A Self-Healing Optoacoustic Patch with High Damage Threshold and Conversion Efficiency for Biomedical Applications
Corresponding Author: Benpeng Zhu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 122
Abstract
Compared with traditional piezoelectric ultrasonic devices, optoacoustic devices have unique advantages such as a simple preparation process, anti-electromagnetic interference, and wireless long-distance power supply. However, current optoacoustic devices remain limited due to a low damage threshold and energy conversion efficiency, which seriously hinder their widespread applications. In this study, using a self-healing polydimethylsiloxane (PDMS, Fe-Hpdca-PDMS) and carbon nanotube composite, a flexible optoacoustic patch is developed, which possesses the self-healing capability at room temperature, and can even recover from damage induced by cutting or laser irradiation. Moreover, this patch can generate high-intensity ultrasound (> 25 MPa) without the focusing structure. The laser damage threshold is greater than 183.44 mJ cm−2, and the optoacoustic energy conversion efficiency reaches a major achievement at 10.66 × 10−3, compared with other carbon-based nanomaterials and PDMS composites. This patch is also been successfully examined in the application of acoustic flow, thrombolysis, and wireless energy harvesting. All findings in this study provides new insight into designing and fabricating of novel ultrasound devices for biomedical applications.
Highlights:
1 Based on Fe-Hpdca-PDMS and carbon nanotube composite, an optoacoustic patch is developed, which can recover from the damage induced by cutting or laser irradiation at room temperature.
2 The patch has high laser damage threshold (183.44 mJ cm−2) and optoacoustic energy conversion efficiency (10.66×10−3).
3 The patch has been successfully examined in acoustic flow, thrombolysis, and wireless energy harvesting, which may provide new insights into the field of the design and fabrication of novel ultrasound devices for biomedical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Zhang, J. Ou-Yang, X. Yang, W. Wei, B. Zhu, High performance KNN-based single crystal thick film for ultrasound application. Electron. Mater. Lett. 15, 1–6 (2019). https://doi.org/10.1007/s13391-018-0091-5
- X. Pang, D. Li, J. Zhu, J. Cheng, G. Liu, Beyond antibiotics: photo/sonodynamic approaches for bacterial theranostics. Nano-Micro Lett. 12, 144 (2020). https://doi.org/10.1007/s40820-020-00485-3
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- T. Liu, Q. Wan, C. Zou, M. Chen, G. Wan et al., Stepwise drug release from a nanoplatform under MR-assisted focused ultrasound stimulation. Chem. Eng. J. 417, 128004 (2021). https://doi.org/10.1016/j.cej.2020.128004
- T. Zhang, Z. Wang, H. Liang, Z. Wu, J. Li et al., Transcranial focused ultrasound stimulation of periaqueductal gray for analgesia. IEEE Trans. Biomed. Eng. 69, 3155–3162 (2022). https://doi.org/10.1109/TBME.2022.3162073
- H. Zhou, L. Niu, X. Xia, Z. Lin, X. Liu et al., Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson’s disease. IEEE Trans. Biomed. Eng. 66, 3006–3013 (2019). https://doi.org/10.1109/TBME.2019.2899631
- W. Lee, P. Croce, R.W. Margolin, A. Cammalleri, K. Yoon et al., Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci. 19, 57 (2018). https://doi.org/10.1186/s12868-018-0459-3
- Z. Wang, Y. Pan, H. Huang, Y. Zhang, Y. Li et al., Enhanced thrombolysis by endovascular low-frequency ultrasound with bifunctional microbubbles in venous thrombosis: in vitro and in vivo study. Front. Bioeng. Biotechnol. 10, 965769 (2022). https://doi.org/10.3389/fbioe.2022.965769
- T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng et al., Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 8, eabk0159 (2022). https://doi.org/10.1126/sciadv.abk0159
- L. Jiang, Y. Yang, R. Chen, G. Lu, R. Li et al., Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application. Adv. Funct. Mater. 29, 1902522 (2019). https://doi.org/10.1002/adfm.201902522
