A Facile and Template-Free One-Pot Synthesis of Mn3O4 Nanostructures as Electrochemical Supercapacitors
Corresponding Author: Dewei Chu
Nano-Micro Letters,
Vol. 8 No. 2 (2016), Article Number: 165-173
Abstract
In this paper, we report an effective, simple, and cost-effective strategy of electrochemical deposition to prepare hausmannite Mn3O4 thin films for the applications of supercapacitors. Various precursor concentrations and deposition durations were manipulated to tailor the surface morphologies of Mn3O4 nanostructures and to optimize their electrochemical performances. The Mn3O4 samples prepared at 0.05 M Mn(NO3)2 solution for 30 min delivered a large gravimetric specific capacitance of 210 F g−1 at a current density of 0.5 A g−1, and a good rate capability over other samples. This superior electrochemical performance may be attributed to the improved electrode conductivity with increased accessible area for electrolytes ions. Furthermore, a nanocomposite film based on Mn3O4/carbon foam was fabricated by utilizing the developed optimized conditions. The Mn3O4/carbon foam films exhibit an excellent specific capacitance with negligible degradation in retaining specific capacitance values up to 4000 cycles. These findings could further broaden the applications of hausmannite Mn3O4 in electrochemical energy storage electrodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/C1CS15060J
- J. Yan, A. Sumboja, X. Wang, C. Fu, V. Kumar, P. Lee, Insights on the fundamental capacitive behavior: a case study of MnO2. Small 10(17), 3568–3578 (2014). doi:10.1002/smll.201303553
- Z. Xu, A. Younis, H. Xu, S. Li, D. Chu, Improved super-capacitive performance of carbon foam supported CeOx nanoflowers by selective doping and UV irradiation. RSC Adv. 4(66), 35067–35071 (2014). doi:10.1039/C4RA03024A
- R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15), 2483–2498 (2000). doi:10.1016/S0013-4686(00)00354-6
- L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes. Soc. Rev. 38(9), 2520–2531 (2009). doi:10.1039/b813846j
- Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrog. Energy 34(11), 4889–4899 (2009). doi:10.1016/j.ijhydene.2009.04.005
- S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy Fuels 27(6), 3508–3515 (2013). doi:10.1021/ef400212b
- H. Lee, M.S. Cho, I.H. Kim, J.D. Nam, Y. Lee, RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synth. Met. 160(9), 1055–1059 (2010). doi:10.1016/j.synthmet.2010.02.026
- J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24(6), 1158–1164 (2012). doi:10.1021/cm203697w
- X. Zhang, X. Sun, Y. Chen, D. Zhang, Y. Ma, One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Mater. Lett. 68, 336–339 (2012). doi:10.1016/j.matlet.2011.10.092
- X. Zhang, P. Yu, D. Zhang, H. Zhang, X. Sun, Y. Ma, Room temperature synthesis of Mn3O4 nanoparticles: characterization, electrochemical properties and hydrothermal transformation to γ-MnO2 nanorods. Mater. Lett. 92, 401–404 (2013). doi:10.1016/j.matlet.2012.11.022
- W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40(3), 1697–1721 (2011). doi:10.1039/C0CS00127A
- J. Qu, F. Gao, Q. Zhou, Z. Wang, H. Hu, B. Li, W. Wan, X. Wang, J. Qiu, Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors. Nanoscale 5(7), 2999–3005 (2013). doi:10.1039/c3nr33700f
- D. Li, F. Meng, X. Yan, H. Heng, Y. Zhu, One-pot hydrothermal synthesis of Mn3O4 nanorods grown on Ni foam for high performance supercapacitor applications. Nanoscale Res. Lett. 8(1), 1–8 (2013). doi:10.1186/1556-276x-8-535
- G.H. Qiu, H. Wen, Q. Guo, Y.H. Hu, D. Yang, F. Liu, Electrochemical preparation of nanosized manganese dioxides from manganese chloride solutions. Ionics 17(3), 209–216 (2011). doi:10.1007/s11581-011-0538-2
- Y. Cao, Y. Xiao, Y. Gong, C. Wang, F. Li, One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochim. Acta 127, 200–207 (2014). doi:10.1016/j.electacta.2014.02.025
- D.P. Dubal, R. Holze, All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51, 407–412 (2013). doi:10.1016/j.energy.2012.11.021
- Y. Wang, C. Guo, J. Liu, T. Chen, H. Yang, C. Li, CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans. 40(24), 6388–6391 (2011). doi:10.1039/c1dt10397k
- R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nanostructured ternary electrodes for energy-storage applications. Adv. Energy Mater. 2(3), 381–389 (2012). doi:10.1002/aenm.201100609
- S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Porous NiO/C nanocomposites as electrode material for electrochemical supercapacitors. ACS Sustain. Chem. Eng. 1(9), 1110–1118 (2013). doi:10.1021/sc400152r
- C.M. Ghimbeu, E. Raymundo-Pinero, P. Fioux, F. Beguin, C. Vix-Guterl, Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. J. Mater. Chem. 21(35), 13268–13275 (2011). doi:10.1039/c1jm11014d
