M4X3 MXenes: Application in Energy Storage Devices
Corresponding Author: Kaili Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 215
Abstract
MXene has garnered widespread recognition in the scientific community due to its remarkable properties, including excellent thermal stability, high conductivity, good hydrophilicity and dispersibility, easy processability, tunable surface properties, and admirable flexibility. MXenes have been categorized into different families based on the number of M and X layers in Mn+1Xn, such as M2X, M3X2, M4X3, and, recently, M5X4. Among these families, M2X and M3X2, particularly Ti3C2, have been greatly explored while limited studies have been given to M5X4 MXene synthesis. Meanwhile, studies on the M4X3 MXene family have developed recently, hence, demanding a compilation of evaluated studies. Herein, this review provides a systematic overview of the latest advancements in M4X3 MXenes, focusing on their properties and applications in energy storage devices. The objective of this review is to provide guidance to researchers on fostering M4X3 MXene-based nanomaterials, not only for energy storage devices but also for broader applications.
Highlights:
1 A systematic overview of the latest advancements in M4X3 MXenes is dicussed.
2 The detailed properties of MXene are summarized.
3 M4X3 MXenes are explored as an electrode material.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16, 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
- C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16, 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
- Z. Li, Y. Wu, 2D early transition metal carbides (MXenes) for catalysis. Small 15, 1804736 (2019). https://doi.org/10.1002/smll.201804736
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32, 2002159 (2020). https://doi.org/10.1002/adma.202002159
- C. Lamiel, I. Hussain, J.H. Warner, K. Zhang, Beyond Ti-based MXenes: a review of emerging non-Ti based metal-MXene structure, properties, and applications. Mater. Today 63, 313–338 (2023). https://doi.org/10.1016/j.mattod.2023.01.020
- M.S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain et al., The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small 18, e2201989 (2022). https://doi.org/10.1002/smll.202201989
- L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9, 1803358 (2019). https://doi.org/10.1002/aenm.201803358
- F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010). https://doi.org/10.1038/nphoton.2010.186
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004). https://doi.org/10.1038/nmat1134
- Y. Shao, J. Wang, H. Wu, J. Liu, I. Aksay et al., Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010). https://doi.org/10.1002/elan.200900571
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- S. Ajmal, A. Kumar, M. Selvaraj, M.M. Alam, Y. Yang et al., MXenes and their interfaces for the taming of carbon dioxide & nitrate: a critical review. Coord. Chem. Rev. 483, 215094 (2023). https://doi.org/10.1016/j.ccr.2023.215094
- K.A.U. Madhushani, A.A.P.R. Perera, A. Kumar, R.K. Gupta, MXene-based promising nanomaterials for electrochemical energy storage. Mol. Catal. 547, 113284 (2023). https://doi.org/10.1016/j.mcat.2023.113284
- A.A.P.R. Perera, K.A.U. Madhushani, B.T. Punchihewa, A. Kumar, R.K. Gupta, MXene-based nanomaterials for multifunctional applications. Materials 16, 1138 (2023). https://doi.org/10.3390/ma16031138
- V. Sharma, D. Kumar Das, R.K. Gupta, G. Yasin, A. Kumar, Synthesis strategies and structural and electronic properties of MXenes-based nanomaterials for ORR: a mini review. Inorg. Chem. Commun. 141, 109496 (2022). https://doi.org/10.1016/j.inoche.2022.109496
- M. Downes, C.E. Shuck, R.W. Lord, M. Anayee, M. Shekhirev et al., M5X4: a family of MXenes. ACS Nano 17, 17158–17168 (2023). https://doi.org/10.1021/acsnano.3c04967
- Y. An, Y. Tian, J. Feng, Y. Qian, MXenes for advanced separator in rechargeable batteries. Mater. Today 57, 146–179 (2022). https://doi.org/10.1016/j.mattod.2022.06.006
- Y. An, Y. Tian, Q. Man, H. Shen, C. Liu et al., Fluorine- and acid-free strategy toward scalable fabrication of two-dimensional MXenes for sodium-ion batteries. Nano Lett. 23, 5217–5226 (2023). https://doi.org/10.1021/acs.nanolett.3c01201
- Y. An, Y. Tian, H. Shen, Q. Man, S. Xiong et al., Two-dimensional MXenes for flexible energy storage devices. Energy Environ. Sci. 16, 4191–4250 (2023). https://doi.org/10.1039/d3ee01841e
- Y. Tian, Y. An, J. Feng, Y. Qian, MXenes and their derivatives for advanced aqueous rechargeable batteries. Mater. Today 52, 225–249 (2022). https://doi.org/10.1016/j.mattod.2021.11.021
- H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16, 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
- W. Yu, Y. Yang, Y. Wang, L. Hu, J. Hao et al., Versatile MXene gels assisted by brief and low-strength centrifugation. Nano-Micro Lett. 16, 94 (2024). https://doi.org/10.1007/s40820-023-01302-3
- A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- M.S. Javed, X. Zhang, T. Ahmad, M. Usman, S.S. Ahmad Shah et al., MXenes to MBenes: latest development and opportunities for energy storage devices. Mater. Today. (2024). https://doi.org/10.1016/j.mattod.2024.01.001
- I. Hussain, U. Amara, F. Bibi, A. Hanan, M.N. Lakhan et al., Mo-based MXenes: synthesis, properties, and applications. Adv. Colloid Interface Sci. 324, 103077 (2024). https://doi.org/10.1016/j.cis.2023.103077
- X. Zhang, M.S. Javed, S. Ali, A. Ahmad, S.S. Ahmad Shah et al., Band engineering in Ti2N/Ti3C2Tx-MXene interface to enhance the performance of aqueous NH4+-ion hybrid supercapacitors. Nano Energy 120, 109108 (2024). https://doi.org/10.1016/j.nanoen.2023.109108
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- L. Wang, M. Han, C.E. Shuck, X. Wang, Y. Gogotsi, Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 88, 106308 (2021). https://doi.org/10.1016/j.nanoen.2021.106308
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx mxene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
