (1992). doi:10.1103/PhysRevLett.68.3749
- J. Inoue, S. Maekawa, Theory of tunneling magnetoresistance in granular magnetic films. Phys. Rev. B 53(18), 11927–11929 (1996). doi:10.1103/PhysRevB.53.R11927
- J. Zhang, R.M. White, Voltage dependence of magnetoresistance in spin dependent tunneling junctions. J. Appl. Phys. 83(11), 6512–6514 (1998). doi:10.1063/1.367644
References
R.J. Soulen Jr, J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey, Measuring the spin polarization of a metal with a superconducting point contact. Science 282(5386), 85–88 (1998). doi:10.1126/science.282.5386.85
J.H. Shim, S. Lee, J. Dho, D.H. Kim, Coexistence of two different Cr ions by self-doping in half-metallic CrO2 nanorods. Phys. Rev. Lett. 99(5), 057209 (2007). doi:10.1103/PhysRevLett.99.057209
J.M.D. Coey, A.E. Berkowitz, L. Balcells, F.F. Putris, Magneto resistance of chromium dioxide powder compacts. Phys. Rev. Lett. 80(17), 3815 (1998). doi:10.1103/PhysRevLett.80.3815
J. Dai, J. Tang, Junction-like magneto resistance of intergranular tunneling in field-aligned chromium dioxide powders. Phys. Rev. B 63(5), 054434 (2001). doi:10.1103/PhysRevB.63.054434
H.Y. Hwang, S.W. Cheong, Enhanced intergrain tunneling magnetoresistance in half-metallic CrO2 films. Science 278(5343), 1607–1609 (1997). doi:10.1126/science.278.5343.1607
K. Schwarz, CrO2 predicted as a half-metallic ferromagnet. J. Phys. F 16(9), L211 (1986). doi:10.1088/0305-4608/16/9/002
A. Anguelouch, A. Gupta, G. Xiao, D.W. Abraham, Y. Ji, S. Ingvarsson, C.L. Chien, Near-complete spin polarization in atomically-smooth chromium-dioxide epitaxial films prepared using a CVD liquid precursor. Phys. Rev. B 64(18), 180408 (2001). doi:10.1103/PhysRevB.64.180408
J. Dai, J. Tang, H. Xu, L. Spinu, W. Wang, K. Wang, A. Kumbhar, M. Li, U. Diebold, Characterization of the natural barriers of intergranular tunnel junctions: Cr2O3 surface layers on CrO2 nanoparticles. Appl. Phys. Lett. 77(18), 2840–2842 (2000). doi:10.1063/1.1320845
A. Bajpai, P. Borisov, S. Gorantla, R. Klingeler, J. Thomas, T. Gemming, W. Kleemann, B. Büchner, Interface-driven magnetoelectric effects in granular CrO2. Europhys. Lett. 91(1), 17006 (2010). doi:10.1209/0295-5075/91/17006
A. Bajpai, R. Klingeler, N. Wizent, A.K. Niga, S.W. Cheong, B. Büchner, Unusual field dependence of remanent magnetization in granular CrO2: the possible relevance of piezomagnetism. J. Phys.: Cond. Matt. 22(9), 096005 (2010). doi:10.1088/0953-8984/22/9/096005
X. Zhang, X. Zhong, P.B. Visscher, P.R. LeClair, A. Gupta, Structural and magnetic properties of epitaxial CrO2 thin films grown on TiO2 (001) substrates. Appl. Phys. Lett. 102(16), 162410 (2013). doi:10.1063/1.4802957
L. Xi, J.H. Du, J.H. Ma, Z. Wang, Y.L. Zuo, D.S. Xue, Spin-dependent transport properties of oleic acid molecule self-assembled La 0.7Sr0.3MnO3 nanoparticles. J. Alloy. Compd. 550, 365–369 (2013). doi:10.1016/j.jallcom.2012.10.126
A. Bajpai, A.K. Nigam, Synthesis of high-purity samples of CrO2 by a simple route. Appl. Phys. Lett. 87(22), 222502 (2005). doi:10.1063/1.2136411
L. Xi, Y.K. Yang, Ultrawide band microwave absorption properties of ultrasound processed CrO2–paraffin wax composites. Jpn. J. Appl. Phys. 50(3), 035805 (2011). doi:10.7567/JJAP.50.035805
M.A. Korotin, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, CrO2: a self-doped double exchange ferromagnet. Phys. Rev. Lett. 80(19), 4305 (1998). doi:10.1103/PhysRevLett.80.4305
G.P. Singh, S. Ram, J. Eckert, H.J. Fecht, Synthesis and morphological stability in CrO2 single crystals of a half-metallic ferromagnetic compound. J. Phys.: Conf. Ser. 144(1), 012110 (2009). doi:10.1088/1742-6596/144/1/012110
P.G. Halada, R.C. Clayton, Photoreduction of hexavalent chromium during X-Ray photoelectron spectroscopy analysis of electrochemical and thermal films. J. Electrochem. Soc. 138(10), 2921–2927 (1991). doi:10.1149/1.2085340
H.A. Bullen, S.J. Garrett, Epitaxial growth of CrO2 thin films on TiO2 (110) surfaces. Chem. Mater. 14(1), 243–248 (2002). doi:10.1021/cm0105256
N.F. Heinig, H. Jalili, K.T. Leung, Fabrication of epitaxial CrO2 nanostructures directly on MgO (100) by pulsed laser deposition. Appl. Phys. Lett. 91(25), 253102 (2007). doi:10.1063/1.2822394
X.W. Li, A. Gupta, X. Giang, Influence of strain on the magnetic properties of epitaxial (100) chromium dioxide (CrO2) films. Appl. Phys. Lett. 75(5), 713–715 (1999). doi:10.1063/1.124491
J. Navarro, J. Nogues, J.S. Muñoz, J. Fontcuberta, Antisites and electron-doping effects on the magnetic transition of Sr2FeMoO6 double perovskite. Phys. Rev. B 67(17), 174416 (2003). doi:10.1103/PhysRevB.67.174416
L. Chen, C.L. Yuan, J.M. Xue, J. Wang, Enhancement of magnetization and curie temperature in Sr2FeMoO6 by Ni doping. J. Am. Ceram. Soc. 89(2), 672–674 (2006). doi:10.1111/j.1551-2916.2005.00718.x
J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793–1803 (1963). doi:10.1063/1.1702682
R.P. Tan, J.L. Carrey, M. Respaud, Voltage and temperature dependence of high-field magnetoresistance in arrays of magnetic nanoparticles. J. Appl. Phys. 104(2), 023908 (2008). doi:10.1063/1.2957061
J.Q. Xiao, J.S. Jiang, C.L. Chien, Giant magnetoresistance in nonmultilayer magnetic systems. Phys. Rev. Lett. 68(25), 3749–3752 (1992). doi:10.1103/PhysRevLett.68.3749
J. Inoue, S. Maekawa, Theory of tunneling magnetoresistance in granular magnetic films. Phys. Rev. B 53(18), 11927–11929 (1996). doi:10.1103/PhysRevB.53.R11927
J. Zhang, R.M. White, Voltage dependence of magnetoresistance in spin dependent tunneling junctions. J. Appl. Phys. 83(11), 6512–6514 (1998). doi:10.1063/1.367644