- R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019). https://doi.org/10.1126/science.aan3997
- X. Du, J. Li, G. Niu, J.-H. Yuan, K.-H. Xue et al., Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat. Commun. 12, 3348 (2021). https://doi.org/10.1038/s41467-021-23788-4
- S. Yue, F. Lin, Q. Zhang, N. Epie, S. Dong et al., Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps. Proc. Natl. Acad. Sci. U.S.A. 116, 6580–6585 (2019). https://doi.org/10.1073/pnas.1818911116
- L. Wang, Y. Zhao, B. Zheng, Y. Huo, Y. Fan et al., Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer. Sci. Adv. 9, eadg8600 (2023). https://doi.org/10.1126/sciadv.adg8600
- Y. Jiang, H.J. Lee, L. Lan, H.A. Tseng, C. Yang et al., Optoacoustic brain stimulation at submillimeter spatial precision. Nat. Commun. 11, 881 (2020). https://doi.org/10.1038/s41467-020-14706-1
- J. Di, J. Kim, Q. Hu, X. Jiang, Z. Gu, Spatiotemporal drug delivery using laser-generated-focused ultrasound system. J. Control. Release 220, 592–599 (2015). https://doi.org/10.1016/j.jconrel.2015.08.033
- T. Lee, W. Luo, Q. Li, H. Demirci, L.J. Guo, Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel. Small (2017). https://doi.org/10.1002/smll.201701555
- J. Li, Y. Yang, Z. Chen, S. Lei, M. Shen et al., Self-healing: a new skill unlocked for ultrasound transducer. Nano Energy 68, 104348 (2020). https://doi.org/10.1016/j.nanoen.2019.104348
- Y. Li, Y. Jiang, L. Lan, X. Ge, R. Cheng et al., Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. Light Sci. Appl. 11, 321 (2022). https://doi.org/10.1038/s41377-022-01004-2
- X. Gao, X. Chen, H. Hu, X. Wang, W. Yue et al., A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat. Commun. 13, 7757 (2022). https://doi.org/10.1038/s41467-022-35455-3
- M. Lin, H. Hu, S. Zhou, S. Xu, Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022). https://doi.org/10.1038/s41578-022-00427-y
- H.W. Baac, J.G. Ok, T. Lee, L.J. Guo, Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation. Nanoscale 7, 14460–14468 (2015). https://doi.org/10.1039/c5nr03769g
- N. Wen, T. Song, Z. Ji, D. Jiang, Z. Wu et al., Recent advancements in self-healing materials: Mechanicals, performances and features. React. Funct. Polym. 168, 105041 (2021). https://doi.org/10.1016/j.reactfunctpolym.2021.105041
- J. Kang, D. Son, G.N. Wang, Y. Liu, J. Lopez et al., Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, e1706846 (2018). https://doi.org/10.1002/adma.201706846
- S. Bode, L. Zedler, F.H. Schacher, B. Dietzek, M. Schmitt et al., Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 25, 1634–1638 (2013). https://doi.org/10.1002/adma.201203865
- Y.-L. Liu, T.-W. Chuo, Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym. Chem. 4, 2194–2205 (2013). https://doi.org/10.1039/C2PY20957H
- M. Liu, J. Zhong, Z. Li, J. Rong, K. Yang et al., A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 124, 109475 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109475
- C. Sun, H. Jia, K. Lei, D. Zhu, Y. Gao et al., Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds. Polymer 160, 246–253 (2019). https://doi.org/10.1016/j.polymer.2018.11.051
- J. Dai, Z. Wang, Z. Wu, Z. Fang, S. Heliu et al., Shape memory polymer constructed by π–π stacking with ultrafast photoresponse and self-healing performance. ACS Appl. Polym. Mater. 5, 2575–2582 (2023). https://doi.org/10.1021/acsapm.2c02192
- M. Rajczakowska, M. Szeląg, K. Habermehl-Cwirzen, H. Hedlund, A. Cwirzen, Autogenous self-healing of thermally damaged cement paste with carbon nanomaterials subjected to different environmental stimulators. J. Build. Eng. 72, 106619 (2023). https://doi.org/10.1016/j.jobe.2023.106619
- J. Xie, L. Gao, J. Hu, Q. Li, J. He, Self-healing of electrical damage in thermoset polymers via anionic polymerization. J. Mater. Chem. C 8, 6025–6033 (2020). https://doi.org/10.1039/C9TC06989E