- A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi et al., Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019). https://doi.org/10.1038/s41563-019-0478-1
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
- T. Zhang, K. Matthews, A. VahidMohammadi, M. Han, Y. Gogotsi, Pseudocapacitance of vanadium carbide MXenes in basic and acidic aqueous electrolytes. ACS Energy Lett. 7, 3864–3870 (2022). https://doi.org/10.1021/acsenergylett.2c01508
- A. Byeon, A.M. Glushenkov, B. Anasori, P. Urbankowski, J. Li et al., Lithium-ion capacitors with 2D Nb2CTx (MXene)–carbon nanotube electrodes. J. Power. Sour. 326, 686–694 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.066
- X. Wang, T.S. Mathis, Y. Sun, W.-Y. Tsai, N. Shpigel et al., Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021). https://doi.org/10.1021/acsnano.1c06027
- G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
- M.S. Javed, A. Mateen, I. Hussain, A. Ahmad, M. Mubashir et al., Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Mater. 53, 827–872 (2022). https://doi.org/10.1016/j.ensm.2022.10.005
- O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, M.W. Barsoum, Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys. 139, 147–152 (2013). https://doi.org/10.1016/j.matchemphys.2013.01.008
- L. Verger, C. Xu, V. Natu, H.-M. Cheng, W. Ren et al., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019). https://doi.org/10.1016/j.cossms.2019.02.001
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
- F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou et al., Preparation of Ti3 C2 and Ti2 C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 416, 781–789 (2017). https://doi.org/10.1016/j.apsusc.2017.04.239
- X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset et al., A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs.water. J. Mater. Chem. A 5, 22012–22023 (2017). https://doi.org/10.1039/c7ta01082f
- Y. Liu, T. Gao, H. Xiao, W. Guo, B. Sun et al., One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-efficiency dye adsorbents. Electrochim. Acta 229, 239–252 (2017). https://doi.org/10.1016/j.electacta.2017.01.142
- J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55, 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
- P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385–11391 (2016). https://doi.org/10.1039/C6NR02253G
- Y. Gogotsi, Chemical vapour deposition: transition metal carbides go 2D. Nat. Mater. 14, 1079–1080 (2015). https://doi.org/10.1038/nmat4386
- M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49, 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a
- C. Wei, Y. Wang, Y. Zhang, L. Tan, Y. Qian et al., Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 14, 3576–3584 (2021). https://doi.org/10.1007/s12274-021-3433-9
- C. Wei, B. Xi, P. Wang, Y. Liang, Z. Wang et al., In situ anchoring ultrafine ZnS nanodots on 2D MXene nanosheets for accelerating polysulfide redox and regulating Li plating. Adv. Mater. 35, e2303780 (2023). https://doi.org/10.1002/adma.202303780
- W. Hong, B.C. Wyatt, S.K. Nemani, B. Anasori, Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bull. 45, 850–861 (2020). https://doi.org/10.1557/mrs.2020.251
- U. Amara, I. Hussain, M. Ahmad, K. Mahmood, K. Zhang, 2D MXene-based biosensing: a review. Small 19, 2205249 (2023). https://doi.org/10.1002/smll.202205249
- X. Wang, H. Li, H. Li, S. Lin, W. Ding et al., 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 30, 1910302 (2020). https://doi.org/10.1002/adfm.201910302
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- D. Huang, H. Kim, G. Zou, X. Xu, Y. Zhu et al., All-mxene thermoelectric nanogenerator. Mater. Today Energy 29, 101129 (2022). https://doi.org/10.1016/j.mtener.2022.101129
- I. Hussain, C. Lamiel, M.S. Javed, M. Ahmad, S. Sahoo et al., MXene-based heterostructures: current trend and development in electrochemical energy storage devices. Prog. Energy Combust. Sci. 97, 101097 (2023). https://doi.org/10.1016/j.pecs.2023.101097
- J. Jiang, F. Li, J. Zou, S. Liu, J. Wang et al., Three-dimensional MXenes heterostructures and their applications. Sci. China Mater. 65, 2895–2910 (2022). https://doi.org/10.1007/s40843-022-2186-0
- Y. Li, Z. Yuan, D. Li, J. Li, Y. Zhang et al., Multi-interface combination of bimetallic selenide and V4C3Tx MXene for high-rate and ultrastable sodium storage devices. ACS Nano 18, 4733–4745 (2024). https://doi.org/10.1021/acsnano.3c07977
- Q. Lin, L. Wang, Layered double hydroxides as electrode materials for flexible energy storage devices. J. Semicond. 44, 041601 (2023). https://doi.org/10.1088/1674-4926/44/4/041601
- X. Xiao, L. Zhang, W. Xin, M. Yang, Y. Geng et al., Self-assembled layer of organic phosphonic acid enables highly stable MnO2 cathode for aqueous znic batteries. Small (2024). https://doi.org/10.1002/smll.202309271
- Z. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Effects of multiple ion reactions based on a CoSe2/MXene cathode in aluminum-ion batteries. Adv. Mater. Deerfield Beach Fla 35, e2211527 (2023). https://doi.org/10.1002/adma.202211527
- M. Saraf, T. Zhang, T. Averianov, C.E. Shuck, R.W. Lord et al., Vanadium and niobium MXenes-bilayered V2 O5 asymmetric supercapacitors. Small Meth. 7, e2201551 (2023). https://doi.org/10.1002/smtd.202201551
- X. Wang, S. Lin, H. Tong, Y. Huang, P. Tong et al., Two-dimensional V4C3 MXene as high performance electrode materials for supercapacitors. Electrochim. Acta 307, 414–421 (2019). https://doi.org/10.1016/j.electacta.2019.03.205
- H. Li, X. Wang, H. Li, S. Lin, B. Zhao et al., Capacitance improvements of V4C3T by NH3 annealing. J. Alloys Compd. 784, 923–930 (2019). https://doi.org/10.1016/j.jallcom.2019.01.111
- M. Hu, Z. Li, G. Li, T. Hu, C. Zhang et al., All-solid-state flexible fiber-based MXene supercapacitors. Adv. Mater. Technol. 2, 1700143 (2017). https://doi.org/10.1002/admt.201700143
