Hollow Carbon Microspheres/MnO2 Nanosheets Composites: Hydrothermal Synthesis and Electrochemical Behaviors
Corresponding Author: Fen Ran
Nano-Micro Letters,
Vol. 7 No. 1 (2015), Article Number: 59-67
Abstract
This article reported the electrochemical behaviors of a novel hollow carbon microspheres/manganese dioxide nanosheets (micro-HC/nano-MnO2) composite prepared by an in situ self-limiting deposition method under hydrothermal condition. The results of scanning electron microscopy reveal that MnO2 nanosheets homogeneously grow onto the surface of micro-HC to form a loose-packed microstructure. The quantity of MnO2 required in the electrode layer has thereby been reduced significantly, and higher specific capacitances have been achieved. The micro-HC/nano-MnO2 electrode presents a high capacitance of 239.0 F g−1 at a current density of 5 mA cm−2, which is a strong promise for high-rate electrochemical capacitive energy storage applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.D. Zhao, Y. Wang, Y.F. Zhang, High-performance Li-ion batteries and supercapacitors base on prospective 1-D nanomaterials. Nano-Micro Lett. 3(1), 62–71 (2011). doi:10.1007/BF03353653
- J.R. Miller, R.A. Outlaw, Graphene double-layer capacitor with acline-filtering performance. Science 329(5999), 1637–1639 (2010). doi:10.1126/science.1194372
- D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010). doi:10.1038/nnano.2010.162
- T. Brezesinski, J. Wang, S.H. Tolber, T.B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). doi:10.1038/nmat2612
- M.C. Liu, L.B. Kong, P. Zhang, Y.C. Luo, L. Kang, Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta 60(15), 443–448 (2012). doi:10.1016/j.electacta.2011.11.100
- P.J. Hall, E.J. Bain, Energy-storage technologies and electricity generation. Energy Policy 36(12), 4352–4355 (2008). doi:10.1016/j.enpol.2008.09.037
- B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishers, New York, 1999)
- Q.T. Qu, S.B. Yang, X.L. Feng, 2D Sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23(46), 5574–5580 (2011). doi:10.1002/adma.201103042
- H.L. Fan, F. Ran, X.X. Zhang, H.M. Song, W.X. Jing, K.W. Shen, L.B. Kong, L. Kong, Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process. Electrochim. Acta 138, 367–375 (2014). doi:10.1016/j.electacta.2014.06.118
- S.B. Ma, K.W. Nam, W.S. Yoon, X.Q. Yang, K.Y. Ahn, K.H. Oh, Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J. Power Source 178(1), 483–489 (2008). doi:10.1016/j.jpowsour.2007.12.027
- L. He, G. Zhang, Y.Z. Dong, Z.W. Zhang, S.H. Xue, X.M. Jiang, Polyetheramide templated synthesis of monodisperse Mn3O4 nanoparticles with controlled size and study of the electrochemical properties. Nano-Micro Lett. 6(1), 38–45 (2014). doi:10.1007/BF03353767
- G. An, P. Yu, M. Xiao, Z. Liu, Z. Miao, K. Ding, Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology 19(27), 275709 (2008). doi:10.1088/0957-4484/19/27/275709
- S.B. Ma, K.Y. Ahn, E.S. Lee, K.H. Oh, K.B. Kim, Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 45(2), 375–382 (2007). doi:10.1016/j.carbon.2006.09.006
- W. Zhu, Y.Y. Wu, C.Y. Wang, M. Zhang, G.X. Dong, Fabrication of large-area 3-D ordered silver-coated colloidal crystals and macroporous silver films using polystyrene templates. Nano-Micro Lett. 5(3), 182–190 (2013). doi:10.1007/BF03353749
- Y.Z. Su, S. Li, D.Q. Wu, F. Zhang, H.W. Liang, P.F. Gao, C. Cheng, X.L. Feng, Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 6(9), 8349–8356 (2012). doi:10.1021/nn303091t
- K.R. Prasad, N. Miura, Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J. Power Source 135(1), 354–360 (2004). doi:10.1016/j.jpowsour.2004.04.005
- Y.K. Zhou, B.L. He, F.B. Zhang, H.L. Li, Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors. J. Solid State Electr. 8(7), 482–487 (2004). doi:10.1007/s10008-003-0468-7
- Y.T. Tan, F. Ran, L.B. Kong, J. Liu, L. Kang, Polyaniline nanoparticles grown on the surface of carbon microspheres aggregations for electrochemical supercapacitors. Synth. Met. 162(1–2), 114–118 (2012). doi:10.1016/j.synthmet.2011.11.020
- M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, X.H. Li, F.C. Walsh, A Sol–Gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors. J. Electrochem. Soc. 159(8), A1262–A1266 (2012). doi:10.1149/2.057208jes