- C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016). https://doi.org/10.1038/nchem.2492
- T.A. Kompan, A.S. Korenev, A.Y. Lukin, Investigation of thermal expansion of a glass–ceramic material with an extra-low thermal linear expansion coefficient. Int. J. Thermophys. 29, 1896–1905 (2008). https://doi.org/10.1007/s10765-008-0477-y
- T. Buma, M. Spisar, M. O’Donnell, High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film. Appl. Phys. Lett. 79, 548–550 (2001). https://doi.org/10.1063/1.1388027
- R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt et al., Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Appl. Phys. Lett. 104, 173502 (2014). https://doi.org/10.1063/1.4873678
- T. Borca-Tasciuc, S. Vafaei, D.-A. Borca-Tasciuc, B.Q. Wei, R. Vajtai et al., Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. J. Appl. Phys. 98, 054309 (2005). https://doi.org/10.1063/1.2034079
- J. Kim, H. Kim, W.-Y. Chang, W. Huang, X. Jiang et al., Candle soot carbon nanops in photoacoustics: advantages and challenges for laser ultrasound transmitters. IEEE Nanotechnol. Mag. 13, 13–28 (2019). https://doi.org/10.1109/MNANO.2019.2904773
- B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang et al., A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film. Appl. Phys. Lett. 106, 021902 (2015). https://doi.org/10.1063/1.4905659
- R.J. Colchester, E.J. Alles, A.E. Desjardins, A directional fibre optic ultrasound transmitter based on a reduced graphene oxide and polydimethylsiloxane composite. Appl. Phys. Lett. 114, 113505 (2019). https://doi.org/10.1063/1.5089750
- H. Won Baac, J.G. Ok, H.J. Park, T. Ling, S.L. Chen et al., Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 97, 234104 (2010). https://doi.org/10.1063/1.3522833
- E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau et al., Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions. Opt. Exp. 21, 25077–25090 (2013). https://doi.org/10.1364/OE.21.025077
- T. Lee, H.W. Baac, Q. Li, L.J. Guo, Efficient photoacoustic conversion in optical nanomaterials and composites. Adv. Opt. Mater. 6, 1800491 (2018). https://doi.org/10.1002/adom.201800491
- Y. Gao, M. Wu, Y. Lin, J. Xu, Acoustic microfluidic separation techniques and bioapplications: a review. Micromachines 11, 921 (2020). https://doi.org/10.3390/mi11100921
- B. Xiong, K. Ren, Y. Shu, Y. Chen, B. Shen et al., Recent developments in microfluidics for cell studies. Adv. Mater. 26, 5525–5532 (2014). https://doi.org/10.1002/adma.201305348
- E. Carl, Vortices and streams caused by sound waves. Phys. Rev. 73, 68–76 (1948). https://doi.org/10.1103/physrev.73.68
- K. Mansour, M.J. Soileau, E.W. Van Stryland, Nonlinear optical properties of carbon-black suspensions (ink). J. Opt. Soc. Am. B 9, 1100 (1992). https://doi.org/10.1364/josab.9.001100
- D. Wu, J. Zhang, F. Xu, X. Wen, P. Li et al., A paper-based microfluidic Dot-ELISA system with smartphone for the detection of influenza A. Microfluid. Nanofluid. 21, 43 (2017). https://doi.org/10.1007/s10404-017-1879-6
- T.R. Porter, F. Xie, Ultrasound, microbubbles, and thrombolysis. Prog. Cardiovasc. Dis. 44, 101–110 (2001). https://doi.org/10.1053/pcad.2001.26441
- B. Petit, F. Yan, F. Tranquart, E. Allémann, Microbubbles and ultrasound-mediated thrombolysis: a review of recent in vitro studies. J. Drug Deliv. Sci. Technol. 22, 381–392 (2012). https://doi.org/10.1016/s1773-2247(12)50065-1
- J.H. Nederhoed, M. Tjaberinga, R.H.J. Otten, J.M. Evers, R.J.P. Musters et al., Therapeutic use of microbubbles and ultrasound in acute peripheral arterial thrombosis: a systematic review. Ultrasound Med. Biol. 47, 2821–2838 (2021). https://doi.org/10.1016/j.ultrasmedbio.2021.06.001
- R.J. Siegel, H. Luo, Ultrasound thrombolysis. Ultrasonics 48, 312–320 (2008). https://doi.org/10.1016/j.ultras.2008.03.010