- Y. Huang, J. Shen, S. Lin, W. Song, X. Zhu et al., Defect-free few-layer M4C3Tx (M=V, Nb, Ta) MXene nanosheets: synthesis, characterization, and physicochemical properties. Adv. Sci. 10, 2302882 (2023). https://doi.org/10.1002/advs.202302882
- R. Syamsai, A.N. Grace, Ta4C3 MXene as supercapacitor electrodes. J. Alloys Compd. 792, 1230–1238 (2019). https://doi.org/10.1016/j.jallcom.2019.04.096
- S. Sahoo, R. Kumar, E. Joanni, R.K. Singh, J.-J. Shim, Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. J. Mater. Chem. A 10, 13190–13240 (2022). https://doi.org/10.1039/d2ta02357a
- N.A. Salleh, S. Kheawhom, N. Ashrina, A. Hamid, W. Rahiman, A.A. Mohamad, Electrode polymer binders for supercapacitor applications: a review. J. Mater. Res. Technol. 23, 3470–3491 (2023). https://doi.org/10.1016/j.jmrt.2023.02.013
- I. Melkiyur, Y. Rathinam, P.S. Kumar, A. Sankaiya, S. Pitchaiya et al., A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: origin, fundamentals, present perspectives and future aspects. Renew. Sustain. Energy Rev. 173, 113106 (2023). https://doi.org/10.1016/j.rser.2022.113106
- S. Mirzazadeh Khomambazari, P. Lokhande, S. Padervand, N.D. Zaulkiflee, M. Irandoost et al., A review of recent progresses on nickel oxide/carbonous material composites as supercapacitor electrodes. J. Compos. Compd. 4, 195–208 (2022). https://doi.org/10.52547/jcc.4.4.4
- N. Lakal, S. Dubal, P.E. Lokhande, Chapter 22-Supercapacitors: an introduction, in Micro and nano technologies, nanotechnology in the automotive industry. ed. by T.A. Nguyen, G. Yasin, N.B. Singh, R.K. Gupta (Elsevier, Amsterdam, 2022), pp.459–466. https://doi.org/10.1016/b978-0-323-90524-4.00022-0
- P. Lokhande, U. Chavan, S. Bhosale, A. Kalam, S. Deokar, Chapter 11-New-generation materials for flexible supercapacitors, in Flexible supercapacitor nanoarchitectonics. ed. by M.I. Ahamed, R. Boddula, T. Altalhi (Wiley, New York, 2021), pp.277–313. https://doi.org/10.1002/9781119711469.ch11
- P.E. Lokhande, A. Pakdel, H.M. Pathan, D. Kumar, D.-V.N. Vo et al., Prospects of MXenes in energy storage applications. Chemosphere 297, 134225 (2022). https://doi.org/10.1016/j.chemosphere.2022.134225
- P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem. Energy Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z
- I. Hussain, S. Sahoo, D. Mohapatra, M. Ahmad, S. Iqbal et al., Recent progress in trimetallic/ternary-metal oxides nanostructures: misinterpretation/misconception of electrochemical data and devices. Appl. Mater. Today 26, 101297 (2022). https://doi.org/10.1016/j.apmt.2021.101297
- I. Hussain, C. Lamiel, M. Ahmad, Y. Chen, S. Shuang et al., High entropy alloys as electrode material for supercapacitors: a review. J. Energy Storage 44, 103405 (2021). https://doi.org/10.1016/j.est.2021.103405
- I. Hussain, C. Lamiel, S. Sahoo, M.S. Javed, M. Ahmad et al., Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review. Nano-Micro Lett. 14, 199 (2022). https://doi.org/10.1007/s40820-022-00944-z
- Q. Liu, L. Liu, Y. Zheng, M. Li, B. Ding et al., On-demand engineerable visible spectrum by fine control of electrochemical reactions. Natl. Sci. Rev. 11, nwad323 (2023). https://doi.org/10.1093/nsr/nwad323
- I. Hussain, S. Iqbal, T. Hussain, W.L. Cheung, S. Ahmad Khan et al., Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Mater. Today Phys. 23, 100655 (2022). https://doi.org/10.1016/j.mtphys.2022.100655
- I. Hussain, S. Iqbal, T. Hussain, Y. Chen, M. Ahmad et al., An oriented Ni–Co-MOF anchored on solution-free 1D CuO: a p–n heterojunction for supercapacitive energy storage. J. Mater. Chem. A 9, 17790–17800 (2021). https://doi.org/10.1039/D1TA04855D
- I. Hussain, T. Hussain, M. Ahmad, X. Ma, M.S. Javed et al., Modified KBBF-like material for energy storage applications: ZnNiBO3(OH) with enhanced cycle life. ACS Appl. Mater. Interfaces 14, 8025–8035 (2022). https://doi.org/10.1021/acsami.1c23583
- I. Shaheen, I. Ali, F. Bibi, A. Hanan, M. Ahmad et al., Integrating 1d/2d nanostructure based on ni–co-oxalate for energy storage applications. Ceramics Int. 50, 10789–10796 (2024). https://doi.org/10.1016/j.ceramint.2023.12.394
- H. Shao, K. Xu, Y.-C. Wu, A. Iadecola, L. Liu et al., Unraveling the charge storage mechanism of Ti3C2Tx MXene electrode in acidic electrolyte. ACS Energy Lett. 5, 2873–2880 (2020). https://doi.org/10.1021/acsenergylett.0c01290
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017). https://doi.org/10.1039/c7ta07999k
- C.J. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 16, 102–125 (2019). https://doi.org/10.1016/j.ensm.2018.05.003
- X. Liu, F. Xu, Z. Li, Z. Liu, W. Yang et al., Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord. Chem. Rev. 464, 214544 (2022). https://doi.org/10.1016/j.ccr.2022.214544
- Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043
- D. Wang, J. Si, S. Lin, R. Zhang, Y. Huang et al., Achieving macroscopic V4C3Tx MXene by selectively etching Al from V4AlC3 single crystals. Inorg. Chem. 59, 3239–3248 (2020). https://doi.org/10.1021/acs.inorgchem.9b03625
- X. Bin, M. Sheng, Y. Luo, W. Que, Self-assembling delaminated V4C3Tx MXene into highly stable pseudocapacitive flexible film electrode for supercapacitors. Adv. Mater. Interfaces 9, 2200231 (2022). https://doi.org/10.1002/admi.202200231
- S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen et al., Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 8, 42–48 (2017). https://doi.org/10.1016/j.ensm.2017.03.012
- S. Zhao, X. Wang, N. Kurra, Y. Gogotsi, Y. Gao, Effect of pinholes in Nb4C3 MXene sheets on its electrochemical behavior in aqueous electrolytes. Electrochem. Commun. 142, 107380 (2022). https://doi.org/10.1016/j.elecom.2022.107380
- Q. Peng, J. Rehman, K. Eid, A.S. Alofi, A. Laref et al., Vanadium carbide (V4C3) MXene as an efficient anode for Li-ion and Na-ion batteries. Nanomaterials 12, 2825 (2022). https://doi.org/10.3390/nano12162825
- P.A. Shinde, A.M. Patil, S. Lee, E. Jung, S. Chan Jun, Two-dimensional MXenes for electrochemical energy storage applications. J. Mater. Chem. A 10, 1105–1149 (2022). https://doi.org/10.1039/d1ta04642j