- F. Ran, Y.T. Tan, J. Liu, L. Zhao, L.B. Kong, Y.C. Luo, L. Kang, Preparation of hierarchical polyaniline nanotubes based on self-assembly and its electrochemical capacitance. Polym. Adv. Technol. 23(9), 1297–1301 (2012). doi:10.1002/pat.2048
- Y. Kim, K. Tadai, T. Mitani, Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater. Chem. 46(15), 4914–4921 (2005). doi:10.1039/B511869G
- C. Klinke, R. Kurt, J.M. Bonard, Raman spectroscopy and field emission measurements on catalytically grown carbon nanotubes. J. Phys. Chem. B 106(43), 11191–11195 (2002). doi:10.1021/jp0215217
- X.B. Jin, W.Z. Zhou, S.W. Zhang, G.Z. Chen, Nanoscale microelectrochemical cells on carbon nanotubes. Small 3(9), 1513–1517 (2007). doi:10.1002/smll.200700139
- R.H. Ma, Y. Bando, L.Q. Zhang, T. Sasaki, Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv. Mater. 16(11), 918–922 (2004). doi:10.1002/adma.200306592
- L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse, Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J. Phys. Chem. C 112(18), 7270–7277 (2008). doi:10.1021/jp0773029
- J.W. Lang, L.B. Kong, M. Liu, Y.C. Luo, L. Kang, Co0.56Ni0.44 oxide nanoflake materials and activated carbon for asymmetric supercapacitors. J. Electrochem. Soc. 157(12), A1341–A1346 (2010). doi:10.1149/1.3497298
- A.P. Malloy, G.J. Browning, S.W. Donne, Surface characterization of heat-treated electrolytic manganese dioxide. J. Colloid Interface Sci. 285(2), 653–664 (2005). doi:10.1016/j.jcis.2004.12.030
- J. Moon, M. Awano, H. Takagi, Y. Fujishiro, Synthesis of nanocrystalline manganese oxide powders: influence of hydrogen peroxide on particle characteristics. J. Mater. Res. 14(12), 4594–4601 (1999). doi:10.1557/JMR.1999.0622
- Q.Q. Sun, S.J. Bao, Effects of reaction temperature on microstructure and advanced pseudocapacitor properties of NiO prepared via simple precipitation method. Nano-Micro Lett. 5(4), 289–295 (2013). doi:10.5101/nml.v5i4.p289-295
- G.P. Wang, L. Zhang, J.J. Zhan, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/c1cs15060j
- Z.A. Hu, Y.L. Xie, Y.X. Wang, L.P. Mo, Y.Y. Yang, Z.Y. Zhang, Polyaniline/SnO2 nanocomposite for supercapacitor applications materials. Mater. Chem. Phys. 114(2–3), 990–995 (2009). doi:10.1016/j.matchemphys.2008.11.005
- J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Source 101(1), 109–116 (2001)
- M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). doi:10.1021/nl802558y
- M.W. Xu, D.D. Zhao, S.J. Bao, H.L. Li, Graphene-based ultracapacitors. J. Solid State Electr. 11(8), 1101–1107 (2007). doi:10.1007/s10008-006-0246-4
- S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Liion batteries. Electrochim. Acta 49(7), 1057–1061 (2004). doi:10.1016/j.electacta.2003.10.016
References
D.D. Zhao, Y. Wang, Y.F. Zhang, High-performance Li-ion batteries and supercapacitors base on prospective 1-D nanomaterials. Nano-Micro Lett. 3(1), 62–71 (2011). doi:10.1007/BF03353653
J.R. Miller, R.A. Outlaw, Graphene double-layer capacitor with acline-filtering performance. Science 329(5999), 1637–1639 (2010). doi:10.1126/science.1194372
D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010). doi:10.1038/nnano.2010.162
T. Brezesinski, J. Wang, S.H. Tolber, T.B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9(2), 146–151 (2010). doi:10.1038/nmat2612
M.C. Liu, L.B. Kong, P. Zhang, Y.C. Luo, L. Kang, Porous wood carbon monolith for high-performance supercapacitors. Electrochim. Acta 60(15), 443–448 (2012). doi:10.1016/j.electacta.2011.11.100
P.J. Hall, E.J. Bain, Energy-storage technologies and electricity generation. Energy Policy 36(12), 4352–4355 (2008). doi:10.1016/j.enpol.2008.09.037
B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishers, New York, 1999)
Q.T. Qu, S.B. Yang, X.L. Feng, 2D Sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23(46), 5574–5580 (2011). doi:10.1002/adma.201103042
H.L. Fan, F. Ran, X.X. Zhang, H.M. Song, W.X. Jing, K.W. Shen, L.B. Kong, L. Kong, Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process. Electrochim. Acta 138, 367–375 (2014). doi:10.1016/j.electacta.2014.06.118
S.B. Ma, K.W. Nam, W.S. Yoon, X.Q. Yang, K.Y. Ahn, K.H. Oh, Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J. Power Source 178(1), 483–489 (2008). doi:10.1016/j.jpowsour.2007.12.027
L. He, G. Zhang, Y.Z. Dong, Z.W. Zhang, S.H. Xue, X.M. Jiang, Polyetheramide templated synthesis of monodisperse Mn3O4 nanoparticles with controlled size and study of the electrochemical properties. Nano-Micro Lett. 6(1), 38–45 (2014). doi:10.1007/BF03353767