- B.L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs et al., Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Adv. Healthc. Mater. 10, e2100986 (2021). https://doi.org/10.1002/adhm.202100986
- X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin et al., Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv. Funct. Mater. 32, 2200589 (2022). https://doi.org/10.1002/adfm.202200589
- H. Sheng, X. Zhang, J. Liang, M. Shao, E. Xie et al., Recent advances of energy solutions for implantable bioelectronics. Adv. Healthc. Mater. 10, e2100199 (2021). https://doi.org/10.1002/adhm.202100199
- T. de Rességuier, S. Couturier, M. Boustie, J. David, G. Niérat et al., Characterization of laser-driven shocks of high intensity using piezoelectric polymers. J. Appl. Phys. 80, 3656–3661 (1996). https://doi.org/10.1063/1.363312
- H.Y. Lee, M.S. Kwak, G.-T. Hwang, H.S. Ahn, R.A. Taylor et al., Direct Current piezoelectric energy harvesting based on plasmon-enhanced solar radiation pressure. Adv. Opt. Mater. 11, 2202212 (2023). https://doi.org/10.1002/adom.202202212
References
T. Zhang, J. Ou-Yang, X. Yang, W. Wei, B. Zhu, High performance KNN-based single crystal thick film for ultrasound application. Electron. Mater. Lett. 15, 1–6 (2019). https://doi.org/10.1007/s13391-018-0091-5
X. Pang, D. Li, J. Zhu, J. Cheng, G. Liu, Beyond antibiotics: photo/sonodynamic approaches for bacterial theranostics. Nano-Micro Lett. 12, 144 (2020). https://doi.org/10.1007/s40820-020-00485-3
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
T. Liu, Q. Wan, C. Zou, M. Chen, G. Wan et al., Stepwise drug release from a nanoplatform under MR-assisted focused ultrasound stimulation. Chem. Eng. J. 417, 128004 (2021). https://doi.org/10.1016/j.cej.2020.128004
T. Zhang, Z. Wang, H. Liang, Z. Wu, J. Li et al., Transcranial focused ultrasound stimulation of periaqueductal gray for analgesia. IEEE Trans. Biomed. Eng. 69, 3155–3162 (2022). https://doi.org/10.1109/TBME.2022.3162073
H. Zhou, L. Niu, X. Xia, Z. Lin, X. Liu et al., Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson’s disease. IEEE Trans. Biomed. Eng. 66, 3006–3013 (2019). https://doi.org/10.1109/TBME.2019.2899631
W. Lee, P. Croce, R.W. Margolin, A. Cammalleri, K. Yoon et al., Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci. 19, 57 (2018). https://doi.org/10.1186/s12868-018-0459-3
Z. Wang, Y. Pan, H. Huang, Y. Zhang, Y. Li et al., Enhanced thrombolysis by endovascular low-frequency ultrasound with bifunctional microbubbles in venous thrombosis: in vitro and in vivo study. Front. Bioeng. Biotechnol. 10, 965769 (2022). https://doi.org/10.3389/fbioe.2022.965769
T. Zhang, H. Liang, Z. Wang, C. Qiu, Y.B. Peng et al., Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci. Adv. 8, eabk0159 (2022). https://doi.org/10.1126/sciadv.abk0159
L. Jiang, Y. Yang, R. Chen, G. Lu, R. Li et al., Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application. Adv. Funct. Mater. 29, 1902522 (2019). https://doi.org/10.1002/adfm.201902522
R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi et al., Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019). https://doi.org/10.1126/science.aan3997
X. Du, J. Li, G. Niu, J.-H. Yuan, K.-H. Xue et al., Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat. Commun. 12, 3348 (2021). https://doi.org/10.1038/s41467-021-23788-4
S. Yue, F. Lin, Q. Zhang, N. Epie, S. Dong et al., Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps. Proc. Natl. Acad. Sci. U.S.A. 116, 6580–6585 (2019). https://doi.org/10.1073/pnas.1818911116
L. Wang, Y. Zhao, B. Zheng, Y. Huo, Y. Fan et al., Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer. Sci. Adv. 9, eadg8600 (2023). https://doi.org/10.1126/sciadv.adg8600
Y. Jiang, H.J. Lee, L. Lan, H.A. Tseng, C. Yang et al., Optoacoustic brain stimulation at submillimeter spatial precision. Nat. Commun. 11, 881 (2020). https://doi.org/10.1038/s41467-020-14706-1