- C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi et al., Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9, 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200
- Y. Su, J. Shang, X. Liu, J. Li, Q. Pan et al., Constructing π-π superposition effect of tetralithium naphthalenetetracarboxylate with electron delocalization for robust dual-ion batteries. Angew. Chem. Int. Ed. (2024). https://doi.org/10.1002/anie.202403775
- M. Zhang, W. Zhang, F. Zhang, C.-S. Lee, Y. Tang, Anion-hosting cathodes for current and late-stage dual-ion batteries. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-1957-3
- R. Akhter, S.S. Maktedar, MXenes: a comprehensive review of synthesis, properties, and progress in supercapacitor applications. J. Materiomics 9, 1196–1241 (2023). https://doi.org/10.1016/j.jmat.2023.08.011
- J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes. Nano Sel. 2, 1480–1508 (2021). https://doi.org/10.1002/nano.202000309
- C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31, 2009524 (2021). https://doi.org/10.1002/adfm.202009524
- M.W. Barsoum, Fundamentals of ceramics (CRC Press, Boca Raton, 2019). https://doi.org/10.1201/9781498708166
- Z. Wang, C. Wei, H. Jiang, Y. Zhang, K. Tian et al., MXene-based current collectors for advanced rechargeable batteries. Adv. Mater. 36, e2306015 (2024). https://doi.org/10.1002/adma.202306015
- X. Chen, S. Wang, J. Shi, X. Du, Q. Cheng et al., Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor. Adv. Mater. Interfaces 6, 1901160 (2019). https://doi.org/10.1002/admi.201901160
- X. Li, Y. Ma, Y. Yue, G. Li, C. Zhang et al., A flexible Zn-ion hybrid micro-supercapacitor based on MXene anode and V2O5 cathode with high capacitance. Chem. Eng. J. 428, 130965 (2022). https://doi.org/10.1016/j.cej.2021.130965
- B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33, 2007973 (2021). https://doi.org/10.1002/adma.202007973
- K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
- C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan et al., MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 1846–1850 (2018). https://doi.org/10.1002/anie.201710616
- S. Siddique, A. Waheed, M. Iftikhar, M.T. Mehran, M.Z. Zarif et al., Fluorine-free MXenes via molten salt lewis acidic etching: applications, challenges, and future outlook. Prog. Mater. Sci. (2023). https://doi.org/10.1016/j.pmatsci.2023.101183
- L. Liu, H. Zschiesche, M. Antonietti, B. Daffos, N.V. Tarakina et al., Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt. Adv. Energy Mater. 13, 2202709 (2023). https://doi.org/10.1002/aenm.202202709
- M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang et al., Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4
- X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016). https://doi.org/10.1002/aenm.201502588
- W. Lin, Y.-R. Lu, W. Peng, M. Luo, T.-S. Chan et al., Atomic bridging modulation of Ir–N, S Co-doped MXene for accelerating hydrogen evolution. J. Mater. Chem. A 10, 9878–9885 (2022). https://doi.org/10.1039/d2ta00550f
- K. Rajput, V. Kumar, S. Thomas, M.A. Zaeem, D.R. Roy, Ca2C MXene monolayer as a superior anode for metal-ion batteries. 2D Mater. 8, 035015 (2021). https://doi.org/10.1088/2053-1583/abf233
- M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang et al., High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016). https://doi.org/10.1021/acsnano.6b06597
- C. Li, A.K. Tareen, K. Khan, J. Long, I. Hussain et al., Highly efficient, remarkable sensor activity and energy storage properties of MXenes and borophene nanomaterials. Prog. Solid State Chem. 70, 100392 (2023). https://doi.org/10.1016/j.progsolidstchem.2023.100392
- J. Jiang, S. Bai, J. Zou, S. Liu, J.-P. Hsu et al., Improving stability of MXenes. Nano Res. 15, 6551–6567 (2022). https://doi.org/10.1007/s12274-022-4312-8
- Y. Li, P. Kamdem, X.-J. Jin, In situ growth of chrysanthemum-like NiCo2S4 on MXenes for high-performance supercapacitors and a non-enzymatic H2O2 sensor. Dalton Trans. 49, 7807–7819 (2020). https://doi.org/10.1039/d0dt01030h
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- R. Syamsai, A.N. Grace, G.A. Babu, K.B. Karuppanan, S.K. Eswaran et al., Titanium–tantalum double-ordered MXene nanosheets as supercapacitor electrodes. ACS Appl. Nano Mater. 6, 5224–5232 (2023). https://doi.org/10.1021/acsanm.2c05081
- D. Maldonado-Lopez, J.R. Rodriguez, V.G. Pol, R. Syamsai, N.G. Andrews et al., Atomic-scale understanding of Li storage processes in the Ti4C3 and chemically ordered Ti2Ta2C3 MXenes: a theoretical and experimental assessment. ACS Appl. Energy Mater. 5, 1801–1809 (2022). https://doi.org/10.1021/acsaem.1c03239
- A. Rafieerad, A. Amiri, G.L. Sequiera, W. Yan, Y. Chen et al., Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for supercapacitor electrodes. Adv. Funct. Mater. 31, 2100015 (2021). https://doi.org/10.1002/adfm.202100015
- S. Zhao, C. Chen, X. Zhao, X. Chu, F. Du et al., Flexible Nb4C3Tx film with large interlayer spacing for high-performance supercapacitors. Adv. Funct. Mater. 30, 2000815 (2020). https://doi.org/10.1002/adfm.202000815
- M. Saraf, B. Chacon, S. Ippolito, R.W. Lord, M. Anayee et al., Enhancing charge storage of Mo2Ti2C3 MXene by partial oxidation. Adv. Funct. Mater. 34, 2306815 (2024). https://doi.org/10.1002/adfm.202306815
- D. Gandla, F. Zhang, D.Q. Tan, Advantage of larger interlayer spacing of a Mo2Ti2C3 MXene free-standing film electrode toward an excellent performance supercapacitor in a binary ionic liquid-organic electrolyte. ACS Omega 7, 7190–7198 (2022). https://doi.org/10.1021/acsomega.1c06761
- D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides–solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/d0ta01798a
- H. Wang, Y. Xue, X. Song, S. Lei, H. Yu et al., Solid solution reinforced V3CrC3Tx MXene cathodes for zn-ion micro-supercapacitors with high areal energy density and superior flexibility. J. Mater. Chem. A 10, 20953–20963 (2022). https://doi.org/10.1039/D2TA04747K