- K. Lafdi, O. Mesalhy, S. Shaikh, The effect of surface energy on the heat transfer enhancement of paraffin wax/carbon foam composites. Carbon 45(11), 2188–2194 (2007). doi:10.1016/j.carbon.2007.06.055
- “SIGMA-ALDRICH” Carbon–Vitreous, http://www.sigmaaldrich.com/catalog/product/aldrich/gf07378476?lang=en®ion=AU. Accessed 26 Aug 2015
- H. Bisht, H. Eun, A. Mehrtens, M.A. Aegerter, Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates. Thin Solid Films 351(1), 109–114 (1999). doi:10.1016/S0040-6090(99)00254-0
- J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). doi:10.1002/aenm.201300816
- Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). doi:10.1021/nn100740x
References
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/C1CS15060J
J. Yan, A. Sumboja, X. Wang, C. Fu, V. Kumar, P. Lee, Insights on the fundamental capacitive behavior: a case study of MnO2. Small 10(17), 3568–3578 (2014). doi:10.1002/smll.201303553
Z. Xu, A. Younis, H. Xu, S. Li, D. Chu, Improved super-capacitive performance of carbon foam supported CeOx nanoflowers by selective doping and UV irradiation. RSC Adv. 4(66), 35067–35071 (2014). doi:10.1039/C4RA03024A
R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15), 2483–2498 (2000). doi:10.1016/S0013-4686(00)00354-6
L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes. Soc. Rev. 38(9), 2520–2531 (2009). doi:10.1039/b813846j
Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrog. Energy 34(11), 4889–4899 (2009). doi:10.1016/j.ijhydene.2009.04.005
S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy Fuels 27(6), 3508–3515 (2013). doi:10.1021/ef400212b
H. Lee, M.S. Cho, I.H. Kim, J.D. Nam, Y. Lee, RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synth. Met. 160(9), 1055–1059 (2010). doi:10.1016/j.synthmet.2010.02.026
J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24(6), 1158–1164 (2012). doi:10.1021/cm203697w
X. Zhang, X. Sun, Y. Chen, D. Zhang, Y. Ma, One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Mater. Lett. 68, 336–339 (2012). doi:10.1016/j.matlet.2011.10.092
X. Zhang, P. Yu, D. Zhang, H. Zhang, X. Sun, Y. Ma, Room temperature synthesis of Mn3O4 nanoparticles: characterization, electrochemical properties and hydrothermal transformation to γ-MnO2 nanorods. Mater. Lett. 92, 401–404 (2013). doi:10.1016/j.matlet.2012.11.022
W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40(3), 1697–1721 (2011). doi:10.1039/C0CS00127A
J. Qu, F. Gao, Q. Zhou, Z. Wang, H. Hu, B. Li, W. Wan, X. Wang, J. Qiu, Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors. Nanoscale 5(7), 2999–3005 (2013). doi:10.1039/c3nr33700f
D. Li, F. Meng, X. Yan, H. Heng, Y. Zhu, One-pot hydrothermal synthesis of Mn3O4 nanorods grown on Ni foam for high performance supercapacitor applications. Nanoscale Res. Lett. 8(1), 1–8 (2013). doi:10.1186/1556-276x-8-535
G.H. Qiu, H. Wen, Q. Guo, Y.H. Hu, D. Yang, F. Liu, Electrochemical preparation of nanosized manganese dioxides from manganese chloride solutions. Ionics 17(3), 209–216 (2011). doi:10.1007/s11581-011-0538-2
Y. Cao, Y. Xiao, Y. Gong, C. Wang, F. Li, One-pot synthesis of MnOOH nanorods on graphene for asymmetric supercapacitors. Electrochim. Acta 127, 200–207 (2014). doi:10.1016/j.electacta.2014.02.025
D.P. Dubal, R. Holze, All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51, 407–412 (2013). doi:10.1016/j.energy.2012.11.021
Y. Wang, C. Guo, J. Liu, T. Chen, H. Yang, C. Li, CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans. 40(24), 6388–6391 (2011). doi:10.1039/c1dt10397k
R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Nanostructured ternary electrodes for energy-storage applications. Adv. Energy Mater. 2(3), 381–389 (2012). doi:10.1002/aenm.201100609
S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Porous NiO/C nanocomposites as electrode material for electrochemical supercapacitors. ACS Sustain. Chem. Eng. 1(9), 1110–1118 (2013). doi:10.1021/sc400152r
C.M. Ghimbeu, E. Raymundo-Pinero, P. Fioux, F. Beguin, C. Vix-Guterl, Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. J. Mater. Chem. 21(35), 13268–13275 (2011). doi:10.1039/c1jm11014d
K. Lafdi, O. Mesalhy, S. Shaikh, The effect of surface energy on the heat transfer enhancement of paraffin wax/carbon foam composites. Carbon 45(11), 2188–2194 (2007). doi:10.1016/j.carbon.2007.06.055
“SIGMA-ALDRICH” Carbon–Vitreous, http://www.sigmaaldrich.com/catalog/product/aldrich/gf07378476?lang=en®ion=AU. Accessed 26 Aug 2015
H. Bisht, H. Eun, A. Mehrtens, M.A. Aegerter, Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates. Thin Solid Films 351(1), 109–114 (1999). doi:10.1016/S0040-6090(99)00254-0
J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014). doi:10.1002/aenm.201300816
Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6), 3187–3194 (2010). doi:10.1021/nn100740x