J. Di, J. Kim, Q. Hu, X. Jiang, Z. Gu, Spatiotemporal drug delivery using laser-generated-focused ultrasound system. J. Control. Release 220, 592–599 (2015). https://doi.org/10.1016/j.jconrel.2015.08.033
T. Lee, W. Luo, Q. Li, H. Demirci, L.J. Guo, Laser-induced focused ultrasound for cavitation treatment: toward high-precision invisible sonic scalpel. Small (2017). https://doi.org/10.1002/smll.201701555
J. Li, Y. Yang, Z. Chen, S. Lei, M. Shen et al., Self-healing: a new skill unlocked for ultrasound transducer. Nano Energy 68, 104348 (2020). https://doi.org/10.1016/j.nanoen.2019.104348
Y. Li, Y. Jiang, L. Lan, X. Ge, R. Cheng et al., Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. Light Sci. Appl. 11, 321 (2022). https://doi.org/10.1038/s41377-022-01004-2
X. Gao, X. Chen, H. Hu, X. Wang, W. Yue et al., A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat. Commun. 13, 7757 (2022). https://doi.org/10.1038/s41467-022-35455-3
M. Lin, H. Hu, S. Zhou, S. Xu, Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022). https://doi.org/10.1038/s41578-022-00427-y
H.W. Baac, J.G. Ok, T. Lee, L.J. Guo, Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation. Nanoscale 7, 14460–14468 (2015). https://doi.org/10.1039/c5nr03769g
N. Wen, T. Song, Z. Ji, D. Jiang, Z. Wu et al., Recent advancements in self-healing materials: Mechanicals, performances and features. React. Funct. Polym. 168, 105041 (2021). https://doi.org/10.1016/j.reactfunctpolym.2021.105041
J. Kang, D. Son, G.N. Wang, Y. Liu, J. Lopez et al., Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, e1706846 (2018). https://doi.org/10.1002/adma.201706846
S. Bode, L. Zedler, F.H. Schacher, B. Dietzek, M. Schmitt et al., Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv. Mater. 25, 1634–1638 (2013). https://doi.org/10.1002/adma.201203865
Y.-L. Liu, T.-W. Chuo, Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym. Chem. 4, 2194–2205 (2013). https://doi.org/10.1039/C2PY20957H
M. Liu, J. Zhong, Z. Li, J. Rong, K. Yang et al., A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 124, 109475 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109475
C. Sun, H. Jia, K. Lei, D. Zhu, Y. Gao et al., Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds. Polymer 160, 246–253 (2019). https://doi.org/10.1016/j.polymer.2018.11.051
J. Dai, Z. Wang, Z. Wu, Z. Fang, S. Heliu et al., Shape memory polymer constructed by π–π stacking with ultrafast photoresponse and self-healing performance. ACS Appl. Polym. Mater. 5, 2575–2582 (2023). https://doi.org/10.1021/acsapm.2c02192
M. Rajczakowska, M. Szeląg, K. Habermehl-Cwirzen, H. Hedlund, A. Cwirzen, Autogenous self-healing of thermally damaged cement paste with carbon nanomaterials subjected to different environmental stimulators. J. Build. Eng. 72, 106619 (2023). https://doi.org/10.1016/j.jobe.2023.106619
J. Xie, L. Gao, J. Hu, Q. Li, J. He, Self-healing of electrical damage in thermoset polymers via anionic polymerization. J. Mater. Chem. C 8, 6025–6033 (2020). https://doi.org/10.1039/C9TC06989E
C.-H. Li, C. Wang, C. Keplinger, J.-L. Zuo, L. Jin et al., A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016). https://doi.org/10.1038/nchem.2492
T.A. Kompan, A.S. Korenev, A.Y. Lukin, Investigation of thermal expansion of a glass–ceramic material with an extra-low thermal linear expansion coefficient. Int. J. Thermophys. 29, 1896–1905 (2008). https://doi.org/10.1007/s10765-008-0477-y
T. Buma, M. Spisar, M. O’Donnell, High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film. Appl. Phys. Lett. 79, 548–550 (2001). https://doi.org/10.1063/1.1388027
R.J. Colchester, C.A. Mosse, D.S. Bhachu, J.C. Bear, C.J. Carmalt et al., Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Appl. Phys. Lett. 104, 173502 (2014). https://doi.org/10.1063/1.4873678
T. Borca-Tasciuc, S. Vafaei, D.-A. Borca-Tasciuc, B.Q. Wei, R. Vajtai et al., Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. J. Appl. Phys. 98, 054309 (2005). https://doi.org/10.1063/1.2034079