- Q. Wang, X. Zhang, Z. Chen, Y. Zhao, W. Yao et al., Ti3-yNbYC2Tx MXenes as high-rate and ultra-stable electrode materials for supercapacitors. J. Alloys Compds. 954, 170128 (2023). https://doi.org/10.1016/j.jallcom.2023.170128
- R. Syamsai, A.N. Grace, Synthesis, properties and performance evaluation of vanadium carbide MXene as supercapacitor electrodes. Ceram. Int. 46, 5323–5330 (2020). https://doi.org/10.1016/j.ceramint.2019.10.283
References
A. Liu, X. Zhang, Z. Liu, Y. Li, X. Peng et al., The roadmap of 2D materials and devices toward chips. Nano-Micro Lett. 16, 119 (2024). https://doi.org/10.1007/s40820-023-01273-5
C. Zhu, Y. Hao, H. Wu, M. Chen, B. Quan et al., Self-assembly of binderless MXene aerogel for multiple-scenario and responsive phase change composites with ultrahigh thermal energy storage density and exceptional electromagnetic interference shielding. Nano-Micro Lett. 16, 57 (2023). https://doi.org/10.1007/s40820-023-01288-y
Z. Li, Y. Wu, 2D early transition metal carbides (MXenes) for catalysis. Small 15, 1804736 (2019). https://doi.org/10.1002/smll.201804736
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv. Mater. 32, 2002159 (2020). https://doi.org/10.1002/adma.202002159
C. Lamiel, I. Hussain, J.H. Warner, K. Zhang, Beyond Ti-based MXenes: a review of emerging non-Ti based metal-MXene structure, properties, and applications. Mater. Today 63, 313–338 (2023). https://doi.org/10.1016/j.mattod.2023.01.020
M.S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain et al., The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small 18, e2201989 (2022). https://doi.org/10.1002/smll.202201989
L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9, 1803358 (2019). https://doi.org/10.1002/aenm.201803358
F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010). https://doi.org/10.1038/nphoton.2010.186
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004). https://doi.org/10.1038/nmat1134
Y. Shao, J. Wang, H. Wu, J. Liu, I. Aksay et al., Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010). https://doi.org/10.1002/elan.200900571
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
S. Ajmal, A. Kumar, M. Selvaraj, M.M. Alam, Y. Yang et al., MXenes and their interfaces for the taming of carbon dioxide & nitrate: a critical review. Coord. Chem. Rev. 483, 215094 (2023). https://doi.org/10.1016/j.ccr.2023.215094
K.A.U. Madhushani, A.A.P.R. Perera, A. Kumar, R.K. Gupta, MXene-based promising nanomaterials for electrochemical energy storage. Mol. Catal. 547, 113284 (2023). https://doi.org/10.1016/j.mcat.2023.113284
A.A.P.R. Perera, K.A.U. Madhushani, B.T. Punchihewa, A. Kumar, R.K. Gupta, MXene-based nanomaterials for multifunctional applications. Materials 16, 1138 (2023). https://doi.org/10.3390/ma16031138
V. Sharma, D. Kumar Das, R.K. Gupta, G. Yasin, A. Kumar, Synthesis strategies and structural and electronic properties of MXenes-based nanomaterials for ORR: a mini review. Inorg. Chem. Commun. 141, 109496 (2022). https://doi.org/10.1016/j.inoche.2022.109496
M. Downes, C.E. Shuck, R.W. Lord, M. Anayee, M. Shekhirev et al., M5X4: a family of MXenes. ACS Nano 17, 17158–17168 (2023). https://doi.org/10.1021/acsnano.3c04967
Y. An, Y. Tian, J. Feng, Y. Qian, MXenes for advanced separator in rechargeable batteries. Mater. Today 57, 146–179 (2022). https://doi.org/10.1016/j.mattod.2022.06.006
Y. An, Y. Tian, Q. Man, H. Shen, C. Liu et al., Fluorine- and acid-free strategy toward scalable fabrication of two-dimensional MXenes for sodium-ion batteries. Nano Lett. 23, 5217–5226 (2023). https://doi.org/10.1021/acs.nanolett.3c01201
Y. An, Y. Tian, H. Shen, Q. Man, S. Xiong et al., Two-dimensional MXenes for flexible energy storage devices. Energy Environ. Sci. 16, 4191–4250 (2023). https://doi.org/10.1039/d3ee01841e
Y. Tian, Y. An, J. Feng, Y. Qian, MXenes and their derivatives for advanced aqueous rechargeable batteries. Mater. Today 52, 225–249 (2022). https://doi.org/10.1016/j.mattod.2021.11.021
H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16, 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
W. Yu, Y. Yang, Y. Wang, L. Hu, J. Hao et al., Versatile MXene gels assisted by brief and low-strength centrifugation. Nano-Micro Lett. 16, 94 (2024). https://doi.org/10.1007/s40820-023-01302-3
A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15, 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
M.S. Javed, X. Zhang, T. Ahmad, M. Usman, S.S. Ahmad Shah et al., MXenes to MBenes: latest development and opportunities for energy storage devices. Mater. Today. (2024). https://doi.org/10.1016/j.mattod.2024.01.001
I. Hussain, U. Amara, F. Bibi, A. Hanan, M.N. Lakhan et al., Mo-based MXenes: synthesis, properties, and applications. Adv. Colloid Interface Sci. 324, 103077 (2024). https://doi.org/10.1016/j.cis.2023.103077
X. Zhang, M.S. Javed, S. Ali, A. Ahmad, S.S. Ahmad Shah et al., Band engineering in Ti2N/Ti3C2Tx-MXene interface to enhance the performance of aqueous NH4+-ion hybrid supercapacitors. Nano Energy 120, 109108 (2024). https://doi.org/10.1016/j.nanoen.2023.109108
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
L. Wang, M. Han, C.E. Shuck, X. Wang, Y. Gogotsi, Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 88, 106308 (2021). https://doi.org/10.1016/j.nanoen.2021.106308
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx mxene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi et al., Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019). https://doi.org/10.1038/s41563-019-0478-1
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
T. Zhang, K. Matthews, A. VahidMohammadi, M. Han, Y. Gogotsi, Pseudocapacitance of vanadium carbide MXenes in basic and acidic aqueous electrolytes. ACS Energy Lett. 7, 3864–3870 (2022). https://doi.org/10.1021/acsenergylett.2c01508