G. An, P. Yu, M. Xiao, Z. Liu, Z. Miao, K. Ding, Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors. Nanotechnology 19(27), 275709 (2008). doi:10.1088/0957-4484/19/27/275709
S.B. Ma, K.Y. Ahn, E.S. Lee, K.H. Oh, K.B. Kim, Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 45(2), 375–382 (2007). doi:10.1016/j.carbon.2006.09.006
W. Zhu, Y.Y. Wu, C.Y. Wang, M. Zhang, G.X. Dong, Fabrication of large-area 3-D ordered silver-coated colloidal crystals and macroporous silver films using polystyrene templates. Nano-Micro Lett. 5(3), 182–190 (2013). doi:10.1007/BF03353749
Y.Z. Su, S. Li, D.Q. Wu, F. Zhang, H.W. Liang, P.F. Gao, C. Cheng, X.L. Feng, Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 6(9), 8349–8356 (2012). doi:10.1021/nn303091t
K.R. Prasad, N. Miura, Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J. Power Source 135(1), 354–360 (2004). doi:10.1016/j.jpowsour.2004.04.005
Y.K. Zhou, B.L. He, F.B. Zhang, H.L. Li, Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors. J. Solid State Electr. 8(7), 482–487 (2004). doi:10.1007/s10008-003-0468-7
Y.T. Tan, F. Ran, L.B. Kong, J. Liu, L. Kang, Polyaniline nanoparticles grown on the surface of carbon microspheres aggregations for electrochemical supercapacitors. Synth. Met. 162(1–2), 114–118 (2012). doi:10.1016/j.synthmet.2011.11.020
M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, X.H. Li, F.C. Walsh, A Sol–Gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors. J. Electrochem. Soc. 159(8), A1262–A1266 (2012). doi:10.1149/2.057208jes
F. Ran, Y.T. Tan, J. Liu, L. Zhao, L.B. Kong, Y.C. Luo, L. Kang, Preparation of hierarchical polyaniline nanotubes based on self-assembly and its electrochemical capacitance. Polym. Adv. Technol. 23(9), 1297–1301 (2012). doi:10.1002/pat.2048
Y. Kim, K. Tadai, T. Mitani, Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater. Chem. 46(15), 4914–4921 (2005). doi:10.1039/B511869G
C. Klinke, R. Kurt, J.M. Bonard, Raman spectroscopy and field emission measurements on catalytically grown carbon nanotubes. J. Phys. Chem. B 106(43), 11191–11195 (2002). doi:10.1021/jp0215217
X.B. Jin, W.Z. Zhou, S.W. Zhang, G.Z. Chen, Nanoscale microelectrochemical cells on carbon nanotubes. Small 3(9), 1513–1517 (2007). doi:10.1002/smll.200700139
R.H. Ma, Y. Bando, L.Q. Zhang, T. Sasaki, Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv. Mater. 16(11), 918–922 (2004). doi:10.1002/adma.200306592
L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse, Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J. Phys. Chem. C 112(18), 7270–7277 (2008). doi:10.1021/jp0773029
J.W. Lang, L.B. Kong, M. Liu, Y.C. Luo, L. Kang, Co0.56Ni0.44 oxide nanoflake materials and activated carbon for asymmetric supercapacitors. J. Electrochem. Soc. 157(12), A1341–A1346 (2010). doi:10.1149/1.3497298
A.P. Malloy, G.J. Browning, S.W. Donne, Surface characterization of heat-treated electrolytic manganese dioxide. J. Colloid Interface Sci. 285(2), 653–664 (2005). doi:10.1016/j.jcis.2004.12.030
J. Moon, M. Awano, H. Takagi, Y. Fujishiro, Synthesis of nanocrystalline manganese oxide powders: influence of hydrogen peroxide on particle characteristics. J. Mater. Res. 14(12), 4594–4601 (1999). doi:10.1557/JMR.1999.0622
Q.Q. Sun, S.J. Bao, Effects of reaction temperature on microstructure and advanced pseudocapacitor properties of NiO prepared via simple precipitation method. Nano-Micro Lett. 5(4), 289–295 (2013). doi:10.5101/nml.v5i4.p289-295
G.P. Wang, L. Zhang, J.J. Zhan, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/c1cs15060j
Z.A. Hu, Y.L. Xie, Y.X. Wang, L.P. Mo, Y.Y. Yang, Z.Y. Zhang, Polyaniline/SnO2 nanocomposite for supercapacitor applications materials. Mater. Chem. Phys. 114(2–3), 990–995 (2009). doi:10.1016/j.matchemphys.2008.11.005
J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Source 101(1), 109–116 (2001)
M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). doi:10.1021/nl802558y
M.W. Xu, D.D. Zhao, S.J. Bao, H.L. Li, Graphene-based ultracapacitors. J. Solid State Electr. 11(8), 1101–1107 (2007). doi:10.1007/s10008-006-0246-4
S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Liion batteries. Electrochim. Acta 49(7), 1057–1061 (2004). doi:10.1016/j.electacta.2003.10.016