J. Kim, H. Kim, W.-Y. Chang, W. Huang, X. Jiang et al., Candle soot carbon nanops in photoacoustics: advantages and challenges for laser ultrasound transmitters. IEEE Nanotechnol. Mag. 13, 13–28 (2019). https://doi.org/10.1109/MNANO.2019.2904773
B.-Y. Hsieh, J. Kim, J. Zhu, S. Li, X. Zhang et al., A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film. Appl. Phys. Lett. 106, 021902 (2015). https://doi.org/10.1063/1.4905659
R.J. Colchester, E.J. Alles, A.E. Desjardins, A directional fibre optic ultrasound transmitter based on a reduced graphene oxide and polydimethylsiloxane composite. Appl. Phys. Lett. 114, 113505 (2019). https://doi.org/10.1063/1.5089750
H. Won Baac, J.G. Ok, H.J. Park, T. Ling, S.L. Chen et al., Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 97, 234104 (2010). https://doi.org/10.1063/1.3522833
E. Petrova, S. Ermilov, R. Su, V. Nadvoretskiy, A. Conjusteau et al., Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions. Opt. Exp. 21, 25077–25090 (2013). https://doi.org/10.1364/OE.21.025077
T. Lee, H.W. Baac, Q. Li, L.J. Guo, Efficient photoacoustic conversion in optical nanomaterials and composites. Adv. Opt. Mater. 6, 1800491 (2018). https://doi.org/10.1002/adom.201800491
Y. Gao, M. Wu, Y. Lin, J. Xu, Acoustic microfluidic separation techniques and bioapplications: a review. Micromachines 11, 921 (2020). https://doi.org/10.3390/mi11100921
B. Xiong, K. Ren, Y. Shu, Y. Chen, B. Shen et al., Recent developments in microfluidics for cell studies. Adv. Mater. 26, 5525–5532 (2014). https://doi.org/10.1002/adma.201305348
E. Carl, Vortices and streams caused by sound waves. Phys. Rev. 73, 68–76 (1948). https://doi.org/10.1103/physrev.73.68
K. Mansour, M.J. Soileau, E.W. Van Stryland, Nonlinear optical properties of carbon-black suspensions (ink). J. Opt. Soc. Am. B 9, 1100 (1992). https://doi.org/10.1364/josab.9.001100
D. Wu, J. Zhang, F. Xu, X. Wen, P. Li et al., A paper-based microfluidic Dot-ELISA system with smartphone for the detection of influenza A. Microfluid. Nanofluid. 21, 43 (2017). https://doi.org/10.1007/s10404-017-1879-6
T.R. Porter, F. Xie, Ultrasound, microbubbles, and thrombolysis. Prog. Cardiovasc. Dis. 44, 101–110 (2001). https://doi.org/10.1053/pcad.2001.26441
B. Petit, F. Yan, F. Tranquart, E. Allémann, Microbubbles and ultrasound-mediated thrombolysis: a review of recent in vitro studies. J. Drug Deliv. Sci. Technol. 22, 381–392 (2012). https://doi.org/10.1016/s1773-2247(12)50065-1
J.H. Nederhoed, M. Tjaberinga, R.H.J. Otten, J.M. Evers, R.J.P. Musters et al., Therapeutic use of microbubbles and ultrasound in acute peripheral arterial thrombosis: a systematic review. Ultrasound Med. Biol. 47, 2821–2838 (2021). https://doi.org/10.1016/j.ultrasmedbio.2021.06.001
R.J. Siegel, H. Luo, Ultrasound thrombolysis. Ultrasonics 48, 312–320 (2008). https://doi.org/10.1016/j.ultras.2008.03.010
B.L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs et al., Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Adv. Healthc. Mater. 10, e2100986 (2021). https://doi.org/10.1002/adhm.202100986
X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin et al., Hybrid-piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics. Adv. Funct. Mater. 32, 2200589 (2022). https://doi.org/10.1002/adfm.202200589
H. Sheng, X. Zhang, J. Liang, M. Shao, E. Xie et al., Recent advances of energy solutions for implantable bioelectronics. Adv. Healthc. Mater. 10, e2100199 (2021). https://doi.org/10.1002/adhm.202100199
T. de Rességuier, S. Couturier, M. Boustie, J. David, G. Niérat et al., Characterization of laser-driven shocks of high intensity using piezoelectric polymers. J. Appl. Phys. 80, 3656–3661 (1996). https://doi.org/10.1063/1.363312
H.Y. Lee, M.S. Kwak, G.-T. Hwang, H.S. Ahn, R.A. Taylor et al., Direct Current piezoelectric energy harvesting based on plasmon-enhanced solar radiation pressure. Adv. Opt. Mater. 11, 2202212 (2023). https://doi.org/10.1002/adom.202202212