A. Byeon, A.M. Glushenkov, B. Anasori, P. Urbankowski, J. Li et al., Lithium-ion capacitors with 2D Nb2CTx (MXene)–carbon nanotube electrodes. J. Power. Sour. 326, 686–694 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.066
X. Wang, T.S. Mathis, Y. Sun, W.-Y. Tsai, N. Shpigel et al., Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021). https://doi.org/10.1021/acsnano.1c06027
G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
M.S. Javed, A. Mateen, I. Hussain, A. Ahmad, M. Mubashir et al., Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Mater. 53, 827–872 (2022). https://doi.org/10.1016/j.ensm.2022.10.005
O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, M.W. Barsoum, Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys. 139, 147–152 (2013). https://doi.org/10.1016/j.matchemphys.2013.01.008
L. Verger, C. Xu, V. Natu, H.-M. Cheng, W. Ren et al., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019). https://doi.org/10.1016/j.cossms.2019.02.001
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014). https://doi.org/10.1021/cm500641a
F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou et al., Preparation of Ti3 C2 and Ti2 C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 416, 781–789 (2017). https://doi.org/10.1016/j.apsusc.2017.04.239
X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset et al., A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs.water. J. Mater. Chem. A 5, 22012–22023 (2017). https://doi.org/10.1039/c7ta01082f
Y. Liu, T. Gao, H. Xiao, W. Guo, B. Sun et al., One-pot synthesis of rice-like TiO2/graphene hydrogels as advanced electrodes for supercapacitors and the resulting aerogels as high-efficiency dye adsorbents. Electrochim. Acta 229, 239–252 (2017). https://doi.org/10.1016/j.electacta.2017.01.142
J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55, 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385–11391 (2016). https://doi.org/10.1039/C6NR02253G
Y. Gogotsi, Chemical vapour deposition: transition metal carbides go 2D. Nat. Mater. 14, 1079–1080 (2015). https://doi.org/10.1038/nmat4386
M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49, 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a
C. Wei, Y. Wang, Y. Zhang, L. Tan, Y. Qian et al., Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 14, 3576–3584 (2021). https://doi.org/10.1007/s12274-021-3433-9
C. Wei, B. Xi, P. Wang, Y. Liang, Z. Wang et al., In situ anchoring ultrafine ZnS nanodots on 2D MXene nanosheets for accelerating polysulfide redox and regulating Li plating. Adv. Mater. 35, e2303780 (2023). https://doi.org/10.1002/adma.202303780
W. Hong, B.C. Wyatt, S.K. Nemani, B. Anasori, Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bull. 45, 850–861 (2020). https://doi.org/10.1557/mrs.2020.251
U. Amara, I. Hussain, M. Ahmad, K. Mahmood, K. Zhang, 2D MXene-based biosensing: a review. Small 19, 2205249 (2023). https://doi.org/10.1002/smll.202205249
X. Wang, H. Li, H. Li, S. Lin, W. Ding et al., 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 30, 1910302 (2020). https://doi.org/10.1002/adfm.201910302
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
D. Huang, H. Kim, G. Zou, X. Xu, Y. Zhu et al., All-mxene thermoelectric nanogenerator. Mater. Today Energy 29, 101129 (2022). https://doi.org/10.1016/j.mtener.2022.101129
I. Hussain, C. Lamiel, M.S. Javed, M. Ahmad, S. Sahoo et al., MXene-based heterostructures: current trend and development in electrochemical energy storage devices. Prog. Energy Combust. Sci. 97, 101097 (2023). https://doi.org/10.1016/j.pecs.2023.101097
J. Jiang, F. Li, J. Zou, S. Liu, J. Wang et al., Three-dimensional MXenes heterostructures and their applications. Sci. China Mater. 65, 2895–2910 (2022). https://doi.org/10.1007/s40843-022-2186-0
Y. Li, Z. Yuan, D. Li, J. Li, Y. Zhang et al., Multi-interface combination of bimetallic selenide and V4C3Tx MXene for high-rate and ultrastable sodium storage devices. ACS Nano 18, 4733–4745 (2024). https://doi.org/10.1021/acsnano.3c07977
Q. Lin, L. Wang, Layered double hydroxides as electrode materials for flexible energy storage devices. J. Semicond. 44, 041601 (2023). https://doi.org/10.1088/1674-4926/44/4/041601
X. Xiao, L. Zhang, W. Xin, M. Yang, Y. Geng et al., Self-assembled layer of organic phosphonic acid enables highly stable MnO2 cathode for aqueous znic batteries. Small (2024). https://doi.org/10.1002/smll.202309271
Z. Yuan, Q. Lin, Y. Li, W. Han, L. Wang, Effects of multiple ion reactions based on a CoSe2/MXene cathode in aluminum-ion batteries. Adv. Mater. Deerfield Beach Fla 35, e2211527 (2023). https://doi.org/10.1002/adma.202211527
M. Saraf, T. Zhang, T. Averianov, C.E. Shuck, R.W. Lord et al., Vanadium and niobium MXenes-bilayered V2 O5 asymmetric supercapacitors. Small Meth. 7, e2201551 (2023). https://doi.org/10.1002/smtd.202201551
X. Wang, S. Lin, H. Tong, Y. Huang, P. Tong et al., Two-dimensional V4C3 MXene as high performance electrode materials for supercapacitors. Electrochim. Acta 307, 414–421 (2019). https://doi.org/10.1016/j.electacta.2019.03.205
H. Li, X. Wang, H. Li, S. Lin, B. Zhao et al., Capacitance improvements of V4C3T by NH3 annealing. J. Alloys Compd. 784, 923–930 (2019). https://doi.org/10.1016/j.jallcom.2019.01.111
M. Hu, Z. Li, G. Li, T. Hu, C. Zhang et al., All-solid-state flexible fiber-based MXene supercapacitors. Adv. Mater. Technol. 2, 1700143 (2017). https://doi.org/10.1002/admt.201700143
Y. Huang, J. Shen, S. Lin, W. Song, X. Zhu et al., Defect-free few-layer M4C3Tx (M=V, Nb, Ta) MXene nanosheets: synthesis, characterization, and physicochemical properties. Adv. Sci. 10, 2302882 (2023). https://doi.org/10.1002/advs.202302882
R. Syamsai, A.N. Grace, Ta4C3 MXene as supercapacitor electrodes. J. Alloys Compd. 792, 1230–1238 (2019). https://doi.org/10.1016/j.jallcom.2019.04.096
S. Sahoo, R. Kumar, E. Joanni, R.K. Singh, J.-J. Shim, Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. J. Mater. Chem. A 10, 13190–13240 (2022). https://doi.org/10.1039/d2ta02357a
N.A. Salleh, S. Kheawhom, N. Ashrina, A. Hamid, W. Rahiman, A.A. Mohamad, Electrode polymer binders for supercapacitor applications: a review. J. Mater. Res. Technol. 23, 3470–3491 (2023). https://doi.org/10.1016/j.jmrt.2023.02.013
I. Melkiyur, Y. Rathinam, P.S. Kumar, A. Sankaiya, S. Pitchaiya et al., A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: origin, fundamentals, present perspectives and future aspects. Renew. Sustain. Energy Rev. 173, 113106 (2023). https://doi.org/10.1016/j.rser.2022.113106
S. Mirzazadeh Khomambazari, P. Lokhande, S. Padervand, N.D. Zaulkiflee, M. Irandoost et al., A review of recent progresses on nickel oxide/carbonous material composites as supercapacitor electrodes. J. Compos. Compd. 4, 195–208 (2022). https://doi.org/10.52547/jcc.4.4.4
N. Lakal, S. Dubal, P.E. Lokhande, Chapter 22-Supercapacitors: an introduction, in Micro and nano technologies, nanotechnology in the automotive industry. ed. by T.A. Nguyen, G. Yasin, N.B. Singh, R.K. Gupta (Elsevier, Amsterdam, 2022), pp.459–466. https://doi.org/10.1016/b978-0-323-90524-4.00022-0
P. Lokhande, U. Chavan, S. Bhosale, A. Kalam, S. Deokar, Chapter 11-New-generation materials for flexible supercapacitors, in Flexible supercapacitor nanoarchitectonics. ed. by M.I. Ahamed, R. Boddula, T. Altalhi (Wiley, New York, 2021), pp.277–313. https://doi.org/10.1002/9781119711469.ch11
P.E. Lokhande, A. Pakdel, H.M. Pathan, D. Kumar, D.-V.N. Vo et al., Prospects of MXenes in energy storage applications. Chemosphere 297, 134225 (2022). https://doi.org/10.1016/j.chemosphere.2022.134225
P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem. Energy Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z
I. Hussain, S. Sahoo, D. Mohapatra, M. Ahmad, S. Iqbal et al., Recent progress in trimetallic/ternary-metal oxides nanostructures: misinterpretation/misconception of electrochemical data and devices. Appl. Mater. Today 26, 101297 (2022). https://doi.org/10.1016/j.apmt.2021.101297
I. Hussain, C. Lamiel, M. Ahmad, Y. Chen, S. Shuang et al., High entropy alloys as electrode material for supercapacitors: a review. J. Energy Storage 44, 103405 (2021). https://doi.org/10.1016/j.est.2021.103405
I. Hussain, C. Lamiel, S. Sahoo, M.S. Javed, M. Ahmad et al., Animal- and human-inspired nanostructures as supercapacitor electrode materials: a review. Nano-Micro Lett. 14, 199 (2022). https://doi.org/10.1007/s40820-022-00944-z
Q. Liu, L. Liu, Y. Zheng, M. Li, B. Ding et al., On-demand engineerable visible spectrum by fine control of electrochemical reactions. Natl. Sci. Rev. 11, nwad323 (2023). https://doi.org/10.1093/nsr/nwad323
I. Hussain, S. Iqbal, T. Hussain, W.L. Cheung, S. Ahmad Khan et al., Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Mater. Today Phys. 23, 100655 (2022). https://doi.org/10.1016/j.mtphys.2022.100655
I. Hussain, S. Iqbal, T. Hussain, Y. Chen, M. Ahmad et al., An oriented Ni–Co-MOF anchored on solution-free 1D CuO: a p–n heterojunction for supercapacitive energy storage. J. Mater. Chem. A 9, 17790–17800 (2021). https://doi.org/10.1039/D1TA04855D
I. Hussain, T. Hussain, M. Ahmad, X. Ma, M.S. Javed et al., Modified KBBF-like material for energy storage applications: ZnNiBO3(OH) with enhanced cycle life. ACS Appl. Mater. Interfaces 14, 8025–8035 (2022). https://doi.org/10.1021/acsami.1c23583
I. Shaheen, I. Ali, F. Bibi, A. Hanan, M. Ahmad et al., Integrating 1d/2d nanostructure based on ni–co-oxalate for energy storage applications. Ceramics Int. 50, 10789–10796 (2024). https://doi.org/10.1016/j.ceramint.2023.12.394
H. Shao, K. Xu, Y.-C. Wu, A. Iadecola, L. Liu et al., Unraveling the charge storage mechanism of Ti3C2Tx MXene electrode in acidic electrolyte. ACS Energy Lett. 5, 2873–2880 (2020). https://doi.org/10.1021/acsenergylett.0c01290
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai et al., MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017). https://doi.org/10.1039/c7ta07999k
C.J. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 16, 102–125 (2019). https://doi.org/10.1016/j.ensm.2018.05.003
X. Liu, F. Xu, Z. Li, Z. Liu, W. Yang et al., Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord. Chem. Rev. 464, 214544 (2022). https://doi.org/10.1016/j.ccr.2022.214544
Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 8, 1703043 (2018). https://doi.org/10.1002/aenm.201703043
D. Wang, J. Si, S. Lin, R. Zhang, Y. Huang et al., Achieving macroscopic V4C3Tx MXene by selectively etching Al from V4AlC3 single crystals. Inorg. Chem. 59, 3239–3248 (2020). https://doi.org/10.1021/acs.inorgchem.9b03625
X. Bin, M. Sheng, Y. Luo, W. Que, Self-assembling delaminated V4C3Tx MXene into highly stable pseudocapacitive flexible film electrode for supercapacitors. Adv. Mater. Interfaces 9, 2200231 (2022). https://doi.org/10.1002/admi.202200231
S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen et al., Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 8, 42–48 (2017). https://doi.org/10.1016/j.ensm.2017.03.012
S. Zhao, X. Wang, N. Kurra, Y. Gogotsi, Y. Gao, Effect of pinholes in Nb4C3 MXene sheets on its electrochemical behavior in aqueous electrolytes. Electrochem. Commun. 142, 107380 (2022). https://doi.org/10.1016/j.elecom.2022.107380
Q. Peng, J. Rehman, K. Eid, A.S. Alofi, A. Laref et al., Vanadium carbide (V4C3) MXene as an efficient anode for Li-ion and Na-ion batteries. Nanomaterials 12, 2825 (2022). https://doi.org/10.3390/nano12162825
P.A. Shinde, A.M. Patil, S. Lee, E. Jung, S. Chan Jun, Two-dimensional MXenes for electrochemical energy storage applications. J. Mater. Chem. A 10, 1105–1149 (2022). https://doi.org/10.1039/d1ta04642j
C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi et al., Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9, 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200
Y. Su, J. Shang, X. Liu, J. Li, Q. Pan et al., Constructing π-π superposition effect of tetralithium naphthalenetetracarboxylate with electron delocalization for robust dual-ion batteries. Angew. Chem. Int. Ed. (2024). https://doi.org/10.1002/anie.202403775
M. Zhang, W. Zhang, F. Zhang, C.-S. Lee, Y. Tang, Anion-hosting cathodes for current and late-stage dual-ion batteries. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-1957-3
R. Akhter, S.S. Maktedar, MXenes: a comprehensive review of synthesis, properties, and progress in supercapacitor applications. J. Materiomics 9, 1196–1241 (2023). https://doi.org/10.1016/j.jmat.2023.08.011
J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes. Nano Sel. 2, 1480–1508 (2021). https://doi.org/10.1002/nano.202000309
C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31, 2009524 (2021). https://doi.org/10.1002/adfm.202009524
M.W. Barsoum, Fundamentals of ceramics (CRC Press, Boca Raton, 2019). https://doi.org/10.1201/9781498708166
Z. Wang, C. Wei, H. Jiang, Y. Zhang, K. Tian et al., MXene-based current collectors for advanced rechargeable batteries. Adv. Mater. 36, e2306015 (2024). https://doi.org/10.1002/adma.202306015
X. Chen, S. Wang, J. Shi, X. Du, Q. Cheng et al., Direct laser etching free-standing MXene-MoS2 film for highly flexible micro-supercapacitor. Adv. Mater. Interfaces 6, 1901160 (2019). https://doi.org/10.1002/admi.201901160
X. Li, Y. Ma, Y. Yue, G. Li, C. Zhang et al., A flexible Zn-ion hybrid micro-supercapacitor based on MXene anode and V2O5 cathode with high capacitance. Chem. Eng. J. 428, 130965 (2022). https://doi.org/10.1016/j.cej.2021.130965
B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33, 2007973 (2021). https://doi.org/10.1002/adma.202007973
K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan et al., MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 1846–1850 (2018). https://doi.org/10.1002/anie.201710616
S. Siddique, A. Waheed, M. Iftikhar, M.T. Mehran, M.Z. Zarif et al., Fluorine-free MXenes via molten salt lewis acidic etching: applications, challenges, and future outlook. Prog. Mater. Sci. (2023). https://doi.org/10.1016/j.pmatsci.2023.101183
L. Liu, H. Zschiesche, M. Antonietti, B. Daffos, N.V. Tarakina et al., Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt. Adv. Energy Mater. 13, 2202709 (2023). https://doi.org/10.1002/aenm.202202709
M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang et al., Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4
X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016). https://doi.org/10.1002/aenm.201502588
W. Lin, Y.-R. Lu, W. Peng, M. Luo, T.-S. Chan et al., Atomic bridging modulation of Ir–N, S Co-doped MXene for accelerating hydrogen evolution. J. Mater. Chem. A 10, 9878–9885 (2022). https://doi.org/10.1039/d2ta00550f
K. Rajput, V. Kumar, S. Thomas, M.A. Zaeem, D.R. Roy, Ca2C MXene monolayer as a superior anode for metal-ion batteries. 2D Mater. 8, 035015 (2021). https://doi.org/10.1088/2053-1583/abf233
M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang et al., High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016). https://doi.org/10.1021/acsnano.6b06597
C. Li, A.K. Tareen, K. Khan, J. Long, I. Hussain et al., Highly efficient, remarkable sensor activity and energy storage properties of MXenes and borophene nanomaterials. Prog. Solid State Chem. 70, 100392 (2023). https://doi.org/10.1016/j.progsolidstchem.2023.100392
J. Jiang, S. Bai, J. Zou, S. Liu, J.-P. Hsu et al., Improving stability of MXenes. Nano Res. 15, 6551–6567 (2022). https://doi.org/10.1007/s12274-022-4312-8
Y. Li, P. Kamdem, X.-J. Jin, In situ growth of chrysanthemum-like NiCo2S4 on MXenes for high-performance supercapacitors and a non-enzymatic H2O2 sensor. Dalton Trans. 49, 7807–7819 (2020). https://doi.org/10.1039/d0dt01030h
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
R. Syamsai, A.N. Grace, G.A. Babu, K.B. Karuppanan, S.K. Eswaran et al., Titanium–tantalum double-ordered MXene nanosheets as supercapacitor electrodes. ACS Appl. Nano Mater. 6, 5224–5232 (2023). https://doi.org/10.1021/acsanm.2c05081
D. Maldonado-Lopez, J.R. Rodriguez, V.G. Pol, R. Syamsai, N.G. Andrews et al., Atomic-scale understanding of Li storage processes in the Ti4C3 and chemically ordered Ti2Ta2C3 MXenes: a theoretical and experimental assessment. ACS Appl. Energy Mater. 5, 1801–1809 (2022). https://doi.org/10.1021/acsaem.1c03239
A. Rafieerad, A. Amiri, G.L. Sequiera, W. Yan, Y. Chen et al., Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for supercapacitor electrodes. Adv. Funct. Mater. 31, 2100015 (2021). https://doi.org/10.1002/adfm.202100015
S. Zhao, C. Chen, X. Zhao, X. Chu, F. Du et al., Flexible Nb4C3Tx film with large interlayer spacing for high-performance supercapacitors. Adv. Funct. Mater. 30, 2000815 (2020). https://doi.org/10.1002/adfm.202000815
M. Saraf, B. Chacon, S. Ippolito, R.W. Lord, M. Anayee et al., Enhancing charge storage of Mo2Ti2C3 MXene by partial oxidation. Adv. Funct. Mater. 34, 2306815 (2024). https://doi.org/10.1002/adfm.202306815
D. Gandla, F. Zhang, D.Q. Tan, Advantage of larger interlayer spacing of a Mo2Ti2C3 MXene free-standing film electrode toward an excellent performance supercapacitor in a binary ionic liquid-organic electrolyte. ACS Omega 7, 7190–7198 (2022). https://doi.org/10.1021/acsomega.1c06761
D. Pinto, B. Anasori, H. Avireddy, C.E. Shuck, K. Hantanasirisakul et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides–solid solution MXenes. J. Mater. Chem. A 8, 8957–8968 (2020). https://doi.org/10.1039/d0ta01798a
H. Wang, Y. Xue, X. Song, S. Lei, H. Yu et al., Solid solution reinforced V3CrC3Tx MXene cathodes for zn-ion micro-supercapacitors with high areal energy density and superior flexibility. J. Mater. Chem. A 10, 20953–20963 (2022). https://doi.org/10.1039/D2TA04747K
Q. Wang, X. Zhang, Z. Chen, Y. Zhao, W. Yao et al., Ti3-yNbYC2Tx MXenes as high-rate and ultra-stable electrode materials for supercapacitors. J. Alloys Compds. 954, 170128 (2023). https://doi.org/10.1016/j.jallcom.2023.170128
R. Syamsai, A.N. Grace, Synthesis, properties and performance evaluation of vanadium carbide MXene as supercapacitor electrodes. Ceram. Int. 46, 5323–5330 (2020). https://doi.org/10.1016/j.ceramint.2019.10.283